-
1981 年,被誉为“页岩气之父”的乔治·米歇尔对巴耐特页岩 C.W.Slay 1号井实施大规模压裂并获成功,在北美掀起了“页岩气革命”[1]。到 2020 年美国页岩气产量为 7 330×108 m3,约占其天然气总产量的80%,致密油/页岩油产量为3.5×108 t,占其原油总产量的比例超过50%。原油和天然气开发完成了从常规到非常规的转变。水平井多段压裂等技术是页岩油气资源开发的成熟有效技术[2]。近年来,为了推动页岩油气资源更加经济高效开发,国外研究应用了包括水平井密切割、CO2提高采收率、纳米材料和微生物技术等一些新的工艺技术[3]。其中微生物技术涉及页岩储层描述、压裂井解堵、提高采收率和岩石改造等多方面,部分技术已经进入现场应用。中国页岩油气开发目前处于快速增长阶段,随着关键工程技术的不断创新突破以及页岩油气开发成本的不断降低,中国页岩油气的发展前景仍有进一步向好的空间[2]。笔者对近年来国外微生物技术在页岩油气藏开发中的室内研究和现场应用进行总结,以期为中国页岩油气藏的开发提供借鉴。
-
1 页岩油气藏内源微生物解堵技术
-
美国在页岩油气的开发过程中,尽管钻完井技术取得了突破性进展,水平井水平段长度和压裂段数不断创造新的纪录[4-5],但是,美国页岩油气的开发潜力尚未完全实现,开发程度远低于常规油气藏[5-6]。其产量下降速度快,预测的最终采收率较低。此外,投资回报率也不会随着成本的增加而增加。分析表明,其重要原因之一是地层伤害:部分水解聚丙烯酰胺(HPAM)和瓜胶等大分子有机物吸附在纳米孔隙 (图1),造成天然裂缝和支撑裂缝堵塞,从而导致流体流经污染区域时出现压力和能量损失[7-9]。
-
页岩油气层的储层中黏土矿物和总有机碳含量 (TOC)相对较高,孔隙体积为纳米级,渗透率为纳米达西级。HPAM 是压裂用滑溜水的主要成分,其典型相对分子质量为数百万,典型尺寸为微米,比页岩孔隙大 3 个数量级。此外,HPAM 对水的盐度和硬度非常敏感,尤其是与地层中的Ca2+,Mg2+,Fe3+ 接触时会聚集对地层造成损害[10]。瓜胶是另一种常见的水力压裂中用于携带支撑剂的长链聚合物,大多数瓜胶的尺寸也是微米级的。虽然现场通常使用凝胶破胶剂,但并非所有凝胶都会破裂,残余物也会影响裂缝导流能力[11]。因此,亟需开发一种可行的方法来恢复储层渗透率,提高页岩油气资源的开发效果。
-
微生物分泌的特异性酶可以使瓜胶和HPAM长链结构水解、电离、质子化而分裂成低聚物,继而进一步分解利用产生小分子化合物(CH4,CO2 和 H2O)[12]。瓜胶压裂液和残留大分子在 60 h 内可以被从油藏中筛选获得的索诺氏芽孢杆菌(Bacillus sonorensis)等菌属降解,而且渗透率恢复到初始渗透率的 90.32%[13]。假单胞菌(Pseudomonas)和变形菌(Proteobacteria)等分别在好氧、厌氧条件下以 HPAM 作为碳源和氮源,HPAM 上的一些氨基被去除,碳主链被转化为更小的聚合物片段,包括低聚物和各种脂肪酸[14]。
-
以上述研究成果为基础,2019年在美国非常规油气技术大会上,ULTRecovery 公司和俄克拉荷马大学报告了一种先进的生物技术,通过向页岩油气藏注入微生物营养液,激活内源微生物,降解压裂液中残留的化学物质,从而清除地层中的污染。同时被激活的微生物能够改变岩石的润湿性,降低原油与水之间的界面张力,最终增加原油的流动性,提高产量。其工艺流程是:①油藏条件综合分析。分析地质、岩石物理、测井、地球化学和水化学、钻井和完井报告、水力压裂报告、生产历史、补偿井数据等,预测最终提高采收率、提高采收率潜力和增油量。② 现场取样和实验室测试。模拟油藏条件下,通过在采出液中添加压裂液添加剂培养内源微生物,监测微生物的生长速率和压裂液添加剂的降解速率。③ 设计定制配方。经过一系列参数测试实验,设计出适合非常规油气藏条件的环保型生化配方,并扩大到现场试验规模。④现场实施。生化配方在现场与水混合,按照现场作业指导和操作规程注入压裂井。通常需要 3~12 h(取决于井口压力、油藏条件和注入能力),注完后关井。⑤恢复生产和监测。关井 5~10 d 后,恢复生产,并监测井口压力、三相产量 (油、水、气相),按规定时间间隔取样,返回步骤②,监测微生物和化学物质浓度的动态变化,根据监测结果优化配方和实施程序。