-
中国陆相页岩油资源丰富,近年来已经先后在鄂尔多斯盆地[1-2]、准噶尔盆地[3]、松辽盆地[4] 和渤海湾盆地[5] 等多个区块实现突破,截至2021年底,页岩油年产量约为160×104 t/a,标志着中国页岩油勘探开发进入快速发展阶段[1]。四川盆地侏罗系湖相页岩是中国南方页岩油气勘探的重点区域,2012年以来先后在川中、川东北地区自流井组大安寨段和凉高山组部署多口勘探井,并在元坝21、泰页1等井实现产量突破[6-7]。然而,总体来看中国陆相页岩油井的产量和采收率均偏低,即使普遍采用长水平井段配合大液量、高强度加砂体积压裂技术,大量页岩油井产量仍难以满足商业化开发要求[8]。
-
页岩油井压裂后通常会进行15~60 d的焖井作业,以期通过焖井期间的压裂液渗吸置换作用提高油井产量和采收率。目前,中外学者从渗吸作用力[9]、储层孔隙结构[10]、润湿特性[11] 和流体表/界面性质[12] 等多方面探究了焖井过程中压裂液的渗吸驱油机理及主控因素。但涉及压裂液从水力裂缝壁面向基质纳米孔隙渗吸侵入深度的相关研究亟待深入,因为焖井渗吸驱油实质上是以一定体积的压裂液置换出一定体积的地层原油。焖井过程中压裂液能够侵入基质孔隙的深度和体积成为影响焖井效果的核心因素之一。因此,笔者以川中侏罗系大安寨段页岩油储层为例,建立页岩油井焖井过程压裂液渗吸侵入深度计算模型,并通过核磁共振分层扫描实验对模型进行验证。在此基础上揭示影响焖井过程压裂液侵入深度的关键因素,研究成果可以为页岩油井压裂液性能优选和焖井制度优化提供支撑。
-
1 储层特征
-
1.1 矿物组成
-
选用四川盆地中部侏罗系大安寨段湖相页岩岩样,采用 X 射线衍射法进行全岩和黏土矿物组成测试。实验结果(表1)显示:大安寨段页岩矿物组成以石英、黏土矿物和碳酸盐矿物(主要为方解石)为主,平均含量分别为 30.0%,41.6% 和 16.1%;同时,含有少量长石、菱铁矿和黄铁矿。相比海相页岩[13],大安寨段湖相页岩的石英含量偏低,黏土矿物含量偏高,并且由于湖相沉积发育条带状灰岩,碳酸盐矿物含量明显更高。在黏土矿物相对含量中,伊利石平均含量最高,但绿泥石、高岭石和伊/蒙间层矿物也占有相当比例,反映中等埋深中高成熟度页岩的典型特征。
-
1.2 孔渗与孔隙结构
-
选取大安寨段湖相页岩基质岩样(不含肉眼可见裂缝),采用饱和酒精法和稳态驱替法测得 14 块岩样的孔隙度为 3.85%~8.07%,平均值为 5.82%,渗透率为 0.020 4~0.288 mD,平均值为 0.125 mD。孔渗交会图显示两者整体具有正相关性(图1),说明在页岩基质中孔隙渗流占据着重要作用。
-
采用纽迈公司的 MacroMR12-150H 型核磁共振仪测试柱塞岩样在饱和水与离心后的 T2谱,并根据陆相页岩的孔隙表面弛豫率[10,14] 换算得到岩样的孔径分布曲线(图2)。可见 3 块岩心的孔径分布均呈现典型的双峰特征,主峰反映页岩基质纳米级孔隙,其孔径主要为 2~90 nm,峰值约为 20 nm,占总孔隙体积的比例约为 85%;次级峰反映基质中较大的无机孔隙和微裂缝,其孔径主要为 140~1 500 nm,峰值约为 500 nm,占总孔隙体积的比例约为 15%。
-
图1 大安寨段页岩孔渗交会图
-
Fig.1 Cross plot of porosity-permeability of Da’an Zhai shales
-
图2 大安寨段页岩核磁共振孔径分布曲线
-
Fig.2 NMR pore size distribution of Da’an Zhai shales
-
1.3 流体特征
-
