en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵阳(1986—),男,内蒙古赤峰人,讲师,博士,从事油气藏地质方面的研究工作。E-mail:zhaoyangcdut@163.com。

通讯作者:

段毅(1956—),男,甘肃镇原人,研究员,博士。E-mail:duany@lzb.ac.cn。

中图分类号:TE341

文献标识码:A

文章编号:1009-9603(2023)05-0057-06

DOI:10.13673/j.pgre.202211044

参考文献 1
杜栩,郑洪印,焦秀琼.异常压力与油气分布[J].地学前缘,1995,2(3/4):137-148.DU Xu,ZHENG Hongyin,JIAO Xiuqiong.Abnormal pressured and hydrocarbon accumulation[J].Earth Science Frontiers,1995,2(3/4):137-148.
参考文献 2
CHAPMAN R E.Clays with abnormal interstitial fluid pressures [J].American Association of Petroleum Geologists Bulletin,1972,56(4):790-795.
参考文献 3
刘成林,平英奇,郭泽清,等.柴达木盆地西北古近系新近系异常高压形成机制分析[J].地学前缘,2019,26(3):211-219.LIU Chenglin,PING Yingqi,GUO Zeqing,et al.Genetic mecha‐ nism of overpressure in the Paleogene and Neogene in the north‐ western Qaidam Basin[J].Earth Science Frontiers,2019,26(3):211-219.
参考文献 4
孙龙飞,李慧勇,许鹏,等.渤海海域渤中19-6构造古近系泥岩段速度异常分析及定量预测[J].海洋地质前沿,2020,36(11):11-17.SUN Longfei,LI Huiyong,XU Peng,et al.Analysis and predic‐ tion of abnormal velocity in Paleogene mudstone of structure BZ19-6 in offshore Bohai Bay Basin[J].Marine Geology Fron‐ tiers,2020,36(11):11-17.
参考文献 5
BURST J F.Diagenesis of gulf coast clayed sediments and its pos‐ sible relation to petroleum migration[J].American Association of Petroleum Geologists Bulletin,1969,53(1):73-93.
参考文献 6
余琪祥,余风华,史政.塔里木盆地巴什托构造异常高压特征及成因[J].天然气地球科学,2017,28(7):1 000-1 007.YU Qixiang,YU Fenghua,SHI Zheng.Genesis analysis of abnor‐ mal overpressure in Bashituo structure,Tarim Basin[J].Natural Gas Geoscience,2017,28(7):1 000-1 007.
参考文献 7
吴娟,叶加仁,施和生,等.恩平凹陷中央断裂构造带超压发育及成藏意义[J].中南大学学报:自然科学版,2013,44(7):2 801-2 811.WU Juan,YE Jiaren,SHI Hesheng,et al.Overpressure forming and its effect on petroleum accumulation in central faulted struc‐ tural belt of Enping Depression,China[J].Journal of Central South University:Science and Technology,2013,44(7):2 801-2 811.
参考文献 8
刘华,袁飞飞,蒋有录,等.沾化凹陷古近系超压特征及其成因机制[J].中国石油大学学报:自然科学版,2021,45(3):23-32.LIU Hua,YUAN Feifei,JIANG Youlu,et al.Genesis and charac‐ teristics of Paleogene overpressure in Zhanhua Depression,Ji‐ yang Sub-basin[J].Journal of China University of Petroleum:Edi‐ tion of Natural Science,2021,45(3):23-32.
参考文献 9
李婷,邓海,邹伟奇.复杂断陷盆地低渗透油藏形成条件及油气富集规律——以海拉尔盆地贝尔凹陷贝中次凹南二段为例 [J].大庆石油地质与开发,2021,40(4):32-37.LI Ting,DENG Hai,ZOU Weiqi.Accumalation conditions and hydrocarbon enrichment laws of low-permeability oil reservoirs in complex rift basins:a case study from the second member of Nantun Formation of Beizhong sub-sag in Beier Sag of Hailar Basin[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(4):32-37.
参考文献 10
郝牧歌,张金功,马士磊.从常规与非常规油气成藏的正相关性角度预测有利区——以孤岛1号凹隆域低部位为例[J].油气地质与采收率,2022,29(4):46-56.HAO Muge,ZHANG Jingong,MA Shilei.Favorable area predic‐ tion from perspective of positive accumulation correlation be‐ tween conventional and unconventional oil and gas reservoirs:a case of low part in Gudao No.1 sag-uplift band[J].Petroleum Ge‐ ology and Recovery Efficiency,2022,29(4):46-56.
参考文献 11
BARKER C.Quathermal pressuring-role of temperature in devel‐ opment of abnormal-pressure zones:geological notes[J].Ameri‐ can Association of Petroleum Geologists Bulletin,1972,56(10):2 068-2 071.
参考文献 12
赵靖舟,李军,徐泽阳.沉积盆地超压成因研究进展[J].石油学报,2017,38(9):973-998.ZHAO Jingzhou,LI Jun,XU Zeyang.Advances in the origin of overpressures in sedimentary basins[J].Acta Petrolei Sinica,2017,38(9):973-998.
参考文献 13
王雅星,柳广弟.库车坳陷异常高压成因分析[J].新疆石油地质,2004,25(4):362-364.WANG Yaxing,LIU Guangdi.Origin of adnormal high pressure in Kuqa Depression[J].Xinjiang Petroleum Geology,2004,25(4):362-364.
参考文献 14
谷玉田.临南洼陷压力场特征及其与油气分布的关系[J].油气地质与采收率,2021,28(2):49-59.GU Yutian.Pressure field and its relationship with hydrocarbon distribution in Linnan Subsag[J].Petroleum Geology and Recov‐ ery Efficiency,2021,28(2):49-59.
参考文献 15
BREDEHOEFT J D,WESLEY J B,FOUCH T D.Simulations of the origin of fluid-pressure,fracture generation,and the move‐ ment of fluids in the Uinta Basin,Utah[J].American Association of Petroleum Geologists Bulletin,1994,78(11):1 729-1 747.
参考文献 16
徐思煌,梅廉夫,袁彩萍.成烃增压数值模拟[J].石油实验地质,1998,20(3):85-89.XU Sihuang,MEI Lianfu,YUAN Caiping.Numerical modeling on pressurizing caused by hydrocarbon generation[J].Experimen‐ tal Petroleum Geology,1998,20(3):85-89.
参考文献 17
HUNT J M.Generation and migration of petroleum from abnor‐ mally pressured fluid compartments[J].American Association of Petroleum Geologists Bulletin,1990,74(1):1-12.
参考文献 18