在二叠盆地选择1口压裂直井(油藏深度为2 743 m,温度为60℃)和1口压裂水平井(油藏深度为3 017 m,温度为65℃)开展了现场试验。微生物注入培养5~10 d后开井,180 d内产液量提升了 40%~127%,说明受污染的储层被激活的微生物有效解堵。此外,直井和水平井产油量最终分别提高 2 100 和 25 000 bbl,比单纯压裂产油量提高 9%~12%,收益率大于 100%。现场结果进一步证实,页岩储层的裂缝被瓜胶和 HPAM 堵塞的假设是正确的[15]。因此,对于页岩油气藏开发,更重要的是有效提高储层渗透率,而并不是形成更大的裂缝网络,尤其是裂缝中吸附了难以自然降解的长链有机分子。同时,页岩油气藏中的有益微生物可以在较高温度下被特定的营养体系激活,降解残余压裂液有机大分子化学物质,从而解除有机物的堵塞,释放产能。
-
图1 页岩吸附有机大分子前后状态的扫描电镜照片
-
Fig.1 Scanning electron microscope images of shale before and after adsorbing organic macromolecules
-
2 页岩地层地下DNA诊断技术
-
微地震、测井、示踪剂等常规油藏物理化学测试技术无法准确解析非均质及非常规储层。在油藏环境中生活着种类丰富的微生物类群,是地下生物圈的重要组成部分,由于环境的特殊性,其中大部分微生物为极端类型,以适应油藏极端温度、压力、有机质及矿化度等环境因素。不同地层条件下的微生物群落具有明显的差异,而储层中的微生物种类同储层中的油气分布紧密相关,通过解析地下微生物 DNA,可以为储层特征描述提供一类新的数据源。
-
基于该原理,美国 Biota 技术公司研发了地下 DNA诊断技术(Subsurface DNA DiagnosticsTM)[16],通过提取钻井泥浆、岩屑以及油井油水样中的微生物 DNA,进行 DNA 高通量测序及后期的 DNA 标记信息解析和比对分析,获得可表征储层纵向和平面非均质性的高分辨微生物DNA标记数据,分辨率可以达到地层或岩相的水平[17]。DNA 标记数据来源于油藏中以有机物及矿物组分为营养生长的微生物。这种油藏描述技术与传统示踪剂、地球物理化学测试等方法相比,具有高分辨率、高准确性及广泛的适应性。将 DNA 数据与传统测井数据相结合进行同步分析可以提高对地层认识的精确性。
-
页岩等非常规油气藏的开发难度大,需要开发者掌握全面、准确的储层性质参数,如完井后有效泄油高度、水力压裂半径、压裂段产量贡献率等,而常规物理化学测试技术对该类油藏分辨率低,实施难度大。2017 年 Biota 公司在美国米德兰盆地沃尔夫坎普页岩开展了地下DNA诊断,该页岩由岩石力学性质截然不同的泥岩和灰岩交替叠加形成,测井解析度差。该公司利用1口先导试验井及其分支井水平段岩屑,建立了储层垂直及水平尺度下的DNA标记剖面(图2),最右侧为DNA测试数据,同时监测邻近 7 口油井油样中的 DNA 标记数据。通过将垂直 DNA 地层剖面与油井 DNA 数据比对分析,准确判断了储层的有效泄油高度,将水平DNA地层剖面与油井 DNA 标记对比分析,建立了油井的生产剖面; 此外,通过对比分析不同油井间的 DNA 标记数据,准确判断了井间连通性及井间干扰源[18]。除此,地下 DNA 诊断技术还可以确定/预测沉积环境,判断主力层和甜点,分析完井质量及优化井距。每口井产生的DNA标记可以达到数百万个数据点,需借助先进的数据科学技术和机器学习技术进行统计分析,才能准确解析得到地下DNA剖面[19]。
-
地下 DNA 诊断技术将 DNA 作为一种追踪标记,可以在油井全生命周期内提供高分辨率的数据源,具有环保、成本低(单个样品 100 美元)、工艺简单(不需关井和特殊井下工具)、分辨率高等技术优势。截至目前,Biota 公司已在北美 8 个盆地的 200 多口井应用了地下 DNA 诊断技术,包括二叠盆地、亿格尔福特和巴肯页岩区[19-20],大幅提升了油藏储层描述的准确度,保障了非常规储层的高效开发。
-
图2 先导试验井垂直DNA标记与常规测井数据比对
-