大安寨段湖相页岩油含蜡量相对较高(3.4%),胶质+沥青质含量为 5.9%,烷烃+环烷烃含量为 68.9%,芳香烃含量为 21.8%。实验室条件下为黏稠状,不具有流动性;但在地层条件下,由于溶解气量增大和温度升高的影响,原油黏度约为4.76 mPa·s。因此,室内实验先将原油脱水,再用一定比例的煤油掺稀至油样黏度约为5.0 mPa·s,既能基本保持原油性质,同时能够模拟地下原油的流动特性。后文润湿性实验均采用掺稀后的油样进行浸泡处理。
-
对于压裂后的页岩油储层,压裂液在正压差和毛管力共同作用下的渗吸置换作用是驱油的主要动力。此处采用现场使用的滑溜水压裂液作为测试分析流体,其基本配方为:清水+乳液降阻剂(0.1%)+ 助排剂(0.1%)+破乳剂(0.1%)+防膨剂(0.3%)。该滑溜水破胶后的黏度约为 3.0 mPa·s,表面张力为 24.4 mN/m,与油样间的界面张力为0.47 mN/m。
-
润湿性测试显示,模拟地层油水两相条件下,页岩-煤油-水三相界面上蒸馏水的润湿接触角为 64.4°~109.5°,呈现弱亲水至弱亲油特征。用煤油浸泡岩样48 h后,蒸馏水的润湿接触角显著增大,为 110.6°~138.6°,呈现明显的疏水亲油特征(图3)。说明在页岩油储层条件下,岩石孔隙可能具有明显的疏水特征,要提高压裂液的渗吸驱油效果,可能需要对孔隙表面进行润湿改性。
-
图3 页岩-煤油-水(液滴)润湿接触角
-
Fig.3 Wetting contact angle of shale-kerosene-water (droplet)
-
2 压裂液侵入深度评价模型
-
在页岩油井的压裂后焖井阶段,裂缝系统中的压裂液将在正压差、毛管力和流体黏滞阻力等的共同作用下,通过裂缝壁面的渗吸作用进入储层基质孔隙。同时假设该过程为一维线性流动(图4),压裂液驱替置换储层流体为非混相过程,压裂液滤失侵入过程储层孔隙结构保持不变且为各向同性。
-
图4 压裂液渗吸侵入储层基质孔隙物理模型
-
Fig.4 Physical model on fracturing fluid imbibition into matrix pores of reservoir
-
2.1 压裂液残渣滤饼生成模型
-
压裂液一般含有多种聚合物或表面活性剂,在压后破胶或部分降解后,可能形成少量化学残渣。该类残留物质的尺寸往往大于页岩基质孔喉,随着压裂液通过裂缝壁面向基质孔隙滤失,在靠近裂缝壁面的孔隙中可能形成压裂液残渣滤饼。
-
根据 SUPALAK 模型[15] 可知,滤饼中沉积的胶体聚合物残渣质量可表示为:
-
若忽略压裂液对页岩的溶蚀作用,则滤饼的动态沉积厚度可以表示为:
-
将(1)式对 t求导后联立(2)式可得到滤饼厚度的微分表达式:
-
假设压裂液的滤失侵入过程满足 Darcy 定律,且滤饼形成过程流体压力梯度保持不变,则可得到压裂液滤失侵入速率的表达式:
-
将(4)式代入(3)式,即可得到滤饼厚度的表达式:
-
(5)式为一阶隐式微分方程,可以直接通过Mat‐ lab等软件编程求解。
-
2.2 压裂液滤失侵入深度预测模型
-
根据油水两相渗流理论和质量守恒方程,一维条件下的压裂液滤失侵入分布可以表示为:
-
扩散系数通常表示为对流扩散系数与分子扩散系数之和,但在压裂液滤失过程中,分子扩散系数占比很小,常可忽略。因此,总的扩散系数可用对流扩散系数表示:
-
页岩储层岩性致密,黏土矿物含量高,基质孔隙以纳米级孔隙为主,流体在侵入基质孔隙过程中除了受到正压差作用以外,还受孔隙毛管力、渗透压力和黏滞阻力的作用。其中,毛管力在储层岩石亲水时,表现为驱替动力;当储层岩石疏水亲油时,表现为流动阻力。上述作用力具体可以表示为:
-
富有机质页岩的 Eπ 一般为 0.004~0.095[16-18]; (10)式中富有机质页岩和滑溜水压裂液分别取值为0.6 和0.91[19-20]。
-
将(8)—(11)式代入(4)式可得压裂液在基质的滤失速率表达式:
-
将(12)式和(7)式代入(6)式,可得焖井过程压裂液滤失侵入页岩基质孔隙的控制方程为:
-
其初始条件和边界条件分别为:
-
(13)式为二阶隐式微分方程,包括侵入相浓度、侵入半径和侵入时间 3 个变量,采用有限差分法进行数值求解。
-
2.3 模型验证
-
选用大安寨段井下页岩的核磁分层T2谱监测扫描数据验证上述模型的可靠性。具体步骤如下:① 制备长度约为6 cm、直径为2.5 cm的柱塞样,抽真空干燥后饱和氟油。②采用重水(蒸馏水)和重水配制的压裂液(含润湿改性驱油剂)对岩样进行端面自发渗吸,相关参数见表2。③在初始时刻、自吸2 h和8 h后分别对岩样进行核磁分层T2谱(序列SE-SPI)扫描,通过信号幅度变化识别流体自吸侵入深度。
-
由图5 可知,在基础物性相近且渗吸流体黏度更低的条件下,1#岩样的渗吸侵入深度略低于 2#岩样,润湿性差异被认为是影响渗吸侵入深度的关键原因。页岩基质孔隙在初始条件下往往具有疏水亲油特征(图4),1#岩样采用重水作为渗吸流体时,其接触角为118°,对应的毛管力为负值,产生的是流动阻力,此时主要的渗吸动力来源于页岩黏土矿物产生的吸水渗透压。2#岩样采用添加润湿改性剂的滑溜水作为渗吸流体,在表面活性剂对页岩表面进行润湿改性的条件下,页岩-压裂液-原油间的润湿接触角变为 62°,呈现弱亲水特征,此时毛管力已变为渗吸驱油动力,因而在相同时间下的渗吸侵入深度更深。
-
采用压裂液滤失侵入深度预测模型模拟得到1 #和 2#岩样在 2 h 和 8 h 下渗吸前缘的侵入深度分别为 0.015 4,0.020 7 和 0.031,0.038 9 m(图6)。与表2中的实验测试结果相对误差为2.99%~29.03%,平均误差为 14.17%,总体处于可信区间内。需要说明的是,此处为了模拟岩样对流体的自发渗吸过程,计算中没有考虑水力正压差的作用,仅考虑了渗透压和毛管力对渗吸过程的影响。
-
图5 不同渗吸时间的核磁分层T2谱扫描结果
-
Fig.5 NMR stratified T2 spectrum scanning results at different imbibition time
-
3 矿场应用启示
-
3.1 流体表/界面性质对焖井侵入深度的影响
-
目前,优化压裂液与地层原油间的界面张力和润湿改性被认为是提高页岩油井压后焖井驱油效率的关键手段,此处将讨论相关因素对压裂液渗吸侵入深度的影响。以川中侏罗系大安寨段页岩油水平井 X1井为例,该井地层压力约为 35 MPa,压裂作业停泵时的压力约为 39.8 MPa,而后随焖井时间增长快速衰减,整个焖井过程水力裂缝对基质孔隙的平均正压差取2.0 MPa,根据(10)式计算得到大安寨段页岩由于黏土矿物半渗透膜效果产生的渗透压力约为 0.683 MPa。毛管力的大小根据页岩基质孔隙半径、润湿性和油水界面张力具体确定,此处的孔隙半径根据核磁孔隙结构分析取平均半径为20 nm。
-
图6 自发渗吸页岩基质孔隙流体渗吸侵入深度
-
Fig.6 Invasion depths of fluid spontaneous imbibition in shale matrix pores
-