BERG R R,GANGI A F.Primary migration by oil-generation mi‐ crofracturing in low-permeability source rocks:application to the Austin Chalk,Texas[J].American Association of Petroleum Geologists Bulletin,1999,83(5):727-756.
参考文献 19
郭小文,何生,郑伦举,等.生油增压定量模型及影响因素[J].石油学报,2011,32(4):637-644.GUO Xiaowen,HE Sheng,ZHENG Lunju,et al.A quantitative model for the overpressure caused by oil generation and its influ‐ ential factors[J].Acta Petrolei Sinica,2011,32(4):637-644.
参考文献 20
石正勇,金芸芸,罗家群.泌阳凹陷核桃园组优质烃源岩发育古环境特征及地质意义[J].特种油气藏,2021,28(1):51-58.SHI Zhengyong,JIN Yunyun,LUO Jiaqun.Paleo-environmental characteristics of the development of high-quality hydrocarbon source rocks in Hetaoyuan Formation of Biyang Sag and geologi‐ cal significance[J].Special Oil & Gas Reservoirs,2021,28(1):51-58.
参考文献 21
聂舟,马诗杰,伍秋姿,等.长宁地区海相页岩天然裂缝发育特征及其对含气性的影响[J].断块油气田,2022,29(5):591-597.NIE Zhou,MA Shijie,WU Qiuzi,et al.Development characteris‐ tics of natural fractures in marine shale in Changning area and their influence on gas-bearing properties[J].Fault-Block Oil and Gas Field,2022,29(5):591-597.
参考文献 22
昝灵,骆卫峰,印燕铃,等.苏北盆地溱潼凹陷古近系阜宁组二段页岩油形成条件及有利区评价[J].石油实验地质,2021,43(2):233-241.ZAN Ling,LUO Weifeng,YIN Yanling,et al.Formation condi‐ tions of shale oil and favorable targets in the second member of Paleogene Funing Formation in Qintong Sag,Subei Basin[J].Pe‐ troleum Geology & Experiment,2021,43(2):233-241.
参考文献 23
孔祥文,汪萍,夏朝辉,等.西加拿大沉积盆地Simonette区块上泥盆统Duvernay页岩地质特征与流体分布规律 [J].中国石油勘探,2022,27(2):93-107.KONG Xiangwen,WANG Ping,XIA Zhaohui,et al.Geological characteristics and fluid distribution of the Upper Devonian Du‐ vernay shale in Simonette block in the Western Canada Sedimen‐ tary Basin[J].China Petroleum Exploration,2022,27(2):93-107.
参考文献 24
LEWIS R,INGRAHAM D,SAWYER W,et al.New evaluation techniques for gas shale reservoirs[R].Reservoir Symposium Sch‐ lumberger,2004:1-11.
参考文献 25
汪志诚.热力学与统计物理[M].3 版.北京:高等教育出版社,2003:1-227.WANG Zhicheng.Thermodynamics and statistical physics[M].3rd ed.Beijing:Higher Education Press,2003:1-227.
参考文献 26
梁正中,许红涛,李昌.鄂尔多斯盆地西南边缘地区长8段充注成藏模式南北对比[J].油气藏评价与开发,2022,12(6):918-926.LIANG Zhengzhong,XU Hongtao,LI Chang.Comparison of ac‐ cumulation model of Chang-8 reservoirs between Huanxi-Peng‐ yang area in southwestern Ordos Basin[J].Reservoir Evaluation and Development,2022,12(6):918-926.
参考文献 27
杜贵超,杨兆林,尹洪荣,等.鄂尔多斯盆地东南部长73段泥页岩储层有机质发育特征及富集模式[J].油气地质与采收率,2022,29(6):1-11.DU Guichao,YANG Zhaolin,YIN Hongrong,et al.Developmen‐ tal characteristics of organic matter and its enrichment model in shale reservoirs of Chang 73 Member in Yanchang Formation of southeast Ordos Basin[J].Petroleum Geology and Recovery Effi‐ ciency,2022,29(6):1-11.
参考文献 28
付金华,罗安湘,喻建,等.西峰油田成藏地质特征及勘探方向 [J].石油学报,2004,25(2):25-29.FU Jinhua,LUO Anxiang,YU Jian,et al.Geological features of reservoir formation and exploration strategy of Xifeng Oilfield [J].Acta Petrolei Sinica,2004,25(2):25-29.
参考文献 29
FALVEY D A,MIDDLETON M F.Passive continental margins:evidence for a prebreakup deep crustal metamorphic subsidence mechanism[C].Paris:26th International Geological Congress,Geology of Continental Margins Symposium,1981:103-114.
参考文献 30
MAGARA K.Compaction and fluid migration[M].Amsterdam:Elsevier Science,1978.
参考文献 31
刘震,邵新军,金博,等.压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响[J].现代地质,2007,21(1):125-132.LIU Zhen,SHAO Xinjun,JIN Bo,et al.Co-effect of depth and burial time on the evolution of porosity for classic rocks during the stage of compaction[J].Geoscience,2007,21(1):125-132.
参考文献 32
范琳沛.鄂尔多斯盆地南部长7泥页岩沉积学特征与孔隙发育研究[D].西安:西安石油大学,2014.FAN Linpei.Study on the South of Erdos Basin sedimentary char‐ acteristics and pore development of Chang 7 mud shale[D].Xi’ an:Xi’an Shiyou University,2014.
参考文献 33
李传亮.岩石压缩系数与孔隙度的关系[J].中国海上油气:地质,2003,17(5):355-358.LI Chuanliang.The relationship between rock compressibility and porosity[J].China Offshore Oil and Gas:Geology,2003,17(5):355-358.
参考文献 34
VANORIO T,PRASAD M,NUR A.Elastic properties of dry clay mineral aggregates,suspensions and sandstones[J].Geophysical Journal International,2003,155(1):319-326.
参考文献 35
晋文,贺可强,唐文洋,等.白象山铁矿岩体质量等级和力学参数的确定[J].现代矿业,2011,27(12):77-79.JIN Wen,HE Keqiang,TANG Wenyang,et al.Determination of rock mass quality grade and mechanical parameters in Baixiang‐ shan Iron Mine[J].Modern Mining,2011,27(12):77-79.
参考文献 36
刘震,陈凯,朱文奇,等.鄂尔多斯盆地西峰地区长7段泥岩古压力恢复[J].中国石油大学学报:自然科学版,2012,36(2):1-7.LIU Zhen,CHEN Kai,ZHU Wenqi,et al.Paleo-pressure restora‐ tion of Chang 7 shale in Xifeng area,Ordos Basin[J].Journal of China University of Petroleum:Edition of Natural Science,2012,36(2):1-7.
目录contents