Fig.2 Comparison of vertical DNA and conventional logging data in pilot test well
-
3 微生物提高页岩油气采收率研究
-
近年来的研究表明,在很多页岩油气藏中存在微生物。2002年,CHAPELLE等发现在页岩油气藏环境中存在产甲烷菌[21]。其中,剑桥大学的研究证实坎氏甲烷嗜热菌(Methanopyruskandler)可以在 122℃生长[22]。2012 年,KIRK 等在密歇根 Antrim 页岩中发现存在甲烷嗜盐菌属(Methanohalophi‐ lus),适宜的盐度超过 0.5 mol/L,该页岩气藏的形成与甲烷嗜盐菌属有密切的关系[23]。2014 年,CLUFF 等对压裂后的 3 口页岩井进行了长达 328 d 的微生物跟踪检测,发现大量嗜盐微生物和与碳氢化合物及硫代谢相关的微生物[24]。2015 年,TUCKER 利用 DNA诊断技术对马塞卢斯页岩(Marcellus Shale)内的微生物进行了较为系统的分析,此前,研究人员一直认为该页岩内是无菌的环境。结果表明,该页岩层内在钻井前就存在内源微生物群落,其中除了能够耐受极端环境的拟甲烷球菌属(Methanococcoi‐ des)、甲烷八叠球菌属(Methanosarcina)、异常球菌栖热菌(Deinococcus-thermus)和酸杆菌(Acidobacte‐ ria)外,还有很多菌属是目前未被认知的,这些微生物可能是在成藏过程中或者是在距今几百万年前成藏后的一次水侵带入的。如果产甲烷菌在油层内是一直存在的,那么现在被普遍接受的页岩气全部是热成因的假设就是值得怀疑的。生物气的再生速率远远快于热成因,研究建立一条经济有效的提高微生物产甲烷气速率的方法,在几年时间内获得数量可观的再生甲烷气,将使得被誉为目前最清洁能源之一的天然气的资源量大幅度增加[25]。
-
除了上述利用微生物产生甲烷气提高页岩油气藏开发效果之外,微生物提高页岩油气藏采收率的研究主要集中在另外 2 个方面:一方面利用微生物有效降解页岩油中的某些特定组分,有利于页岩油在地层中的运移。埃及石油研究所从埃及红海 EINakheil地区的页岩油中分离得到了10株菌株,选择其中2株利用页岩油生长速度较快的弯曲芽孢杆菌 (Bacillus flexus)和阴沟肠杆菌(Enterobacter cloa‐ cae)进行生物降解作用研究。研究证实原生微生物能够更加有效的降解页岩油,且不同微生物可针对性的降低页岩油中的不同组分含量,如弯曲芽孢杆菌不仅对页岩油 C21—C40中的饱和馏分异构烷烃的降解程度高于正构烷烃,而且也可以完全降解该页岩油中的二苯蒽,最佳生物降解率达到 35.13%[26]。中国科学院研究人员则通过页岩油中的有机质组成成分分析了页岩油生物降解的顺序及特征:页岩油发生轻微至中度的生物降解,正构烷烃或较轻烷烃组分更易被生物降解,正构烷烃的降解程度随碳数增加而减弱。甾烷、藿烷和极性氮、硫、氧化合物没有表现出明显的生物降解迹象。总的来说,随着油层深度增加,页岩油中异构烷烃或甾烷、藿烷含量增加,生物降解难度增加[27]。美国学者则发现在保留芳香烃及脂肪烃的基础上,铜绿假单胞菌(Pseudo‐ monas aeruginosa)可选择性地降解页岩油中的氮杂环化合物,如脂肪族腈及喹啉等,从而有效降低页岩油开采后的炼化成本及环境污染[28-31]。另一方面利用微生物代谢产生的生物表面活性剂具有的从页岩表面将原油洗脱的能力,进一步提升页岩油的开发效率。约旦大学学者研究了红球菌(Rhodococ‐ cusrhodococcus)代谢产生的生物表面活性剂对 EILajjun页岩油中的原油开采效率。实验结果证实红球菌属产生的生物表面活性剂可通过胶束状态显著提升碳氢化合物溶解性,有效降低表面张力及界面张力。生物表面活性剂可有效解吸页岩油中的芳香烃,最大采收率达到 25%[32]。俄罗斯科学研究院研究人员同样利用红球菌产生的生物表面活性剂对 Shumovskoe油田的页岩油进行开采,利用生物表面活性剂良好的表界面活性将附着在页岩表面的原油洗脱出来,最高洗油率可达到98.8%[33]。
-
