-
断裂中的热液流体易发生矿物沉淀形成石英或者方解石脉体,是研究其流体来源、演化、形成环境的最佳对象。断裂带充填物中的稀土元素具有非常高的稳定性,在板块碰撞边界、造山带、断裂活动强烈的区域,经变质作用或一定的热液蚀变作用之后,其多种微量和稀土元素的分配模式不容易发生改变,因此可以用来判断断裂带充填物的系列和起源[1-9]。目前稀土元素已被广泛用来研究多种地质作用的过程,包括岩浆作用、地质作用以及热液作用等,在不同相态中稀土元素的分布模式为定量研究岩浆作用奠定了基石。
-
前人应用依林黑比尔根断裂带不同组系断裂带充填物的岩石组成、矿物成份、地球化学元素分布等对断裂带中充填脉体的形成环境、岩浆活动期次以及流体的来源、运移等方面进行了大量研究工作[10-11]。然而,通过对比断裂带充填脉体的地球化学微量元素组成、不同组系断裂带充填物的来源,发现对断裂带发育构造背景的研究相对较少,该断裂带发育的构造背景以及流体来源仍缺乏系统阐述和明确认识[4-5]。为此,针对北天山依林黑比尔根断裂带 NW—SW 和近 EW 向断裂带的充填物进行地球化学测试,结合稀土元素定量化分配模式[16-18],阐述不同组系断裂带中的流体来源以及形成环境,进而明确依林黑比尔根断裂带发育的构造背景。
-
1 区域地质背景
-
依林黑比尔根断裂带位于天山北缘、准噶尔盆地南缘(图1)。天山造山带南邻塔里木盆地,北接准噶尔盆地,是中亚造山带的重要组成部分,被南北 2 条缝合带分为南天山、中天山和北天山 3 个部分,是世界上规模巨大的造山带之一,主要呈近EW 向或NWW向屹立在新疆中部[19]。受多期构造运动影响,经历了中—晚志留世从 S 向 N 的逆冲推覆韧性剪切变形(增生)、晚石炭世沿 EW 方向的右旋走滑韧性变形(陆-陆碰撞)和新生代喜马拉雅期的印度板块与欧亚板块碰撞,远程挤压效应引发再生前陆盆地变形,其造山作用具有从 E向 W逐渐迁移的特点。
-
依林黑比尔根断裂带为近EW向的大型右旋走滑韧性剪切带。在区域构造挤压运动及多期构造活动的影响下,依林黑比尔根断裂带主要发育 NW—SW向和近EW向2种断裂。
-
结合野外踏勘结果,梳理北天山依林黑比尔根断裂带的断裂体系以及不同尺度断裂发育情况,认为北天山依林黑比尔根断裂带主要以南倾断裂为主,北倾断裂次之,西倾断裂较少,早期大断裂常呈弧形展布(图2)。将板块缝合带、地壳拼接带、控盆断裂以及大型逆掩推覆断裂定为一级断裂;连接一级断裂、与一级断裂近似平行伴生或派生斜交且延伸在100 km之内的断裂定为二级断裂;主断裂的派生断裂杂乱无序,且常常起到调节主断裂以及背斜之间位移的作用,将其定为三级断裂。依林黑比尔根断裂带整体表现为一个由南向北逆冲的前展式活动带,南部主断裂最先形成,北部主断裂形成相对较晚。研究区反转断裂主要发育在早二叠世裂陷盆地阶段,在喜马拉雅期发生大规模逆冲。
-
2 断裂带充填物测试及分析
-
2.1 实验样品及仪器
-
样品取自玛纳斯剖面、后峡剖面以及达坂城剖面典型逆冲断裂带中充填物以及对应的围岩样品,地层主要是石炭系前峡组、二叠系阿尔巴萨依组以及侏罗系头屯河组、西山窑组、三工河组、八道湾组。单个样品长度为6~10 cm,宽度为4~6 cm,主要包括方解石、石英等矿物。已有研究结果表明,八道湾组主要发育黄绿、灰绿色砂岩,粉砂岩互层夹泥岩;三工河组主要发育黄灰、绿灰色粉砂岩;西山窑组发育灰绿、黄绿色砂岩、粉砂岩、泥岩夹砾岩;头屯河组主要发育灰绿、黄绿色泥岩,粉砂岩,砂岩;阿尔巴萨依组主要发育灰紫、紫红色安山玢岩、霏细斑岩;前峡组主要为灰绿、灰黑色薄层碳质凝灰质粉砂岩,凝灰岩。镜下铸体薄片观测显示断裂带充填矿物主要以方解石胶结物为主,偶见石英颗粒,且以细-中晶结构为主(图3)。
-
图1 北天山依林黑比尔根断裂带分布示意
-
Fig.1 Distribution of Yilin Heibiergen Fault Zone in Northern Tianshan Mountain
-
图2 北天山依林黑比尔根断裂带周缘地区断裂体系平面分布
-
Fig.2 Layout of fault system in peripheral regions of Yilin Heibiergen Fault Zone in Northern Tianshan Mountain