    摘要

    生油增压定量化研究是计算油气成藏动力并进一步确定油气分布的关键。目前已有的生油增压计算方法较复杂或计算精度不足,影响其在勘探中快速应用。基于Ⅰ型有机质生烃特征综合分析,建立了生油增压数学模型,并将该模型应用于鄂尔多斯盆地西峰油田长7段烃源岩生油增压的计算,同时分析了不同参数对生油增压的影响。结果显示,西峰油田长7段烃源岩生油增压为4.6~14.8 MPa,地层压力与前人计算结果相近,说明模型具有较高的可靠性。参数敏感性分析表明,岩石压缩系数对生油增压影响程度最大,为99.056%;总有机碳含量影响程度为0.342%;生烃影响因子和干酪根生油转化效率对生油增压的影响程度分别为 0.261% 和 0.250%;孔隙度和地层压力对生油增压的影响程度较小,分别为 0.09% 和 0.001%。模型同时揭示,较高的地层压力不利于生油增压,地层压力越高,增压越小。

    Abstract

    Quantitative study on oil generated overpressure is the key to calculating the dynamics of oil and gas reservoirs and deter‐ mining the distribution of oil and gas. The existing calculation methods of oil generated overpressure are low in calculation accuracy and complex,which affect their rapid applications in exploration. In this study,according to the comprehensive analysis of hydro‐ carbon generation characteristics of type I organic matter,a new mathematical model of oil generated overpressure was established. The model was used to calculate the oil generated overpressure of Chang7 source rock in Xifeng Oilfield of Ordos Basin and analyze the influence of different parameters on the oil generated overpressure. The results show that the oil generated overpressure of Chang7 source rock in Xifeng Oilfield is 4.6-14.8 MPa,and the formation pressure is similar to the previous calculation results, which indicates that the model is highly reliable. The sensitivity analysis of rock parameters shows that the rock compressibility fac‐ tor has the greatest influence on the oil generated overpressure,with a value of 99.056%,followed by the total organic carbon con‐ tent,with a value of 0.342%. The influence of hydrocarbon generation factor and kerogen oil-generating conversion efficiency on the oil generated overpressure is 0.261% and 0.250%,respectively,and the porosity and formation pressure have a relatively small effect on the oil generated overpressure,which is 0.09% and 0.001%,respectively. The model also reveals that higher formation pressure is not conducive to oil generated overpressure,and higher formation pressure makes the oil generated overpressure smaller.

  • 含油气盆地的发育和形成与地层超压具有密切的关系[1]。欠压实作用[2-4]、黏土矿物脱水[5-6]、有机质生烃作用[7-10]、流体热增压作用[11-12]、构造应力[13] 等是超压形成的重要因素。有机质生烃作用不仅能增加地层压力,同时还控制油气排出过程[14]。因此,建立生油增压数学模型对分析油气运移及分布有重要意义。BREDEHOEFT 等在考虑油气的生成和排出基础上,利用三维生油动力学模型验证了生烃作用对犹他盆地地层超压的影响[15]。徐思煌等在质量守恒、体积守恒和压力守恒 3 个原则约束情况下建立了生油增压的数学模型,模型显示干酪根生成气态烃时产生的增压更加显著[16]。对于封闭条件较好的烃源岩,生烃作用引起的超压达到岩石破裂压力时会导致烃源岩产生裂缝,发生幕式排烃[17]。BERG 等在岩石渗透率极低、应力状态稳定、生烃速率不变和低温生油、高温生气的假设条件下建立了数学模型,进一步肯定了生烃作用对幕式排烃的意义[18]。郭小文等利用生油增压数学模型计算了生油增压,并通过实验验证了生油增压模型的计算结果[19]。已有研究成果从不同方面说明了生烃作用对超压及排烃的重要性,但是这些模型或者数据需求量高导致应用难度大,或者计算过于简化导致精度偏低。为此,通过分析 I型干酪根的生烃特征,重新建立生油增压数学模型并获得解析解,同时分析控制生油增压的主控因素,以期为油气成藏动力[20] 和烃源岩微裂缝研究提供参考[21-23]

  • 1 生油增压模型推导

  • 生油增压模型需遵循以下假设条件:①烃源岩孔隙连通性较好。②Ⅰ型干酪根生成的气体全部溶解在原油中[19]。③烃源岩受到的构造应力不变。④ 生烃过程中地层温度和埋藏深度不变。⑤生烃前后干酪根压缩系数不变。

  • 烃源岩生烃前,孔隙空间被地层水充满(图1a),则有:

  • Vw1=ϕ
    (1)
  • 孔隙中液态烃的质量可以表示为[19]

  • Mo=AFMk1
    (2)
  • 干酪根生油后原油的密度可表示为:

  • ρo2=ρo1+CoΔp+p1
    (3)
  • 则干酪根生成的原油体积表达式为:

  • Vo2=Mo/ρo2=AFMk1/ρo1+CoΔp+p1
    (4)
  • 烃源岩中总有机碳含量(TOC)的表达式为[24]

  • TOC=Vkρkρbκ
    (5)
  • 因此,干酪根生油前单位体积烃源岩中的干酪根体积Vk1和质量Mk1分别为:

  • Vk1=TOCρbκρk
    (6)
  • Mk1=TOCρbκ
    (7)
  • 将(7)式代入(4)式得:

  • Vo2=AFTOCρbκ/ρo1+CoΔp+p1
    (8)
  • 系统温度不发生变化时,液体物态方程为[25]

  • V=Vo1-βfp-po
    (9)
  • 则生油后孔隙中水的体积为:

  • Vw2=Vw11-CwΔp
    (10)
  • 将(1)式代入(10)式得:

  • Vw2=ϕ1-CwΔp
    (11)
  • 干酪根一部分转化为原油,剩余的干酪根由于孔隙压力增大受到压缩(图1b),因此生油后干酪根的体积为:

  • Vk2=(1-AF)(1-CΔp)Vk1
    (12)
  • 将干酪根看作孔隙的一部分,则生油前后孔隙体积的关系为:

  • Vk2+Vo2+Vw2=1+CpΔpVw1+Vk1
    (13)
  • 将(1),(6),(8),(11),(12)式代入(13)式,整理得:

  • Δp=-b+b2-4ac2a
    (14)
  • 其中:

  • a=ρoCoϕCp+ϕCw+Vk1Cp+Vk1ρoCkCo(1-AF)
    (15)
  • b=ρo+ρoCop1ϕCp+ϕCw+Vk1Cp+ρoCoVk1-ρoVk1(1-AF)Co-Ck-CoCkp1
    (16)
  • c=ρo+ρoCop1Vk1-AFMk1-ρoVk1(1-AF)1+Cop1
    (17)
  • 图1 Ⅰ型干酪根生油增压概念模型