另外,伴随着页岩油的开采,由于硫酸盐还原菌 (Sulphate-Reducing Bacteria,SRB)的生长,油藏中的 H2S 浓度明显增加,进而带来了储层酸化及腐蚀等一系列负面问题。针对这一现象,加拿大卡尔加里大学对 Bakken 页岩油田开展了硝酸盐酸化抑制研究。基于挥发性脂肪酸/乳酸作为电子供体,硝酸盐/硫酸盐作为电子受体的培养基中,高盐度条件下 (2.5 mol/L NaCl),亚硝酸盐的积累有效抑制了 SRB 的活性,但当盐度降至 0.5 mol/L NaCl时,亚硝酸盐的抑制作用消失[34]。高盐度条件下在页岩油藏中加入硝酸盐抑制 SRB的生长代谢可以有效防止酸化,所以将含有硝酸盐的高盐度采出水回注是一种有效控制页岩油油藏酸化的方法。
-
4 微生物改造页岩储层岩石研究
-
页岩储层物性明显不同于常规储层,表现为低孔隙度和低渗透率的特征,其孔隙度一般小于10%,渗透率介于纳达西—毫达西,平均孔径为100 nm左右。页岩中的岩石矿物类型丰富、成分多样,一般由不同比例的黏土矿物(蒙脱石、伊利石、绿泥石、高岭石、伊/蒙混层等)和非黏土矿物(石英、长石、方解石、白云石等)构成。页岩的矿物组成、岩石力学性质直接决定了页岩油气开采难易程度。微生物在储层中的生长代谢不仅会对原油性质产生影响,还会与储层岩石发生相互作用。
-
微生物可以增加储层的渗透性和孔隙度。德国 Winter Shall Dea 石油公司通过研究发现,盐厌氧杆菌(Halanaerobium sp.)生长代谢产生的有机酸可以溶解岩石中的碳酸盐矿物,提高岩石孔隙度 12%~42%[35]。矿物对微生物生长代谢也有明显影响,储层中少量具有酸中和能力的黄铁矿、方解石,可以解除厌氧发酵菌体代谢引起 pH 值降低对菌体持续生长的抑制问题。通过生物代谢产乙酸浓度的分析证实真实油藏岩心(含 0.6% 方解石、黄铁矿)样品中,厌氧微生物生长代谢活性是纯石英砂人造岩心中的 6倍,室内物理模拟提高采收率达到21.9%~24.5%。乙酰丁酸梭菌(Clostridium acetobutylicum)是另外一类可厌氧发酵微生物,其可以通过产酸溶解储层间的矿物胶结增加储层的渗透率,同时产生表面活性剂降低界面张力,提高原油采收率[36]。
-
微生物可以对页岩储层的岩石力学性质产生影响,改善页岩储层的开发。2021年美国德克萨斯理工大学首次利用划痕试验分析乙酰丁酸梭菌作用 Niobrara 页岩前后地质力学特征的变化。Niobrara 页岩具有低孔隙度(<10%)和超低渗透性(<1 μD) 的特点。厌氧条件下,将培养好的菌液注入到岩心样品中,在37℃培养作用20 d。处理前岩心划痕韧性(Ks)为 2.43~4.35 MPa·√ m,泊松比为 0.32~0.33;处理后样品 Ks降到 2.86~3.21 MPa·√m,泊松比降到 0.30~0.31,证实生物处理后页岩的脆性增加[37]。同年还分别开展了巴氏芽孢杆菌(Sporosarci‐ napasteurii)和丙酮丁醇梭菌(Clostridium acetobuty‐ licum)对 Eagle Ford 和 Marcellus 页岩的力学性质影响研究[38]。其中丙酮丁醇梭菌通过溶解碳酸盐矿物,降低页岩的局部机械完整性,单轴抗压强度降低 20%,泊松比增加 25%,Ks增加 13%。巴氏芽孢杆菌是一类解脲细菌,可以将尿素分解为二氧化碳 (CO2)和氨(NH3)提高环境pH值,产生的CO2与Ca2+ 发生动力学反应,诱导方解石(CaCO3)沉淀,称为生物诱导碳酸钙沉积(MICP),多用于建筑材料修复及环境修复领域,也可用于压裂裂缝修复和固井领域[39]。在与页岩岩心作用时,该菌通过 MICP 过程,在页岩内部沉积方解石,增强页岩岩心局部(单轴抗压强度增加 10%,泊松比降低 18%,Ks增加 25%)和整体(单轴抗压强度增加 43%,泊松比降低 13%)的机械完整性,增强页岩韧性,降低脆性(图3)。
-