-
本次样品微量元素实验测试主要由核工业北京地质研究院分析测试中心完成,实验仪器是Nex‐ ION300D等离子体质谱仪,测试温度为 23℃,湿度为 40%。断裂带充填方解石脉体以及断裂带内部围岩全岩微量元素主要包括Li,Be,Sc,V,Cr,Co等 44 种。在野外裂缝识别以及区域断裂分布的基础上,优选 12 块方解石脉体的新鲜小块(充填物质量超过10 g),用于微量元素分析;选择15块断裂带内部围岩样品,用于全岩微量元素分析,具体样品参数如表1所示。
-
图3 北天山依林黑比尔根断裂带充填物镜下特征
-
Fig.3 Fillings of Yilin Heibiergen Fault Zone under microscope
-
2.2 稀土元素地球化学分布
-
稀土元素具有非常高的稳定性[20]。依林黑比尔根不同走向断裂带的方解石脉体样品以及全岩样品稀土元素分析结果显示,稀土元素总量平均为1 1.159 5×10-6,La/Yb 值平均为 48.748;不同走向断裂带的充填脉体微量元素含量差异较大[21-26],稀土元素总量变化较大,近 EW 向断裂带充填物的稀土元素总量为 2.478×10-6~15.581×10-6,NE—SW向为1.751×10-6~27.402×10-6。
-
对 15块断裂带围岩全岩的 44种微量元素测试结果分析发现,微量元素总量平均为 583.86×10-6, La/Yb 值平均为 20.11。不同走向断裂带充填物全岩微量元素含量差异较大,稀土元素总量变化较大,近 EW 向断裂带充填物全岩稀土元素总量为 16.34×10-6~1 387.04×10-6,NE—SW向为21.99×10-6~2 201.74×10-6。微量元素方面,本区断裂带充填物整体表现出大离子亲石元素的富集。
-
3 断裂带充填物特征分析
-
3.1 断裂带充填物来源
-
前人针对碳酸盐岩孔洞、裂缝、断裂带等充填物特征等已做过大量工作,主要包括扫描电镜、稀土元素、碳-氧同位素、微量元素等,不同期次充填物以及不同环境的充填物微量元素分布差异较大[27-33]。
-
研究区基于近EW和NE—SW向断裂带的充填脉体以及全岩的微量和稀土元素绘制球粒陨石标准化多元素分配曲线,确定不同走向断裂带充填脉体的来源。由图4 可知,近 EW 向断裂带充填脉体表现为亏损轻稀土,SmN/LaN平均值为0.263;逐步亏损重稀土,LuN/GdN平均值为 0.116;Th 元素为显著正异常,δTh 为 2.66;Nb 元素为较弱负异常,δNb 为 0.9;La 和 Eu 元素均为较弱正异常,其值分别为 1.563 和 0.632;整体为轻稀土元素相对富集的左倾特征。NE—SW 向断裂带充填物为 La 元素为显著正异常,δLa为 3.501;Eu元素为较弱负异常,δEu 为 0.228;整体表现为轻稀土元素相对富集的左倾特征,且含量变化较大。以上分析结果表明,近EW向断裂带的充填物受早期岩浆活动影响较大,可能会出现酸性岩浆岩、玄武岩和安山质岩石;NE—SW 向断裂带(或者近 SN向断裂带)充填过程经部分熔融,斜长石是其分离结晶的斑晶,受到地壳浅部地层水的作用,最后形成断裂带充填物,近EW向断裂带形成时间早于NE—SW向断裂带。
-
另外,由图5 可知,近 EW 向断裂带充填物 Nb 元素为显著负异常,δNb 为 0.594;Eu 元素为显著正异常,δEu 为3.24;整体表现为轻稀土元素含量变化较大,重稀土元素含量较低,包括 Nb 谷和 Eu 峰。 NE—SW 向断裂带充填物整体表现为轻稀土元素含量较高、重稀土元素含量变化不大的特点,Nb 元素为显著负异常,δNb 为 0.489;La元素为显著正异常,δLa 为 7.419;具有 Nb,Ce 谷和 Th,La 峰。以上分析结果表明,近 EW 向断裂带的充填物和 NE— SW向断裂带的充填物具有不同来源,近EW向断裂带形成时期早于 NE—SW 向断裂带,这主要与地壳深部的岩浆活动有关,NE—SW 向断裂带充填物主要来自于地壳浅部。
-