  • Fig.1 Conceptual model of type I kerogen oil generated overpressure

  • 2 应用实例

  • 鄂尔多斯盆地西峰油田长7段烃源岩发育范围大,有机质含量高、类型好,是鄂尔多斯盆地中生界重要的油源岩[26-27]。西峰油田地处鄂尔多斯盆地西南部,区内长 7 段烃源岩厚度为 120~160 m,TOC 为 4%~8%,镜质组反射率(Ro)为 0.7%~0.95%[28],具有较强的生烃能力。以西峰油田长7段烃源岩为例,计算其成藏期生油增压。此外,需重新厘定部分参数。

  • 2.1 孔隙度

  • 计算孔隙度倒数压实模型为[29]

  • 1ϕ1=1ϕ0+KZ
    (18)
  • MAGARA 提出了孔隙度随埋深变化的指数模型[30]

  • ϕ1=ϕ0e-cz
    (19)
  • 研究认为,双元模型可以将孔隙度恢复至成藏期。基于文献[31],利用双元模型恢复了西峰油田 12 口井长 7 段烃源岩成藏期孔隙度。计算结果显示,西峰油田长7段烃源岩成藏期孔隙度为22.48%~29.13%,平均为26.19%(表1)。

  • 2.2 岩石压缩系数

  • 矿物分析显示,鄂尔多斯盆地南部长 7 段泥页岩矿物组成差异较小,黏土矿物含量为 42.16%,石英含量为 27.75%,斜长石含量为 18.46%,菱铁矿和其他矿物含量为11.63%[32]。基于各类矿物含量及压缩系数可计算不同岩石的骨架压缩系数[33]。西峰油田长7段泥页岩黏土矿物、石英、斜长石和菱铁矿的Cs分别取9.09×10-5 [34],1.20×10-5 [33],3.00×10-5 和8.60× 10-5 MPa-1[35]。西峰油田长 7 段烃源岩成藏期的岩石压缩系数表达式为:

  • Cp=ϕ1-ϕi=1n xiCsi
    (20)
  • 利用(20)式计算西峰油田长 7段烃源岩成藏期的Cp为2.03×10-5MPa-1

  • 将生油增压参数(表2)代入(14)式,结果显示,西峰油田长7段烃源岩最大埋深期生油增压为4.6~14.8 MPa,地层压力为 29.6~42.0 MPa,地层压力计算结果与前人研究结果(28.0~42.0 MPa)[22] 有较好的吻合度,说明文中建立的模型具有较高的可靠性。

  • 2.3 参数敏感性

  • 为了分析生油增压模型参数的敏感性,以生油增压变化程度为指标研究参数的敏感性。其参数敏感性分析基准方案为:A 为 0.3,F 为 28%,TOC 为 6%,ϕ 为 26.2%,Cp 为 2.03×10-5 MPa-1p1 为 25 MPa。将参数变化范围设定为10%~60%(表3),计算由此引起的生油增压。

  • 由于各参数量度不一致,引起的 Δp 差别较大,难以直接确定各参数的敏感性。因此,提出运用 ki 分析不同参数对Δp的影响,ki为Δp变化值与某参数变化值之比。计算结果显示:CpTOCAFϕp1ki 分别为 11 247,37.91,29.89,28.88,10.28 和 0.09。将各敏感参数的 ki代入(19)式即可得到每个参数的影响程度:

  • α=kii=16 ki
    (21)
  • 计算结果显示,Cp 对 Δp 的影响程度最大,为9 9.056%,远大于其他参数,进一步证明了本次研究考虑Cp的必要性。TOC的影响程度为0.342%,如果不考虑 CpTOC 对 Δp 具有最大的影响,AF 对 Δp 的影响程度接近,分别为 0.261% 和 0.250%,ϕp1 对Δp的影响程度较小,分别为0.09%和0.001%。此外,p1越高,Δp越小,即较高的地层压力抑制生油增压。

  • 表1 鄂尔多斯盆地西峰油田长7段烃源岩古孔隙度恢复结果

  • Table1 Paleoporosity restoration results of Chang7 source rock in Xifeng Oilfield of Ordos Basin

  • 注:HT=100为长7段最大埋深期的深度;HT=0为长7段现今深度;ϕT = 0为长7段现今孔隙度;ΔϕT = 100为长7段最大埋深期至今孔隙度变化量; ϕT = 100为长7段最大埋深期孔隙度。

  • 表2 鄂尔多斯盆地西峰油田长7段烃源岩生油增压参数

  • Table2 Basic parameters of oil generated overpressure for Chang7 source rock in Xifeng Oilfield of Ordos Basin

  • 表3 生油增压数学模型参数敏感性分析

  • Table3 Sensitivity analysis table of mathematical model of oil generated overpressure

  • 3 结论

  • 在分析 I型干酪根生烃特征基础上建立了生油增压数学模型,并且利用此模型计算了鄂尔多斯盆地西峰油田长 7 段烃源岩生油增压。结果表明,鄂尔多斯盆地西峰油田长7段烃源岩生油增压为4.6~14.8 MPa。地层压力计算结果与前人研究结果有较好的吻合度,表明文中建立的模型具有较高的可靠性。参数敏感性分析表明,Cp 对 Δp 影响程度最大, TOC次之,AF对Δp的影响程度较小,ϕp1对Δp 的影响程度最低。生油增压模型揭示,较高的地层压力抑制生油增压。

  • 符号解释

  • abc——一元二次方程的3个系数;

  • A——生烃影响因子,mg/g;

  • C——沉积物压实常数;

  • Ck——干酪根压缩系数,MPa-1

  • Co——原油的压缩系数,MPa-1

  • Cp——岩石压缩系数,MPa-1

  • Cs ——岩石骨架压缩系数,MPa-1

  • Csi ——每种矿物的压缩系数,MPa-1

  • Cw——地层水的压缩系数,MPa-1

  • F——干酪根生油转化率,%;

  • i——矿物种类,i=1,2,···,n

  • K——压缩因子,1/m;

  • ki ——生油增压变化率;

  • Mk1——生油前干酪根的质量,g;

  • Mo——孔隙中液态烃的质量,g;

  • p——液体体积为V时对应的压力,MPa;

  • po——标准状况下的地层压力,MPa;

  • p1——生油前地层压力,MPa;

  • Δp——生油增压,MPa;

  • TOC——总有机碳含量,%;