微生物可以与水敏性黏土矿物发生作用,改变矿物结构,降低储层敏感性[40-44],提高油气产能。黏土矿物也是页岩的重要组成部分,黏土矿物的层间含有暴露的质子酸,可以催化油气生成[45],对页岩油气生成和储集具有较大影响。同时,黏土矿物含量过高会造成页岩中部分孔隙堵塞,降低连通性[46],还会增强页岩的塑性,不利于水力压裂。粘胶芽孢杆菌(Bacillus mucilaginosus)等硅酸盐微生物通过产生酸性代谢物溶解蒙脱石中的硅和铝,破坏蒙脱石结构,降低蒙脱石层间空间保留水,甚至将其转变为高岭石[47]。而另一类铁还原微生物可以通过厌氧呼吸还原蒙脱石中的 Fe3+ 为 Fe2+,造成静电作用失衡,层间距缩小至 1.0 nm,实现蒙脱石的伊利石化[48]。硫酸盐还原菌也被证实具备转化蒙脱石为伊利石的作用,并在碱性条件下催化速率能显著提高[49-50]。
-
5 结束语
-
页岩油气革命对中国能源发展有着深远影响,页岩油气革命催生技术革命、引发“技术爆炸”、加快能源迭代。国外已将微生物技术融合到页岩油开发中,页岩油气藏内源微生物解堵技术、页岩地层地下 DNA诊断技术等已经进入现场应用,取得了良好效果。微生物提高页岩油气采收率、微生物改造页岩储层岩石等方面也开展了大量基础研究,并展现了非常好的前景。中国在微生物采油方面具有较好的基础,应该瞄准这一新领域开展研究攻关,助力能源迭代。但是,与国外页岩油气藏相比,中国页岩油气藏普遍存在页岩非均质性强,岩性组合复杂多样,页岩油甜点预测难度大,埋藏深、油层温度高,原油可流动性差,部分陆相页岩黏土矿物含量较高、可压裂性差等问题。需要借鉴国外经验,探索符合中国页岩油气特色的微生物开发技术。
-
图3 不同培养条件下巴氏芽孢杆菌处理前后的马氏页岩样品扫描电镜图像
-
Fig.3 Scanning electron microscope images of marcescens shale samples before and after treatment of Bacillus pasteurii under different culture conditions
-
笔者认为,有 2 项基础研究需要尽快开展。一是对页岩油气藏微生物开展普查研究,掌握油层微生物群落分布规律。近十几年来,基于16S rRNA的分子微生物分析方法日臻完善,并已应用到微生物采油技术研究领域。胜利油田、新疆油田、北京大学、南开大学和华东理工大学对中国温度为 30~90℃的各类油藏进行了广泛的普查,发现不同油藏中微生物的组成规律,并指导了微生物采油技术的研究。但是,之前的研究未涉及页岩油气藏。需要运用高通量测序等分子微生物分析技术对中国典型的页岩油气藏开展油层微生物普查,挖掘“核心微生物组”,为建立相关微生物技术奠定基础。二是研发适合页岩油气藏环境、开发需求的高效菌种及微生物制剂。一方面可以根据如降解聚合物、降解胶质沥青质和蜡、改造储层岩石等不同功能需求,从页岩油气藏环境中采用选择性培养的方法筛选自然菌株;另一方面可以采用基因工程技术对微生物进行遗传改造,从而扩大微生物的环境适应范围,满足页岩油气藏高温高压等极端环境的要求。另外,也可以发挥生物表面活性剂、生物酶等生物制剂的耐温、耐盐特性,在部分微生物难以生长代谢的页岩油藏中应用,通过其较强的降界面张力和润湿反转性能,大幅降低原油从岩石表面剥离的黏附功,达到提高采收率的目的。
-
参考文献
-
[1] 张奥博,汤达祯,陶树,等.中美典型含油气页岩地质特征及开发现状[J].油气地质与采收率,2019,26(1):37-45.ZHANG Aobo,TANG Dazhen,TAO Shu,et al.Analysis of geological background and development situation of typical oil/gas-bearing shales in China and America [J].Petroleum Geology and Recovery Efficiency,2019,26(1):37-45.
-
[2] 邹才能,赵群,丛连铸,等.中国页岩气开发进展、潜力及前景 [J].天然气工业,2021,41(1):1-14.ZOU Caineng,ZHAO Qun,CONG Lianzhu,et al.Develop‐ ment progress,potential and prospect of shale gas in China [J].Natural Gas Industry,2021,41(1):1-14.