以焖井时间为 30 d 为例,由图7a 可知,流体润湿性对侵入深度有较为显著的影响,当焖井渗吸流体的接触角由150°降低到30°(强疏水逐步变为强亲水),流体的侵入深度由 0.203 m 增大为 0.441 m,增幅为 117.2 %。说明对原本疏水的页岩油储层基质孔隙进行亲水改性,能够将原本的毛管阻力变为渗吸驱油动力,增加渗吸作用范围。考虑到亲水改性还能够增加流体对孔隙壁面油膜/油滴的剥离效果[11,21],因而现场目前往往尝试向压裂液中添加润湿改性剂,从而增加焖井过程压裂液的渗吸驱油效果。
-
图7 流体表/界面性质对渗吸侵入深度的影响
-
Fig.7 Influences of surface/interface properties on fluid imbibition invasion depths
-
由图7b可知,当岩石流体间的润湿接触角一定时,忽略润湿滞后效应的影响,毛管力作为驱油动力或阻力的状态基本不变。并且无论页岩基质孔隙是疏水还是亲水状态,油水界面张力的改变对流体的侵入深度影响均不显著。此处,润湿接触角为60°和 120°时,油水界面张力由 5 mN/m降低至 0.5 mN/m,侵入深度的相对变化量仅为 16.67% 和 18.31%。因此,建议在对渗吸驱油压裂液的油水界面张力进行优化时,可以忽略该参数对流体作用范围的影响,而重点评价其对原油乳化剥离驱替孔隙原油的效果[12]。
-
3.2 焖井时间优化
-
以川中侏罗系大安寨段页岩油水平井 X1 井为例,该井在压裂液中添加了渗吸驱油表面活性剂,根据表2 的岩样基础参数,分别模拟焖井时间为 10~90 d 时压裂液由水力裂缝向基质孔隙中的侵入深度。由图8可知,随着焖井时间的增加,压裂液从裂缝向页岩基质孔隙中的侵入深度逐渐增大,最大侵入深度可达 0.72 m。实际地层条件下,考虑到具体水力裂缝中压裂液的总量有限,且存在非均匀分布特征,实际侵入深度可能会略小于上述范围。在变化趋势上,侵入深度存在先快速增长后逐渐变缓的特征,趋势变化点大概位于焖井时间为40~50 d,这也是根据压裂液向页岩基质孔隙侵入深度变化规律推荐的最优焖井时间范围。
-
图8 流体侵入特征与焖井时间关系曲线
-
Fig.8 Fluid imbibition features versus shut-in time
-
4 结论
-
川中侏罗系大安寨段页岩矿物组成以石英、黏土矿物和碳酸盐矿物为主,其中黏土矿物类别以伊利石和绿泥石占比最高;岩样孔隙度和渗透率分别为3.85%~8.07%和0.020 4~0.288 mD,孔隙以纳米级孔隙为主,主峰平均孔隙半径约为 20 nm;在模拟地层条件下呈现疏水亲油特征。
-
建立了考虑压裂液胶体聚合物残渣,水力正压差、毛管力和渗透压力的页岩基质流体渗吸侵入深度模型,采用岩心核磁分层 T2谱监测数据验证该模型计算平均误差为14.17%。
-
以川中侏罗系大安寨段页岩油水平井 X1 井为例,焖井时间90 d内,压裂液向基质孔隙的渗吸作用范围整体不超过0.72 m,表面润湿改性(疏水转为亲水)对提高压裂液渗吸作用范围效果显著,最佳焖井时间约为40~50 d。
-
符号解释
-
A——裂缝壁面滤失侵入面积,m2;
-
awf——外来流体活度,无因次;
-
aws——地层孔隙水活度,无因次;
-
C——压裂液质量浓度,kg/m3;
-
C0——内边界处压裂液质量浓度,kg/m3;
-
Csolid——侵入液体的滤饼残渣质量浓度,kg/m3;
-
D——扩散系数,m2 /s;
-
De——对流扩散系数,m2 /s;
-
Eπ——岩石半渗透膜系数,无因次;
-
f——经验值,对于线性渗流模型可取51.7;
-
g——经验值,对于线性渗流模型可取1.25;
-
K——储层岩石渗透率,m2;
-
Kc——滤饼渗透率,m2;
-