  • V——液体体积,cm3

  • Vk——单位体积烃源岩中的干酪根体积,cm3

  • Vk1——生油前单位体积烃源岩中的干酪根体积,cm3

  • Vk2——生油后单位体积烃源岩中的干酪根体积,cm3

  • Vo——标准状况下孔隙中的原油体积,cm3

  • Vo2——干酪根生成后的原油体积,cm3

  • Vw1——生油前孔隙中水的体积,cm3

  • Vw2——生油后孔隙中水的体积,cm3

  • xi ——每种矿物的含量,%;

  • Z——地层埋深,m;

  • α——参数影响程度,%;

  • βf ——液体密度,g/cm3

  • κ——干酪根转化因子,一般取1.2;

  • ρb——标准状况下烃源岩密度,g/cm3

  • ρk——干酪根密度,g/cm3

  • ρo——标准状况下原油密度,g/cm3

  • ρo2——生油后原油被压缩后密度,g/cm3

  • ϕ——岩石孔隙度,%;

  • ϕ0——岩石初始孔隙度,%;

  • ϕ1——埋深为Z处的岩石孔隙度,%。

  • 参考文献

    • [1] 杜栩,郑洪印,焦秀琼.异常压力与油气分布[J].地学前缘,1995,2(3/4):137-148.DU Xu,ZHENG Hongyin,JIAO Xiuqiong.Abnormal pressured and hydrocarbon accumulation[J].Earth Science Frontiers,1995,2(3/4):137-148.

    • [2] CHAPMAN R E.Clays with abnormal interstitial fluid pressures [J].American Association of Petroleum Geologists Bulletin,1972,56(4):790-795.

    • [3] 刘成林,平英奇,郭泽清,等.柴达木盆地西北古近系新近系异常高压形成机制分析[J].地学前缘,2019,26(3):211-219.LIU Chenglin,PING Yingqi,GUO Zeqing,et al.Genetic mecha‐ nism of overpressure in the Paleogene and Neogene in the north‐ western Qaidam Basin[J].Earth Science Frontiers,2019,26(3):211-219.

    • [4] 孙龙飞,李慧勇,许鹏,等.渤海海域渤中19-6构造古近系泥岩段速度异常分析及定量预测[J].海洋地质前沿,2020,36(11):11-17.SUN Longfei,LI Huiyong,XU Peng,et al.Analysis and predic‐ tion of abnormal velocity in Paleogene mudstone of structure BZ19-6 in offshore Bohai Bay Basin[J].Marine Geology Fron‐ tiers,2020,36(11):11-17.

    • [5] BURST J F.Diagenesis of gulf coast clayed sediments and its pos‐ sible relation to petroleum migration[J].American Association of Petroleum Geologists Bulletin,1969,53(1):73-93.

    • [6] 余琪祥,余风华,史政.塔里木盆地巴什托构造异常高压特征及成因[J].天然气地球科学,2017,28(7):1 000-1 007.YU Qixiang,YU Fenghua,SHI Zheng.Genesis analysis of abnor‐ mal overpressure in Bashituo structure,Tarim Basin[J].Natural Gas Geoscience,2017,28(7):1 000-1 007.

    • [7] 吴娟,叶加仁,施和生,等.恩平凹陷中央断裂构造带超压发育及成藏意义[J].中南大学学报:自然科学版,2013,44(7):2 801-2 811.WU Juan,YE Jiaren,SHI Hesheng,et al.Overpressure forming and its effect on petroleum accumulation in central faulted struc‐ tural belt of Enping Depression,China[J].Journal of Central South University:Science and Technology,2013,44(7):2 801-2 811.

    • [8] 刘华,袁飞飞,蒋有录,等.沾化凹陷古近系超压特征及其成因机制[J].中国石油大学学报:自然科学版,2021,45(3):23-32.LIU Hua,YUAN Feifei,JIANG Youlu,et al.Genesis and charac‐ teristics of Paleogene overpressure in Zhanhua Depression,Ji‐ yang Sub-basin[J].Journal of China University of Petroleum:Edi‐ tion of Natural Science,2021,45(3):23-32.

    • [9] 李婷,邓海,邹伟奇.复杂断陷盆地低渗透油藏形成条件及油气富集规律——以海拉尔盆地贝尔凹陷贝中次凹南二段为例 [J].大庆石油地质与开发,2021,40(4):32-37.LI Ting,DENG Hai,ZOU Weiqi.Accumalation conditions and hydrocarbon enrichment laws of low-permeability oil reservoirs in complex rift basins:a case study from the second member of Nantun Formation of Beizhong sub-sag in Beier Sag of Hailar Basin[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(4):32-37.

    • [10] 郝牧歌,张金功,马士磊.从常规与非常规油气成藏的正相关性角度预测有利区——以孤岛1号凹隆域低部位为例[J].油气地质与采收率,2022,29(4):46-56.HAO Muge,ZHANG Jingong,MA Shilei.Favorable area predic‐ tion from perspective of positive accumulation correlation be‐ tween conventional and unconventional oil and gas reservoirs:a case of low part in Gudao No.1 sag-uplift band[J].Petroleum Ge‐ ology and Recovery Efficiency,2022,29(4):46-56.

    • [11] BARKER C.Quathermal pressuring-role of temperature in devel‐ opment of abnormal-pressure zones:geological notes[J].Ameri‐ can Association of Petroleum Geologists Bulletin,1972,56(10):2 068-2 071.

    • [12] 赵靖舟,李军,徐泽阳.沉积盆地超压成因研究进展[J].石油学报,2017,38(9):973-998.ZHAO Jingzhou,LI Jun,XU Zeyang.Advances in the origin of overpressures in sedimentary basins[J].Acta Petrolei Sinica,2017,38(9):973-998.

    • [13] 王雅星,柳广弟.库车坳陷异常高压成因分析[J].新疆石油地质,2004,25(4):362-364.WANG Yaxing,LIU Guangdi.Origin of adnormal high pressure in Kuqa Depression[J].Xinjiang Petroleum Geology,2004,25(4):362-364.

    • [14] 谷玉田.临南洼陷压力场特征及其与油气分布的关系[J].油气地质与采收率,2021,28(2):49-59.GU Yutian.Pressure field and its relationship with hydrocarbon distribution in Linnan Subsag[J].Petroleum Geology and Recov‐ ery Efficiency,2021,28(2):49-59.

    • [15] BREDEHOEFT J D,WESLEY J B,FOUCH T D.Simulations of the origin of fluid-pressure,fracture generation,and the move‐ ment of fluids in the Uinta Basin,Utah[J].American Association of Petroleum Geologists Bulletin,1994,78(11):1 729-1 747.