-
[3] ALHARTHY N,TEKLU T W,KAZEMI H,et al.Enhanced oil recovery in liquid-rich shale reservoirs:Laboratory to field [J].SPE Reservoir Evaluation & Engineering,2018,21(1):137-159.
-
[4] KING G E.Thirty years of gas shale fracturing:What have we learned [J].Journal of Petroleum Technology,2010,62(11):88-90.
-
[5] MAYERHOFER M J,LOLON E,WARPINSKI N R,et al.What is stimulated reservoir volume [J].SPE Production & Oper‐ ations,2010,25(1):89-98.
-
[6] PANJA P,DEO M.Factors that control condensate production from shales:surrogate reservoir models and uncertainty analysis [J].SPE Reservoir Evaluation & Engineering,2016,19(1):130-141.
-
[7] JOSHI S D.Horizontal well technology [M].Birmingham:Pen‐ well Corp.,1991.
-
[8] CIPOLLA C,WALLACE J.Stimulated reservoir volume:a mis‐ applied concept [C].SPE Hydraulic Fracturing Technology Con‐ ference,2014,SPE 168596-MS.
-
[9] GUBIAN E.Changes in shale well design:Reaching the limits?[EB/OL].S & P Global Commodity Insights,2017.https://www.spglobal.com/commodityinsights/en/ci/research-analysis/changesin-shale-well-design-reaching-the-limits.html.
-
[10] WU J J,YU W,DING F,et al.A breaker-free,non-damaging friction reducer for all-brine field conditions [J].Journal of Nano‐ science and Nanotechnology,2017,17(9):6 919-6 925.
-
[11] MONTGOMEOR C.Fracturing fluids components [C].Interna‐ tional Conference for Effective and Sustainable Hydraulic Frac‐ turing,2013.
-
[12] HERZOGK K,MULLER R J,DECKWER W D.Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparti‐ cles by lipases [J].Polymer Degradation and Stability,2006,91(10):2 486-2 498.
-
[13] MA X,WAND Z,DA Q,et al.Application of guar gum degrad‐ ing bacteria in microbial remediation of guar-based fracturing flu‐ id damage [J].Energy & Fuels,2017,31(8):7 894-7 903.
-
[14] HU H,LIU J,LI C,et al.Anaerobic biodegradation of partially hydrolyzed polyacrylamide in long-term methanogenic enrich‐ ment cultures from production water of oil reservoirs [J].Biodeg‐ radation,2018,29(3):233-243.
-
[15] XIZAOCHUN J J,MICHAEL P,MICHAEL S,et al.Field pi‐ lots of unconventional shale EOR in the Permian Basin [C].Un‐ conventional Resources Technology Conference,2019.
-
[16] RAO V,KNIGHT R.Subsurface DNA sequencing [M].Sustain‐ able Shale Oil and Gas,2017:131-150.
-
[17] PERCAK D E,LIU J,SHOJAEI H,et al.High resolution dy‐ namic drainage height estimations using subsurface DNA diag‐ nostics [C].SPE Western Regional Meeting,2019,SPE-195266-MS.
-
[18] LASCELLES P,WAN J,ROBINSON L,et al.Applying sub‐ surface DNA sequencing in Wolfcamp Shales,Midland Basin [C].SPE Hydraulic Fracturing Technology Conference & Exhibi‐ tion,2017,SPE 84869-MS.
-
[19] SILVA J,URSELL L,PERCAK D E.Applying subsurface DNA diagnostics and data science in the Delaware Basin [C].SPE Hydraulic Fracturing Technology Conference and Exhibi‐ tion,2018,SPE 189846-MS.
-
[20] URSELL L,HALE M,MENENDEZ E,et al.High resolution fluid tracking from verticals and laterals using subsurface DNA diagnostics in the Permian Basin [C].SPE Unconventional Re‐ sources Technology Conference,2019,URTEC-2019-280-MS.
-
[21] CHAPELLE F H,O'NEILL K,BRADLEY P M,et al.A hydro‐ gen-based subsurface microbial community dominated by metha‐ nogens [J].Nature,2002,425:312-315.
-
[22] Cambridge.Map of Life-“Extremophiles:Archaea and Bacteria” [EB/OL].2021.https://mapoflife.org/topics/topic_354_extremo‐ philes-archaea-and-bacteria/.
-
[23] KIRK M F,MARTINI A M,BREECKER D O,et al.Impact of commercial natural gas production on geochemistry and microbi‐ ology in a shale-gas reservoir [J].Chemical Geology,2012,332/333:15-25.