L——内边界到外边界距离,m;
-
mc——滤饼残渣质量,kg;
-
pc——毛管力,Pa;
-
pπ——黏土矿物渗透压力,Pa;
-
pv——黏滞阻力,Pa;
-
re——储层边界,m;
-
rp——基质孔隙半径,m;
-
R——普适气体常数,J/(mol∙K),取值为8.314;
-
Sor——储层残余油饱和度,无因次;
-
Swirr——储层束缚水饱和度,无因次;
-
t——压裂液累积滤失时间,s;
-
T——自吸过程储层温度,K;
-
u——流体流速,m/s;
-
u(t)——压裂液滤失侵入速率,m/s;
-
Vw——纯水的摩尔体积,m3 /mol,取值为1.8×10-5;
-
xb——压裂液滤失侵入深度,m;
-
xbmax——压裂液滤失侵入范围外边界,m;
-
xc——滤饼厚度,m;
-
xmc——瞬时失水产生的滤饼厚度,m;
-
ϕ——储层孔隙度,无因次;
-
ϕc——滤饼孔隙度,无因次;
-
σow——油水两相界面张力,mN/m;
-
θ——压裂液润湿接触角,(°);
-
ρc——滤饼密度,kg/m3;
-
μ——压裂液黏度,mPa∙s;
-
μp——非牛顿流体塑性黏度,mPa∙s;
-
Δp——压裂液所受驱动压差,Pa;
-
Δpd——水力正压差,Pa。
-
参考文献
-
[1] 李阳,赵清民,吕琦,等.中国陆相页岩油开发评价技术与实践[J].石油勘探与开发,2022,49(5):955-964.LI Yang,ZHAO Qingmin,LÜ Qi,et al.Evaluation technology and practice of continental shale oil development in China [J].Pe‐ troleum Exploration and Development,2022,49(5):955-964.
-
[2] 葸克来,李克,操应长,等.鄂尔多斯盆地三叠系延长组长 73 亚段富有机质页岩纹层组合与页岩油富集模式[J].石油勘探与开发,2020,47(6):1 244-1 255.XI Kelai,LI Ke,CAO Yingchang,et al.Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organ‐ ic-rich shales in the Triassic Yanchang Formation,Ordos Basin,NW China[J].Petroleum Exploration and Development,2020,47(6):1 244-1 255.
-
[3] 霍进,支东明,郑孟林,等.准噶尔盆地吉木萨尔凹陷芦草沟组页岩油藏特征与形成主控因素[J].石油实验地质,2020,42(4):506-512.HUO Jin,ZHI Dongming,ZHENG Menglin,et al.Characteris‐ tics and main controls of shale oil reservoirs in Lucaogou Forma‐ tion,Jimsar Sag,Junggar Basin[J].Petroleum Geology and Ex‐ periment,2020,42(4):506-512.
-
[4] 孙龙德.古龙页岩油(代序)[J].大庆石油地质与开发,2020,39(3):1-7.SUN Longde.Gulong shale oil(preface)[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(3):1-7.