    • [16] 徐思煌,梅廉夫,袁彩萍.成烃增压数值模拟[J].石油实验地质,1998,20(3):85-89.XU Sihuang,MEI Lianfu,YUAN Caiping.Numerical modeling on pressurizing caused by hydrocarbon generation[J].Experimen‐ tal Petroleum Geology,1998,20(3):85-89.

    • [17] HUNT J M.Generation and migration of petroleum from abnor‐ mally pressured fluid compartments[J].American Association of Petroleum Geologists Bulletin,1990,74(1):1-12.

    • [18] BERG R R,GANGI A F.Primary migration by oil-generation mi‐ crofracturing in low-permeability source rocks:application to the Austin Chalk,Texas[J].American Association of Petroleum Geologists Bulletin,1999,83(5):727-756.

    • [19] 郭小文,何生,郑伦举,等.生油增压定量模型及影响因素[J].石油学报,2011,32(4):637-644.GUO Xiaowen,HE Sheng,ZHENG Lunju,et al.A quantitative model for the overpressure caused by oil generation and its influ‐ ential factors[J].Acta Petrolei Sinica,2011,32(4):637-644.

    • [20] 石正勇,金芸芸,罗家群.泌阳凹陷核桃园组优质烃源岩发育古环境特征及地质意义[J].特种油气藏,2021,28(1):51-58.SHI Zhengyong,JIN Yunyun,LUO Jiaqun.Paleo-environmental characteristics of the development of high-quality hydrocarbon source rocks in Hetaoyuan Formation of Biyang Sag and geologi‐ cal significance[J].Special Oil & Gas Reservoirs,2021,28(1):51-58.

    • [21] 聂舟,马诗杰,伍秋姿,等.长宁地区海相页岩天然裂缝发育特征及其对含气性的影响[J].断块油气田,2022,29(5):591-597.NIE Zhou,MA Shijie,WU Qiuzi,et al.Development characteris‐ tics of natural fractures in marine shale in Changning area and their influence on gas-bearing properties[J].Fault-Block Oil and Gas Field,2022,29(5):591-597.

    • [22] 昝灵,骆卫峰,印燕铃,等.苏北盆地溱潼凹陷古近系阜宁组二段页岩油形成条件及有利区评价[J].石油实验地质,2021,43(2):233-241.ZAN Ling,LUO Weifeng,YIN Yanling,et al.Formation condi‐ tions of shale oil and favorable targets in the second member of Paleogene Funing Formation in Qintong Sag,Subei Basin[J].Pe‐ troleum Geology & Experiment,2021,43(2):233-241.

    • [23] 孔祥文,汪萍,夏朝辉,等.西加拿大沉积盆地Simonette区块上泥盆统Duvernay页岩地质特征与流体分布规律 [J].中国石油勘探,2022,27(2):93-107.KONG Xiangwen,WANG Ping,XIA Zhaohui,et al.Geological characteristics and fluid distribution of the Upper Devonian Du‐ vernay shale in Simonette block in the Western Canada Sedimen‐ tary Basin[J].China Petroleum Exploration,2022,27(2):93-107.

    • [24] LEWIS R,INGRAHAM D,SAWYER W,et al.New evaluation techniques for gas shale reservoirs[R].Reservoir Symposium Sch‐ lumberger,2004:1-11.

    • [25] 汪志诚.热力学与统计物理[M].3 版.北京:高等教育出版社,2003:1-227.WANG Zhicheng.Thermodynamics and statistical physics[M].3rd ed.Beijing:Higher Education Press,2003:1-227.

    • [26] 梁正中,许红涛,李昌.鄂尔多斯盆地西南边缘地区长8段充注成藏模式南北对比[J].油气藏评价与开发,2022,12(6):918-926.LIANG Zhengzhong,XU Hongtao,LI Chang.Comparison of ac‐ cumulation model of Chang-8 reservoirs between Huanxi-Peng‐ yang area in southwestern Ordos Basin[J].Reservoir Evaluation and Development,2022,12(6):918-926.

    • [27] 杜贵超,杨兆林,尹洪荣,等.鄂尔多斯盆地东南部长73段泥页岩储层有机质发育特征及富集模式[J].油气地质与采收率,2022,29(6):1-11.DU Guichao,YANG Zhaolin,YIN Hongrong,et al.Developmen‐ tal characteristics of organic matter and its enrichment model in shale reservoirs of Chang 73 Member in Yanchang Formation of southeast Ordos Basin[J].Petroleum Geology and Recovery Effi‐ ciency,2022,29(6):1-11.

    • [28] 付金华,罗安湘,喻建,等.西峰油田成藏地质特征及勘探方向 [J].石油学报,2004,25(2):25-29.FU Jinhua,LUO Anxiang,YU Jian,et al.Geological features of reservoir formation and exploration strategy of Xifeng Oilfield [J].Acta Petrolei Sinica,2004,25(2):25-29.

    • [29] FALVEY D A,MIDDLETON M F.Passive continental margins:evidence for a prebreakup deep crustal metamorphic subsidence mechanism[C].Paris:26th International Geological Congress,Geology of Continental Margins Symposium,1981:103-114.

    • [30] MAGARA K.Compaction and fluid migration[M].Amsterdam:Elsevier Science,1978.

    • [31] 刘震,邵新军,金博,等.压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响[J].现代地质,2007,21(1):125-132.LIU Zhen,SHAO Xinjun,JIN Bo,et al.Co-effect of depth and burial time on the evolution of porosity for classic rocks during the stage of compaction[J].Geoscience,2007,21(1):125-132.

    • [32] 范琳沛.鄂尔多斯盆地南部长7泥页岩沉积学特征与孔隙发育研究[D].西安:西安石油大学,2014.FAN Linpei.Study on the South of Erdos Basin sedimentary char‐ acteristics and pore development of Chang 7 mud shale[D].Xi’ an:Xi’an Shiyou University,2014.

    • [33] 李传亮.岩石压缩系数与孔隙度的关系[J].中国海上油气:地质,2003,17(5):355-358.LI Chuanliang.The relationship between rock compressibility and porosity[J].China Offshore Oil and Gas:Geology,2003,17(5):355-358.

    • [34] VANORIO T,PRASAD M,NUR A.Elastic properties of dry clay mineral aggregates,suspensions and sandstones[J].Geophysical Journal International,2003,155(1):319-326.

    • [35] 晋文,贺可强,唐文洋,等.白象山铁矿岩体质量等级和力学参数的确定[J].现代矿业,2011,27(12):77-79.JIN Wen,HE Keqiang,TANG Wenyang,et al.Determination of rock mass quality grade and mechanical parameters in Baixiang‐ shan Iron Mine[J].Modern Mining,2011,27(12):77-79.