图4 北天山依林黑比尔根断裂带脉体球粒陨石标准化多元素分配曲线
-
Fig.4 Standard multi-element allocation curves of veins/chondrites in Yilin Heibiergen Fault Zone in Northern Tianshan Mountain
-
图5 北天山依林黑比尔根断裂带全岩球粒陨石标准化多元素分配曲线
-
Fig.5 Standard multi-element allocation curves of whole rock/chondrites in Yilin Heibiergen Fault Zone in Northern Tianshan Mountain
-
3.2 构造环境判别
-
基于岩浆岩微量元素指标判别构造环境的方法多种多样,目前应用范围较广的方法包括Th-Nb-Zr判别法、Ti-Zr-Y 图解法、Ti-Zr图解法、La/Zr-Nb/ Zr 图解法、Nb/Th-Nb 以及 Th/Yb-Ta/Yb 图解法等,均具有较为可靠且有效的成果[31-34]。构造环境判别图解显示(图6a),近 EW 向断裂带的充填脉体以及全岩样品投点主要落入大陆板内区域,部分落入板块汇聚边缘区域。而近 NE—SW 向断裂带的充填脉体以及全岩样品主要投点于大陆板内和板块汇聚边缘区域。并且,2 种断裂带的全岩样品几乎都落入陆—陆碰撞带区域,而充填脉体的样品则较为分散,多种构造区域均有涉及。在基于花岗岩的构造环境判别图解中(图6b),大部分样品的微量元素组成与来自火山弧和同碰撞花岗岩相似,少部分近 NE—SW 向断裂带的全岩样品落入洋中脊花岗岩区域。来自天山北缘断裂带附近的不同走向断裂带充填脉体的样品均显示位于板块汇聚边界以及大陆板块内碰撞环境,表明北天山断裂带中充填物的形成主要与陆内碰撞或者板块边界碰撞环境下的热液活动相关。晚古生代北天山为受裂陷作用影响的构造环境[35-36],其内部发育大量控制二叠系分布的基底断层,尽管受后期构造变形叠加影响,断层仍保持着近 EW 向分布的高角度特征;晚侏罗世在区域构造挤压应力作用下发育大量 NE—SW 向断裂,少量 NW—SE向断裂,切割程度相对较浅; 新近纪则受印度板块和欧亚板块强烈造山作用影响,天山造山带急剧隆升,北天山—准噶尔盆地南缘在区域构造挤压应力作用下,最终形成现今的断裂格局。
-
图6 基于断裂带充填物的构造环境判别
-
Fig.6 Identification of tectonic environment based on fillings of fault zone
-
4 结论
-
北天山依林黑比尔根近EW向断裂带充填脉体以及全岩稀土元素特征与 NE—SW 向断裂差别较大,充填物来源亦不相同。近 EW 向断裂带充填物 Nb元素为显著负异常,δNb为0.594;Eu元素为显著正异常,δEu 为 3.24;来源于地壳深部岩浆活动,受早期岩浆活动影响较大。NE—SW 向断裂带(或者近 SN向断裂带)充填物经历部分熔融,受地壳浅部地层水作用。近 EW 向断裂的形成时间早于 NE— SW向断裂。
-
北天山依林黑比尔根断裂带形成的构造环境属于板块汇聚边界以及大陆板块内碰撞环境,天山断裂带充填物主要与陆内碰撞或者板块边界碰撞环境的热液活动有关。
-
参考文献
-
[1] 秦国省,胡文瑞,邹存友,等.基准面旋回对冲积扇沉积演化及储层质量的控制作用——以百口泉油田百21井区百口泉组为例[J].油气地质与采收率,2018,25(3):1-10.QIN Guosheng,HU Wenrui,ZOU Cunyou,et al.Effects of baselevel cycles on alluvial fan evolution and reservoir quality:a case study of the Baikouquan Formation in Bai21 Block,Baik‐ ouquan Oilfield[J].Petroleum Geology and Recovery Efficien‐ cy,2018,25(3):1-10.