-
[5] 赵贤正,周立宏,蒲秀刚,等.断陷湖盆湖相页岩油形成有利条件及富集特——以渤海湾盆地沧东凹陷孔店组二段为例[J].石油学报,2019,40(9):1 013-1 029.ZHAO Xianzheng,ZHOU Lihong,PU Xiugang,et al.Favor‐ able formation conditions and enrichment characteristics of la‐ custrine facies shale oil in faulted lake basin:a case study of Member 2 of Kongdian Formation in Cangdong sag,Bohai Bay Basin[J].Acta Petrolei Sinica,2019,40(9):1 013-1 029.
-
[6] 孙莎莎,董大忠,李育聪,等.四川盆地侏罗系自流井组大安寨段陆相页岩油气地质特征及成藏控制因素[J].石油与天然气地质,2021,42(1):124-135.SUN Shasha,DONG Dazhong,LI Yucong,et al.Geological characteristics and controlling factors of hydrocarbon accumula‐ tion in terrestrial shale in the Da’anzhai Member of the Jurassic Ziliujing Formation,Sichuan Basin[J].Oil & Gas Geology,2021,42(1):124-135.
-
[7] 胡东风,魏志红,刘若冰,等.四川盆地拔山寺向斜泰页1井页岩油气重大突破及意义[J].中国石油勘探,2021,26(2):21-32.HU Dongfeng,WEI Zhihong,LIU Ruobing,et al.Major break‐ through of shale oil and gas in Well Taiye 1 in Bashansi Syncline in the Sichuan Basin and its significance[J].China Petroleum Ex‐ ploration,2021,26(2):21-32.
-
[8] 王强,赵金洲,胡永全,等.页岩油储集层压后焖井时间优化方法[J].石油勘探与开发,2022,49(3):586-596.WANG Qiang,ZHAO Jinzhou,HU Yongquan,et al.Shut-in time optimization after fracturing in shale oil reservoirs[J].Petro‐ leum Exploration and Development,2022,49(3):586-596.
-
[9] 田伟兵,吴克柳,陈掌星,等.纳米孔隙储集层动态渗吸数学模型[J].石油勘探与开发,2022,49(1):148-155.TIAN Weibing,WU Keliu,CHEN Zhangxing,et al.Mathemat‐ical model of dynamic imbibition in nanoporous reservoirs[J].Petroleum Exploration and Development,2022,49(1):148-155.
-
[10] YAO Lanlan,YANG Zhengming,LI Haibo,et al.Study on mechanism of spontaneous imbibition and pressurized imbibition in shale oil reservoirs[J].Journal of Petroleum Exploration and Production Technology,2021,11(2):703-710.
-
[11] SAPUTRA I W R,PARK K H,ZHANG Fan,et al.Surfac‐ tant-assisted spontaneous imbibition to improve oil recovery on the Eagle Ford and Wolfcamp Shale Oil reservoir:laboratory to field analysis[J].Energy & Fuels,2019,33(8):6 904-6 920.
-
[12] LIU Junrong,SHENG J J.Experimental investigation of surfac‐ tant enhanced spontaneous imbibition in Chinese shale oil reser‐ voirs using NMR tests[J].Journal of Industrial and Engineering Chemistry,2019,72:414-422.
-
[13] 康毅力,杨斌,李相臣,等.页岩水化微观作用力定量表征及工程应用[J].石油勘探与开发,2017,44(2):301-308.KANG Yili,YANG Bin,LI Xiangchen,et al.Quantitative char‐ acterization of micro forces in shale hydration and field applica‐ tions[J].Petroleum Exploration and Development,2017,44(2):301-308.
-
[14] 王志战,李新,魏杨旭,等.页岩油气层核磁共振评价技术综述 [J].波谱学杂志,2015,32(4):688-698. WANG Zhizhan,LI Xin,WEI Yangxu,et al.NMR technolo‐ gies for evaluating oil & gas shale:a review[J].Chinese Journal of Magnetic Resonance,2015,32(4):688-698.
-
[15] PARN-ANURAK S,ENGLER T W.Modeling of fluid filtration and near-wellbore damage along a horizontal well[J].Journal of Petroleum Science and Engineering,2005,46(3):149-160.