    • [36] 刘震,陈凯,朱文奇,等.鄂尔多斯盆地西峰地区长7段泥岩古压力恢复[J].中国石油大学学报:自然科学版,2012,36(2):1-7.LIU Zhen,CHEN Kai,ZHU Wenqi,et al.Paleo-pressure restora‐ tion of Chang 7 shale in Xifeng area,Ordos Basin[J].Journal of China University of Petroleum:Edition of Natural Science,2012,36(2):1-7.

  • 参考文献

    • [1] 杜栩,郑洪印,焦秀琼.异常压力与油气分布[J].地学前缘,1995,2(3/4):137-148.DU Xu,ZHENG Hongyin,JIAO Xiuqiong.Abnormal pressured and hydrocarbon accumulation[J].Earth Science Frontiers,1995,2(3/4):137-148.

    • [2] CHAPMAN R E.Clays with abnormal interstitial fluid pressures [J].American Association of Petroleum Geologists Bulletin,1972,56(4):790-795.

    • [3] 刘成林,平英奇,郭泽清,等.柴达木盆地西北古近系新近系异常高压形成机制分析[J].地学前缘,2019,26(3):211-219.LIU Chenglin,PING Yingqi,GUO Zeqing,et al.Genetic mecha‐ nism of overpressure in the Paleogene and Neogene in the north‐ western Qaidam Basin[J].Earth Science Frontiers,2019,26(3):211-219.

    • [4] 孙龙飞,李慧勇,许鹏,等.渤海海域渤中19-6构造古近系泥岩段速度异常分析及定量预测[J].海洋地质前沿,2020,36(11):11-17.SUN Longfei,LI Huiyong,XU Peng,et al.Analysis and predic‐ tion of abnormal velocity in Paleogene mudstone of structure BZ19-6 in offshore Bohai Bay Basin[J].Marine Geology Fron‐ tiers,2020,36(11):11-17.

    • [5] BURST J F.Diagenesis of gulf coast clayed sediments and its pos‐ sible relation to petroleum migration[J].American Association of Petroleum Geologists Bulletin,1969,53(1):73-93.

    • [6] 余琪祥,余风华,史政.塔里木盆地巴什托构造异常高压特征及成因[J].天然气地球科学,2017,28(7):1 000-1 007.YU Qixiang,YU Fenghua,SHI Zheng.Genesis analysis of abnor‐ mal overpressure in Bashituo structure,Tarim Basin[J].Natural Gas Geoscience,2017,28(7):1 000-1 007.

    • [7] 吴娟,叶加仁,施和生,等.恩平凹陷中央断裂构造带超压发育及成藏意义[J].中南大学学报:自然科学版,2013,44(7):2 801-2 811.WU Juan,YE Jiaren,SHI Hesheng,et al.Overpressure forming and its effect on petroleum accumulation in central faulted struc‐ tural belt of Enping Depression,China[J].Journal of Central South University:Science and Technology,2013,44(7):2 801-2 811.

    • [8] 刘华,袁飞飞,蒋有录,等.沾化凹陷古近系超压特征及其成因机制[J].中国石油大学学报:自然科学版,2021,45(3):23-32.LIU Hua,YUAN Feifei,JIANG Youlu,et al.Genesis and charac‐ teristics of Paleogene overpressure in Zhanhua Depression,Ji‐ yang Sub-basin[J].Journal of China University of Petroleum:Edi‐ tion of Natural Science,2021,45(3):23-32.

    • [9] 李婷,邓海,邹伟奇.复杂断陷盆地低渗透油藏形成条件及油气富集规律——以海拉尔盆地贝尔凹陷贝中次凹南二段为例 [J].大庆石油地质与开发,2021,40(4):32-37.LI Ting,DENG Hai,ZOU Weiqi.Accumalation conditions and hydrocarbon enrichment laws of low-permeability oil reservoirs in complex rift basins:a case study from the second member of Nantun Formation of Beizhong sub-sag in Beier Sag of Hailar Basin[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(4):32-37.

    • [10] 郝牧歌,张金功,马士磊.从常规与非常规油气成藏的正相关性角度预测有利区——以孤岛1号凹隆域低部位为例[J].油气地质与采收率,2022,29(4):46-56.HAO Muge,ZHANG Jingong,MA Shilei.Favorable area predic‐ tion from perspective of positive accumulation correlation be‐ tween conventional and unconventional oil and gas reservoirs:a case of low part in Gudao No.1 sag-uplift band[J].Petroleum Ge‐ ology and Recovery Efficiency,2022,29(4):46-56.

    • [11] BARKER C.Quathermal pressuring-role of temperature in devel‐ opment of abnormal-pressure zones:geological notes[J].Ameri‐ can Association of Petroleum Geologists Bulletin,1972,56(10):2 068-2 071.

    • [12] 赵靖舟,李军,徐泽阳.沉积盆地超压成因研究进展[J].石油学报,2017,38(9):973-998.ZHAO Jingzhou,LI Jun,XU Zeyang.Advances in the origin of overpressures in sedimentary basins[J].Acta Petrolei Sinica,2017,38(9):973-998.

    • [13] 王雅星,柳广弟.库车坳陷异常高压成因分析[J].新疆石油地质,2004,25(4):362-364.WANG Yaxing,LIU Guangdi.Origin of adnormal high pressure in Kuqa Depression[J].Xinjiang Petroleum Geology,2004,25(4):362-364.

    • [14] 谷玉田.临南洼陷压力场特征及其与油气分布的关系[J].油气地质与采收率,2021,28(2):49-59.GU Yutian.Pressure field and its relationship with hydrocarbon distribution in Linnan Subsag[J].Petroleum Geology and Recov‐ ery Efficiency,2021,28(2):49-59.

    • [15] BREDEHOEFT J D,WESLEY J B,FOUCH T D.Simulations of the origin of fluid-pressure,fracture generation,and the move‐ ment of fluids in the Uinta Basin,Utah[J].American Association of Petroleum Geologists Bulletin,1994,78(11):1 729-1 747.

    • [16] 徐思煌,梅廉夫,袁彩萍.成烃增压数值模拟[J].石油实验地质,1998,20(3):85-89.XU Sihuang,MEI Lianfu,YUAN Caiping.Numerical modeling on pressurizing caused by hydrocarbon generation[J].Experimen‐ tal Petroleum Geology,1998,20(3):85-89.

    • [17] HUNT J M.Generation and migration of petroleum from abnor‐ mally pressured fluid compartments[J].American Association of Petroleum Geologists Bulletin,1990,74(1):1-12.