-
[2] 高宇慧,李思远,巴忠臣,等.准噶尔盆地红172井区石炭系火山岩储层裂缝特征及定量预测[J].大庆石油地质与开发,2021,40(2):30-41.GAO Yuhui,LI Siyuan,BA Zhongchen,et al.Characteristics and quantitative prediction of Carboniferous volcanic reservoir frac‐ tures in Well Block Hong-172 of Junggar Basin[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(2):30-41.
-
[3] 梅俭.输导断裂主要特征部位及其对油气运移的控制[J].大庆石油地质与开发,2020,39(1):35-40.MEI Jian.Main characteristic parts of the transporting fault and their controls on the hydrocarbon migrations[J].Petroleum Geol‐ ogy & Oilfield Development in Daqing,2020,39(1):35-40.
-
[4] 梁成钢,罗群,张金风,等.致密砂岩储层层理缝与构造缝渗吸差异分析——以吉木萨尔凹陷芦草沟组为例[J].油气地质与采收率,2020,27(4):104-110.LIANG Chenggang,LUO Qun,ZHANG Jinfeng,et al.Analysis of imbibition difference between bedding fractures and structur‐ al fractures in tight sandstore reservoir:a case study in Lucao‐ gou Formation in Jimsar Depression[J].Petroleum Geology and Recovery Efficiency,2020,27(4):104-110.
-
[5] 王建伟,廖伟,曾治平,等.准噶尔盆地乌夏地区压扭断裂带发育特征及其组合样式分析[J].油气地质与采收率,2020,27(6):1-10.WANG Jianwei,LIAO Wei,ZENG Zhiping,et al.Development characteristics and geometric pattern analysis of compressiontorsion fault zone in the Wuxia area of Junggar Basin[J].Petro‐ leum Geology and Recovery Efficiency,2020,27(6):1-10.
-
[6] 于浩雨,于明德,李洲,等.洛伊凹陷西南部边界大断裂发育特征及其对油气成藏的控制作用[J].油气地质与采收率,2020,27(5):13-24.YU Haoyu,YU Mingde,LI Zhou,et al.Development character‐ istics of large fault in southwest boundary of Luoyi Sag and its controlling effect on hydrocarbon accumulation[J].Petroleum Geology and Recovery Efficiency,2020,27(5):13-24.
-
[7] 王圣柱,王千军,张关龙,等.准噶尔盆地石炭系烃源岩发育模式及地球化学特征[J].油气地质与采收率,2020,27(4):13-25.WANG Shengzhu,WANG Qianjun,ZHANG Guanlong,et al.Development mode and geochemical characteristics of Carbonif‐ erous source rocks in Junggar Basin[J].Petroleum Geology and Recovery Efficiency,2020,27(4):13-25.
-
[8] 王猛.鄂尔多斯盆地镇原-泾川地区中生界断裂发育特征[J].断块油气田,2019,26(2):142-146.WANG Meng.Mesozoic fracture development characteristics of Zhenyuan-Jingchuan area,Ordos Basin[J].Fault-Block Oil and Gas Field,2019,26(2):142-146.
-
[9] 商丰凯.叠合盆地凸起区多期复杂断裂特征及形成机制—— 以准噶尔盆地车排子凸起为例[J].断块油气田,2020,27(3):278-283.SHANG Fengkai.Characteristics and formation mechanism of multi-stage complex fault system of uplift in superimposed ba‐ sin:a case study of Chepaizi Uplift,Junggar Basin,NW China [J].Fault-Block Oil and Gas Field,2020,27(3):278-283.
-
[10] 何沐飞,张景坤,米巨磊,等.烃源岩中可溶有机质的FTIR地球化学意义探讨——以准噶尔盆地下二叠统风城组为例[J].石油实验地质,2021,43(6):1 048-1 053,1 063.HE Mufei,ZHANG Jingkun,MI Julei,et al.Organic geochemi‐ cal study of FTIR analysis on source rock extracts:a case study of Lower Permian Fengcheng Formation in Junggar Basin,NW China[J].Petroleum Geology & Experiment,2021,43(6):1 048-1 053,1 063.