-
[24] CLUFF M A,HARSOCK A,MACRAE J D,et al.Temporal changes in microbial ecology and geochemistry in produced fluid from hydraulically fractured Marcellus shale gas wells [J].Envi‐ ronmental Science and Technology,2014,48(11):6 508-6 517.
-
[25] TUCKER Y T.Microbiology in shale:Alternatives for enhanced gas recovery [D].West Virginia:West Virginia University,2015.
-
[26] HUDA S E,NAGLA K,SHERIF F.Biodegradation effect on the Campanian oil shale of Egypt [J].Geomicrobiology Journal,2020,37(8):746.
-
[27] MENG Q,WANG X,LIAO Y,et al.The effect of slight to moderate biodegradation on the shale soluble organic matter com‐ position of the upper triassic Yanchang formation,Ordos Basin,China [J].Marine and Petroleum Geology,2021,128:105021.
-
[28] JACKIE A,ASIM K B,HARRELLl H,et al.Microbial degra‐ dation of Quinoline and Methylquinolines [J].Applied Environ‐ mental Microbiology,1990,56(2):345-351.
-
[29] ROGERS J E,RILEY R G,LI S W,et al.Microbiological deg‐ radation of organic components in oil shale retort water:Organic acid [J].Applied Environmental Microbiology,1981,42(5):830-837.
-
[30] JACKIE A,RONALD M A.Biodegradation of Nitriles in shale oil [J].Applied Environmental Microbiology,1988,54(9):2 197-2 202.
-
[31] JACKIE A,RONALD M A.Microbial upgrading of shale oils removal of Nitriles [J].Applied Biochemistry Biotechnology,1989,20(21):799-807.
-
[32] HADDADIN M,ARQOUB A,REESH I A,et al.Kinetics of hydrocarbon extraction from oil shale using biosurfactant produc‐ ing bacteria [J].Energy Conversion and Management,2009,50(4):983-990.
-
[33] IVSHINA I B,KUYUKINA M S,PHILP J C,et al.Oil desorp‐ tion from mineral and organic materials using biosurfactant com‐ plexes produced by Rhodococcus species [J].World Journal of Microbiology & Biotechnology,1998,14:711-717.
-
[34] BIWEN A A,YIN S,GERRIT V.Control of sulfide production in high salinity Bakken Shale oil reservoirs by halophilic bacteria reducing nitrate to nitrite [J].Microbiological Chemistry and Geomicrobiology,2017,8:1-14.
-
[35] KGLER F,DOOFFEL N,MAHLER E,et al.Influence of sur‐ face mineralogy on the activity of Halanaerobium sp.during mi‐ crobial enhanced oil recovery(MEOR)[J].Fuel,2021,290:119973.
-
[36] BANAT I M.Biosurfactants production and possible uses in mi‐ crobial enhanced oil recovery and oil pollution remediation:A re‐ view [J].Bioresource Technology,1995,51(1):1-12.
-
[37] KOLAWOLE O,ISOAS I,KUMAR M,et al.Effect of biogeo‐mechanical modified near-wellbore properties on hydrocarbon re‐ covery:Insights from Niobrara Shale [C].55th U.S.Rock Me‐ chanics/Geomechanics Symposium,2021.
-
[38] KOLAWOLE O,ISOAS I,KUMAR M,et al.Time-Lapse biogeomechanical modified properties of ultra-low permeability reservoirs [J].Rock Mechanics and Rock Engineering,2021,54:2 615-2 641.
-
[39] MUYNCK W D,BELIE N D,VERSTRAETE W.Microbial carbonate precipitation in construction materials:A review [J].Ecological Engineering,2010,36(2):118-136.
-
[40] DONG H,JAISI D,FREDRICKSON J,et al.Microbial im‐ pacts on clay mineral transformation and reactivity [C].AGU Spring Meeting,2006.
-
[41] 庄建,陆灿阳,张旭,等.塞169低渗透油藏微生物活化水驱机理及群落分布规律[J].特种油气藏,2022,29(1):147-153.ZHUANG Jian,LU Canyang,ZHANG Xu,et al.Mechanism and community distribution of microbially activated water flooding in Sai 169 low-permeability reservoir[J].Special Oil & Gas Res‐ ervoirs,2022,29(1):147-153.
-
[42] 张军涛,金晓辉,孙冬胜,等.鄂尔多斯盆地南缘奥陶系平凉组微生物碳酸盐岩储层特征与演化过程[J].石油实验地质,2022,44(3):385-393.ZHANG Juntao,JIN Xiaohui,SUN Dongsheng,et al.Character‐ istics and evolution of microbial carbonate reservoirs in the Pingliang Formation on the southern margin of Ordos Basin[J].Petroleum Geology & Experiment,2022,44(3):385-393.