    • [18] BERG R R,GANGI A F.Primary migration by oil-generation mi‐ crofracturing in low-permeability source rocks:application to the Austin Chalk,Texas[J].American Association of Petroleum Geologists Bulletin,1999,83(5):727-756.

    • [19] 郭小文,何生,郑伦举,等.生油增压定量模型及影响因素[J].石油学报,2011,32(4):637-644.GUO Xiaowen,HE Sheng,ZHENG Lunju,et al.A quantitative model for the overpressure caused by oil generation and its influ‐ ential factors[J].Acta Petrolei Sinica,2011,32(4):637-644.

    • [20] 石正勇,金芸芸,罗家群.泌阳凹陷核桃园组优质烃源岩发育古环境特征及地质意义[J].特种油气藏,2021,28(1):51-58.SHI Zhengyong,JIN Yunyun,LUO Jiaqun.Paleo-environmental characteristics of the development of high-quality hydrocarbon source rocks in Hetaoyuan Formation of Biyang Sag and geologi‐ cal significance[J].Special Oil & Gas Reservoirs,2021,28(1):51-58.

    • [21] 聂舟,马诗杰,伍秋姿,等.长宁地区海相页岩天然裂缝发育特征及其对含气性的影响[J].断块油气田,2022,29(5):591-597.NIE Zhou,MA Shijie,WU Qiuzi,et al.Development characteris‐ tics of natural fractures in marine shale in Changning area and their influence on gas-bearing properties[J].Fault-Block Oil and Gas Field,2022,29(5):591-597.

    • [22] 昝灵,骆卫峰,印燕铃,等.苏北盆地溱潼凹陷古近系阜宁组二段页岩油形成条件及有利区评价[J].石油实验地质,2021,43(2):233-241.ZAN Ling,LUO Weifeng,YIN Yanling,et al.Formation condi‐ tions of shale oil and favorable targets in the second member of Paleogene Funing Formation in Qintong Sag,Subei Basin[J].Pe‐ troleum Geology & Experiment,2021,43(2):233-241.

    • [23] 孔祥文,汪萍,夏朝辉,等.西加拿大沉积盆地Simonette区块上泥盆统Duvernay页岩地质特征与流体分布规律 [J].中国石油勘探,2022,27(2):93-107.KONG Xiangwen,WANG Ping,XIA Zhaohui,et al.Geological characteristics and fluid distribution of the Upper Devonian Du‐ vernay shale in Simonette block in the Western Canada Sedimen‐ tary Basin[J].China Petroleum Exploration,2022,27(2):93-107.

    • [24] LEWIS R,INGRAHAM D,SAWYER W,et al.New evaluation techniques for gas shale reservoirs[R].Reservoir Symposium Sch‐ lumberger,2004:1-11.

    • [25] 汪志诚.热力学与统计物理[M].3 版.北京:高等教育出版社,2003:1-227.WANG Zhicheng.Thermodynamics and statistical physics[M].3rd ed.Beijing:Higher Education Press,2003:1-227.

    • [26] 梁正中,许红涛,李昌.鄂尔多斯盆地西南边缘地区长8段充注成藏模式南北对比[J].油气藏评价与开发,2022,12(6):918-926.LIANG Zhengzhong,XU Hongtao,LI Chang.Comparison of ac‐ cumulation model of Chang-8 reservoirs between Huanxi-Peng‐ yang area in southwestern Ordos Basin[J].Reservoir Evaluation and Development,2022,12(6):918-926.

    • [27] 杜贵超,杨兆林,尹洪荣,等.鄂尔多斯盆地东南部长73段泥页岩储层有机质发育特征及富集模式[J].油气地质与采收率,2022,29(6):1-11.DU Guichao,YANG Zhaolin,YIN Hongrong,et al.Developmen‐ tal characteristics of organic matter and its enrichment model in shale reservoirs of Chang 73 Member in Yanchang Formation of southeast Ordos Basin[J].Petroleum Geology and Recovery Effi‐ ciency,2022,29(6):1-11.

    • [28] 付金华,罗安湘,喻建,等.西峰油田成藏地质特征及勘探方向 [J].石油学报,2004,25(2):25-29.FU Jinhua,LUO Anxiang,YU Jian,et al.Geological features of reservoir formation and exploration strategy of Xifeng Oilfield [J].Acta Petrolei Sinica,2004,25(2):25-29.

    • [29] FALVEY D A,MIDDLETON M F.Passive continental margins:evidence for a prebreakup deep crustal metamorphic subsidence mechanism[C].Paris:26th International Geological Congress,Geology of Continental Margins Symposium,1981:103-114.

    • [30] MAGARA K.Compaction and fluid migration[M].Amsterdam:Elsevier Science,1978.

    • [31] 刘震,邵新军,金博,等.压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响[J].现代地质,2007,21(1):125-132.LIU Zhen,SHAO Xinjun,JIN Bo,et al.Co-effect of depth and burial time on the evolution of porosity for classic rocks during the stage of compaction[J].Geoscience,2007,21(1):125-132.

    • [32] 范琳沛.鄂尔多斯盆地南部长7泥页岩沉积学特征与孔隙发育研究[D].西安:西安石油大学,2014.FAN Linpei.Study on the South of Erdos Basin sedimentary char‐ acteristics and pore development of Chang 7 mud shale[D].Xi’ an:Xi’an Shiyou University,2014.

    • [33] 李传亮.岩石压缩系数与孔隙度的关系[J].中国海上油气:地质,2003,17(5):355-358.LI Chuanliang.The relationship between rock compressibility and porosity[J].China Offshore Oil and Gas:Geology,2003,17(5):355-358.

    • [34] VANORIO T,PRASAD M,NUR A.Elastic properties of dry clay mineral aggregates,suspensions and sandstones[J].Geophysical Journal International,2003,155(1):319-326.

    • [35] 晋文,贺可强,唐文洋,等.白象山铁矿岩体质量等级和力学参数的确定[J].现代矿业,2011,27(12):77-79.JIN Wen,HE Keqiang,TANG Wenyang,et al.Determination of rock mass quality grade and mechanical parameters in Baixiang‐ shan Iron Mine[J].Modern Mining,2011,27(12):77-79.

    • [36] 刘震,陈凯,朱文奇,等.鄂尔多斯盆地西峰地区长7段泥岩古压力恢复[J].中国石油大学学报:自然科学版,2012,36(2):1-7.LIU Zhen,CHEN Kai,ZHU Wenqi,et al.Paleo-pressure restora‐ tion of Chang 7 shale in Xifeng area,Ordos Basin[J].Journal of China University of Petroleum:Edition of Natural Science,2012,36(2):1-7.