-
[11] 张辉,陈勇,王学军,等.准噶尔盆地中部侏罗系三工河组储层沥青地球化学特征及其对油气成藏过程的指示[J].石油实验地质,2021,43(6):1 054-1 063.ZHANG Hui,CHEN Yong,WANG Xuejun,et al.Geochemical characteristics of solid bitumen in the Jurassic Sangonghe For‐ mation in the central Junggar Basin and its implications for hy‐ drocarbon accumulation process[J].Petroleum Geology & Ex‐ periment,2021,43(6):1 054-1 063.
-
[12] 张兴勇.红山嘴油田石炭系火山岩储层裂缝发育特征及主控因素[J].特种油气藏,2021,28(3):25-32.ZHANG Xingyong.Fracture development characteristics and main controlling factors of carboniferous volcanic reservoir in Hongshanzui Oilfield[J].Special Oil & Gas Reservoirs,2021,28(3):25-32.
-
[13] 单俊峰,陈昌,周晓龙,等.辽河坳陷台安-大洼断裂带新生代构造演化及油气成藏[J].特种油气藏,2021,28(6):11-19.SHAN Junfeng,CHEN Chang,ZHOU Xiaolong,et al.Cenozoic tectonic evolution and hydrocarbon accumulation of Taian-Da‐ wa Fault Zone,Liaohe Sag[J].Special Oil & Gas Reservoirs,2021,28(6):11-19.
-
[14] 朱志新,王克卓,徐达,等.依连哈比尔尕山石炭纪侵入岩锆石 SHRIMP U-Pb测年及其地质意义[J].地质通报,2006,25(8):986-991.ZHU Zhixin,WANG Kezhuo,XU Da,et al.SHRIMP U-Pb dat‐ ing of zircons from Carboniferous intrusive rocks on the active continental margin of Eren Habirga,West Tianshan,Xinjiang,China,and its geological implications[J].Geological Bulletin of China,2006,25(8):986-991.
-
[15] 漆家福,陈书平,杨桥,等.准噶尔-北天山盆山过渡带构造基本特征[J].石油与天然气地质,2008,29(2):252-260,282.QI Jiafu,CHEN Shuping,YANG Qiao,et al.Characteristics of tectonic deformation within transitional belt between the Jung‐ gar Basin and the northern Tianshan Mountain[J].Oil & Gas Ge‐ ology,2008,29(2):252-260,282.
-
[16] 任江波,姚会强,朱克超,等.稀土元素及钇在东太平洋CC区深海泥中的富集特征与机制[J].地学前缘,2015,22(4):200-211.REN Jiangbo,YAO Huiqiang,ZHU Kechao,et al.Enrichment mechanism of rare earth elements and yttrium in deep-sea mud of Clarion-Clipperton region[J].Earth Science Frontiers,2015,22(4):200-211.
-
[17] GANZEYEV A A,SOTSKAV Y P,LYAPUNOV S M.Geochemi‐ cal specialization of ore-bearing solutions in relation to rareearth elements[J].Geochemical International,1987,20(4):160-164.
-
[18] HANSON G N.Rare earth elements in petrogenetic studies of ig‐ neous systems[J].Annual Review of Earth and Planetary Sci‐ ences,1980,8(1):371-406.
-
[19] 杨少敏,李杰,王琪.GPS 研究天山现今变形与断层活动[J].中国科学:D辑地球科学,2008,38(7):872-880.YANG Shaomin,LI Jie,WANG Qi.The deformation pattern and fault rate in the Tianshan Mountains inferred from GPS observa‐ tions[J].Science in China:Series D Earth Sciences,2008,38(7):872-880.
-
[20] 杨晓平,沈军.天山内部博罗可努断裂精河——阿拉山口段晚更新世以来的活动特征[J].地震地质,2000,22(3):305-315.YANG Xiaoping,SHEN Jun.Late quaternary activity of JingheAlashankou section of the Boluokenu fault,interior Tianshan [J].Seismology and Geology,2000,22(3):305-315.