-
[43] 许科伟,郑旭莹,顾磊,等.油气微生物分子勘探技术与初步应用[J].石油实验地质,2022,44(5):896-903.XU Kewei,ZHENG Xuying,GU Lei,et al.Molecular microbial prospection for oil and gas and its preliminary application[J].Pe‐ troleum Geology & Experiment,2022,44(5):896-903.
-
[44] 吴波,修建龙,俞理,等.大庆卫星油田微生物驱油体系构建与评价[J].大庆石油地质与开发,2021,40(6):106-114.WU Bo,XIU Jianlong,YU Li,et al.Establishment and evalua‐ tion of the MEOR system in Daqing Satellite Oilfield[J].Petro‐ leum Geology & Oilfield Development in Daqing,2021,40(6):106-114.
-
[45] PAN C C,JIANG L L,LIU J Z,et al.The effects of calcite and montmorillonite on oil cracking in confined pyrolysis experi‐ ments [J].Organic Geochemistry,2010,41(7):611-626.
-
[46] WANG Q T,WANG T L,LIU W P,et al.Relationships among composition,porosity and permeability of Longmaxi shale reser‐ voir in the Weiyuan Block,Sichuan Basin,China [J].Marine and Petroleum Geology,2019,102:33-47.
-
[47] YANG X,LI Y,LU A,et al.Effect of Bacillus mucilaginosus D4B1 on the structure and soil-conservation-related properties of montmorillonite [J].Applied Clay Science,2016,119:141-145.
-
[48] CUI K,SUN S,XIAO M,et al.Microbial mineral illization of montmorillonite in low-permeability oil reservoirs for microbial enhanced oil recovery [J].Applied & Environmental Microbiolo‐ gy,2018,84(14):e00176-18.
-
[49] LIU D,DONG H,BISHOP M E,et al.Microbial reduction of structural iron in interstratified illite-smectite minerals by a sul‐ fate-reducing bacterium [J].Geobiology,2012,10(2):150-162.
-
[50] JAISI D P,EBERL D D,DONG H L,et al.The formation of il‐ lite from nontronite by mesophilic and thermophilic bacterial re‐ action [J].Clays and Clay Minerals,2011,59(1):21-33.
-
摘要
通过对国外微生物技术在页岩油气开发中的研究与应用进行调研,详细介绍了页岩油气藏内源微生物解堵技术、页岩地层地下DNA诊断技术的原理、工艺、应用情况,以及微生物提高页岩油气采收率、微生物改造页岩储层岩石等的原理和研究进展。研究表明,页岩油气藏中存在微生物,基于油藏微生物对大分子有机物的降解和对油藏特定微生物DNA的检测分析建立的页岩油气藏内源微生物解堵技术、页岩地层地下DNA诊断技术已经进入现场应用,并在提高页岩油气产能和高效储层描述方面取得良好效果。基于油藏微生物对原油渗流能力和储层岩石性质的改善而开展的微生物提高页岩油气采收率研究和微生物改造页岩储层岩石研究都展现了非常好的应用前景。中国页岩油气开发目前处于快速增长阶段,需要借鉴国外经验,探索符合中国页岩油气特色的微生物开发技术。
Abstract
By investigating the research and application of microbial technology in shale oil and gas reservoir development in other countries, the principle, technology, and application of plugging removal technology by indigenous microorganisms in shale oil and gas reservoirs and DNA sequencing diagnosis technology in shale formation are introduced in detail. At the same time, the prin‐ ciple and research progress of enhanced shale oil and gas recovery and transformation of shale reservoir rock by microorganisms are analyzed. The results show that there are microorganisms in shale oil and gas reservoirs. Based on the degradation of macromolecu‐ lar organic matter by reservoir microorganisms and the detection and analysis of specific microorganism DNA in reservoirs, the plugging removal technology by indigenous microorganisms in shale oil and gas reservoirs and DNA sequencing diagnosis technol‐ ogy in shale formation have been applied in the field, and excellent results have been obtained in improving shale oil and gas pro‐ ductivity and high-efficiency reservoir description. Based on the improvement of crude oil flow ability by microorganisms in reser‐ voirs and that of reservoir rock properties, studies on enhanced shale oil and gas recovery and transformation of shale reservoir rock by microorganisms have shown a very good application prospect. At present, the development of shale oil and gas reservoirs in Chi‐ na is in the stage of rapid growth, so it is necessary to learn from the experience of foreign countries and explore microbial develop‐ ment technology in accordance with the characteristics of shale oil and gas in China.
Keywords
shale oil and gas reservoir ; microorganism ; DNA ; fracturing ; recovery