-
[16] EWY R,STANKOVICH R J.Pore pressure change due to shalefluid interactions:measurements under simulated wellbore condi‐ tions[C].Seattle:4th North American Rock Mechanics Sympo‐ sium,2000.
-
[17] 杨斌.水相自吸诱发页岩裂缝起裂扩展行为研究[D].成都:西南石油大学,2018.YANG Bin.Fracture initiation and propagation induced by water imbibition in shale[D].Chengdu:Southwest Petroleum Universi‐ ty,2018.
-
[18] VAN OORT E,HALE A H,MODY F K.Manipulation of cou‐ pled osmotic flows for stabilisation of shales exposed to waterbased drilling fluids[C].Dallas:SPE Annual Technical Confer‐ ence and Exhibition,1995.
-
[19] 何涛,李茂森,杨兰平,等.油基钻井液在威远地区页岩气水平井中的应用[J].钻井液与完井液,2012,29(3):1-5. HE Tao,LI Maosen,YANG Lanping,et al.Application of oilbased drilling fluid in shale gas horizontal well in district of Wei‐ yuan[J].Drilling Fluid & Completion Fluid,2012,29(3):1-5.
-
[20] 何振奎.泌页HF1井油基钻井液技术[J].石油钻探技术,2012,40(4):32-37. HE Zhenkui.Oil base drilling fluid technology applied in Well Biye HF 1[J].Petroleum Drilling Techniques,2012,40(4):32-37.
-
[21] BUI B T,TUTUNCU A N.Contribution of osmotic transport on oil recovery from rock matrix in unconventional reservoirs[J].Journal of Petroleum Science and Engineering,2017,157:392-408.
-
摘要
四川盆地中部侏罗系湖相页岩油勘探开发不断取得突破,但页岩油井产量尚难以满足商业化开发要求。页岩油井压裂后普遍采取焖井措施,以期利用压裂液渗吸驱替置换地层原油,然而关于焖井期间压裂液向页岩基质孔隙的渗吸作用范围及关键影响因素尚不明确。为此,建立了考虑压裂液残渣堵塞、水力正压差、毛管力和渗透压力的页岩基质流体渗吸侵入深度模型,采用岩心核磁分层T2谱监测数据验证该模型,计算平均误差为14.17%。实例分析表明,焖井时间90 d内,压裂液向基质孔隙的渗吸作用范围整体不超过0.72 m,表面润湿改性(疏水转为亲水)对提高压裂液渗吸作用范围效果显著,而油水界面张力的影响相对较弱,根据焖井时间与渗吸侵入深度关系曲线推荐的最佳焖井时间约为40~50 d。
Abstract
Recently,breakthroughs have been made in the exploration and development of Jurassic lacustrine shale oil reservoirs in the central Sichuan Basin,whereas the overall output of shale oil wells is not enough to meet the requirements of commercial devel‐ opment. After the fracturing of shale oil wells,shut-in are generally adopted to use fracturing fluid to imbibe and displace crude oil in the formation. However,the range of imbibition and the key influencing factors of fracturing fluid into shale matrix pores during the shut-in period are still unclear. In this paper,a model of shale matrix fluid imbibition and invasion depth was built,which took into account fracturing fluid residue clogging,positive hydraulic pressure difference,capillary force,and flow pressure. The model was verified by the monitoring data of core NMR stratified T2 spectrum,and the average error is 14.17%. Example analysis shows that within 90 days of shut-in,the imbibition range of fracturing fluid into matrix pores is less than 0.72 m. Surface wetting modifi‐ cation(hydrophobic to hydrophilic)effectively improves the imbibition range of fracturing fluid,while the influence of oil-water interfacial tension is relatively weak. According to the relation curve between shut-in time and imbibition invasion depth,the recom‐mended shut-in time is about 40-50 days.
Keywords
shale oil ; fracturing fluid ; imbibition displacement ; invasion depth ; wettability ; shut-in ; Da’an Zhai