-
[21] 沈军,汪一鹏,李莹甄,等.中国新疆天山博阿断裂晚第四纪右旋走滑运动特征[J].地震地质,2003,25(2):183-194.SHEN Jun,WANG Yipeng,LI Yingzhen,et al.Late quaternary right-lateral strike-slip faulting along the Bolokenu-Aqikekuduke fault in Chinese Tian Shan[J].Seismology and Geology,2003,25(2):183-194.
-
[22] 李双应,杨栋栋,王松,等.南天山中段上石炭统碎屑岩岩石学、地球化学、重矿物和锆石年代学特征及其对物源区、构造演化的约束[J].地质学报,2014,88(2):167-184.LI Shuangying,YANG Dongdong,WANG Song,et al.Charac‐ teristics of petrology,geochemistry,heavy minerals and isotope chronology of upper carboniferous detrital rocks in the middle segment of south Tianshan and constraints to the provenance and tectonic evolution[J].Acta Geologica Sinica,2014,88(2):167-184.
-
[23] 沈传波,梅廉夫,张士万,等.依连哈比尔尕山和博格达山中新生代隆升的时空分异:裂变径迹热年代学的证据[J].矿物岩石,2008,28(2):63-70.SHEN Chuanbo,MEI Lianfu,ZHANG Shiwan,et al.Fissiontrack dating evidence on space-time difference of Mesozoic-Ce‐ nozoic uplift of the Yilianhabierga Mountain and Bogeda Moun‐ tain[J].Mineralogy and Petrology,2008,28(2):63-70.
-
[24] 胡恭任,刘丛强,章邦桐,等.赣中周潭群变质脉体的微量元素及氧同位素地球化学研究[J].地质论评,2006,52(3):331-340.HU Gongren,LIU Congqiang,ZHANG Bangtong,et al.Study on oxygen isotope and trace element geochemistry of metamor‐ phic veins within Zhoutan group in central Jiangxi Province,China[J].Geological Review,2006,52(3):331-340.
-
[25] 胡恭任,刘丛强,于瑞莲.赣中周潭群变质沉积岩的微量元素地球化学研究[J].矿物学报,2008,28(2):143-151.HU Gongren,LIU Congqiang,YU Ruilian.Study on the trace el‐ ement geochemistry of the Zhoutan group metasedimentary rocks in central Jiangxi Province[J].Acta Mineralogica Sinica,2008,28(2):143-151.
-
[26] 常海亮,郑荣才,郭春利,等.准噶尔盆地西北缘风城组喷流岩稀土元素地球化学特征[J].地质论评,2016,62(3):550-568.CHANG Hailiang,ZHENG Rongcai,GUO Chunli,et al.Charac‐ teristics of rare earth elements of exhalative rock in Fengcheng Formation,northwestern margin of Jungger Basin[J].Geologi‐ cal Review,2016,62(3):550-568.
-
[27] 淡永,梁彬,曹建文,等.塔里木盆地轮南地区奥陶系岩溶缝洞充填物地球化学特征及环境意义[J].石油实验地质,2012,34(6):623-628.DAN Yong,LIANG Bin,CAO Jianwen,et al.Geochemical fea‐ tures and environmental significances of deposits in Ordovician karstic fractures and caves,Lunnan area,Tarim Basin[J].Petro‐ leum Geology and Experiment,2012,34(6):623-628.
-
[28] 蔡春芳,李开开,李斌,等.塔河地区奥陶系碳酸盐岩缝洞充填物的地球化学特征及其形成流体分析[J].岩石学报,2009,25(10):2 399-2 404.CAI Chunfang,LI Kaikai,LI Bin,et al.Geochemical character‐ istics and origins of fracture-and vug-fillings of the Ordovician in Tahe Oilfield,Tarim Basin[J].Acta Petrologica Sinica,2009,25(10):2 399-2 404.
-
[29] 张聪,于炳松,樊太亮,等.塔里木盆地北部下奥陶统碳酸盐岩孔洞充填物特征及其成岩环境分析[J].地学前缘,2008,15(2):100-108.ZHANG Cong,YU Bingsong,FAN Tailiang,et al.The charac‐ teristics of cave fillings of carbonates in the Lower Ordovician and their diagenetic environments in northern Tarim Basin[J].Earth Science Frontiers,2008,15(2):100-108.
-
[30] 刘玲,朱井泉,由雪莲,等.塔里木盆地柯坪地区中寒武统准同生白云岩孔洞充填物期次、地化特征及形成条件[J].古地理学报,2012,14(6):757-766.LIU Ling,ZHU Jingquan,YOU Xuelian,et al.Generations,geo‐ chemistry characteristics and their precipitation conditions of cave fillings of the Middle Cambrian penecontemporaneous do‐ lostone in Keping area,Tarim Basin[J].Journal of Palaeogeog‐ raphy,2012,14(6):757-766.
-
[31] 孙书勤,张成江,赵松江.大陆板内构造环境的微量元素判别 [J].大地构造与成矿学,2007,31(1):104-109.SUN Shuqin,ZHANG Chengjiang,ZHAO Songjiang.Identifica‐ tion of the tectonic settings for continental intraplate by trace ele‐ ments[J].Geotectonica and Metallogenia,2007,31(1):104-109.
-
[32] 田陟贤,阎军,李永军,等.西准噶尔巴尔雷克一带石炭系黑山头组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及构造环境[J].地质学报,2013,87(3):343-352.TIAN Zhixian,YAN Jun,LI Yongjun,et al.LA-ICP-MS zircon U-Pb age,geochemistry and tectonic setting of the volcanic rocks in the Heishantou Formation from the area of Barleik,west Junggar[J].Acta Geologica Sinica,2013,87(3):343-352.
-
[33] 武莉娜,王志畅,汪云亮.微量元素La,Nb,Zr在判别大地构造环境方面的应用[J].华东地质学院学报,2003,26(4):343-348.WU Lina,WANG Zhichang,WANG Yunliang.On the applica‐ tion of La,Nb and Zr in identifying the tectonic settings[J].Journal of East China Geological Institute,2003,26(4):343-348.
-
[34] 赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学,2007,31(1):92-103.ZHAO Zhenhua.How to use the trace element diagrams to dis‐ criminate tectonic settings[J].Geotectonica and Metallogenia,2007,31(1):92-103.
-
[35] 刘丛强,解广轰,增田彰正.中国东部新生代玄武岩的地球化学——Ⅰ.主元素和微量元素组成:岩石成因及源区特征[J].地球化学,1995,24(1):1-19.LIU Congqiang,XIE Guanghong,MASUDA A.Geochemistry of cenozoic basalts from eastern China—I.Major element and trace element compositions:petrogenesis and characteristics of mantle source[J].Geochimica,1995,24(1):1-19.
-
[36] 陈发景,汪新文,汪新伟.准噶尔盆地的原型和构造演化[J].地学前缘,2005,12(3):77-89.CHEN Fajing,WANG Xinwen,WANG Xinwei.Prototype and tectonic evolution of the Junggar Basin,northwestern China[J].Earth Science Frontiers,2005,12(3):77-89.
-
摘要
基于玛纳斯河剖面、后峡剖面和达坂城剖面典型断裂(带)围岩样品的矿物学和地球化学测试结果,分析不同走向断裂带充填物的稀土元素地球化学分布与差异,研究和评价北天山依林黑比尔根断裂带充填物的来源以及构造环境。结果表明:研究区依林黑比尔根断裂带附近断裂带充填物脉体与全岩的稀土元素特征十分相似,表现为轻稀土元素的相对富集。近EW向断裂带充填物主要位于板块汇聚边界,形成时间较早,来源于地壳深部,是深部岩浆热液作用的结果;NE—SW向断裂带充填物主要来源于板块汇聚边缘以及陆内碰撞构造环境,形成时间相对较晚,是地壳浅部活动的产物。
Abstract
The rock samples of the typical faults(zones)of Manasi River profile,Houxia profile,and Dabancheng profile were ex‐ amined in terms of their mineralogical and geochemical components. On this basis,the geochemical distribution and differences in the rare earth elements were analyzed for the fault zone fillings of different trends,and the source and tectonic environment of the fillings of Yilin Heibiergen Fault Zone were studied and assessed. The results showed that the characteristics of the veins of fault zone fillings near Yilin Heibiergen Fault Zone in the study area are similar to those of the rare earth elements of whole rock,demon‐ strating the relative accumulation of light rare earth elements. The fillings of the nearly EW-trending fault zone came from the deep crust and formed relatively early,which were mainly at the convergence boundary of the plates and resulted from the hydrothermal process of hypo magma. The fillings of the NE-SW trending fault zone,formed relatively late,were developed at the convergence edge of plates and in the tectonic environment of intra-continental collisions,which were the results of shallow crust activities.