en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

高涛(1988—),男,陕西延安人,高级工程师,硕士,从事特低渗透致密油气开采理论与工程技术攻关工作。E-mail:gaotao95@163.com。

通讯作者:

王香增(1968—),男,河南滑县人,教授级高级工程师,博士。E-mail:sxycpcwxz@126.com。

中图分类号:TE357.6

文献标识码:A

文章编号:1009-9603(2023)05-0100-10

DOI:10.13673/j.pgre.202210027

参考文献 1
XIAO Junfeng,LIU Xiang,LUO Youming,et al.Oscillations of free surface at the edge of short capillary tubes [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,591:124572.
参考文献 2
黎明,廖晶,王肃,等.鄂尔多斯盆地超低渗透油藏渗吸特征及其影响因素——以渭北油田三叠系延长组三段储层为例[J].石油实验地质,2022,44(6):971-980.LI Ming,LIAO Jing,WANG Su,et al.Imbibition characteris‐ tics and influencing factors of reservoirs with ultra-low permea‐ bility of Ordos Basina case study of third member of Triassic Yanchang Formation in Weibei Oil Field [J].Petroleum Geology & Experiment,2022,44(6):971-980.
参考文献 3
XIAO Junfeng,LUO Youming,NIU Muyuan,et al.Study of imbibition in various geometries using phase field method [J].Capillarity,2019,2(4):57-65.
参考文献 4
PETER L L W,GRÉGOIRE D,JAMES C B,et al.Capillary displacement of viscous liquids [J].Langmuir,2016,32(13):3 186-3 190.
参考文献 5
GORCE J B,HEWITT I J,VELLA D.Capillary imbibition into converging tubes:Beating Washburn’s law and the optimal imbi‐ bition of liquids [J].Langmuir,2016,32(6):1 560-1 567.
参考文献 6
李颖,李茂茂,李海涛,等.水相渗吸对页岩储层的物化作用机理研究[J].油气藏评价与开发,2023,13(1):64-73.LI Ying,LI Maomao,LI Haitao,et al.Physicochemical mecha‐ nism of water phase imbibition in shale reservoirs [J].Reservoir Evaluation and Development,2023,13(1):64-73.
参考文献 7
NABIZADEH A,ADIBIFARD M,HASSANZADEH H,et al.Computational fluid dynamics to analyze the effects of initial wetting film and triple contact line on the efficiency of immisci‐ ble two-phase flow in a pore doublet model [J].Journal of Molec‐ ular Liquids,2019,273:248-258.
参考文献 8
CHATZIS I,DULLIEN F.Dynamic immiscible displacement mechanisms in pore doublets:Theory versus experiment [J].Journal of Colloid & Interface Science,1983,91(1):199-222.
参考文献 9
LUCAS R.Ueber das Zeitgesetz des kapillaren aufstiegs von Flüssigkeiten [J].Kolloid-Zeitschrift,1918,23:15-22.
参考文献 10
CAI Jianchao,JIN Tingxu,KOU Jisheng,et al.Lucas-Wash‐ burn equation-based modeling of capillary-driven flow in porous systems [J].Langmuir,2021,37(5):1 623-1 636.
参考文献 11
WASHBURN E W.The dynamics of capillary flow [J].Physical Review,1921,17(3):273-283.
参考文献 12
BENAVENTE D,LOCK P,MÁNGELES G D,et al.Predict‐ ing the capillary imbibition of porous rocks from microstructure [J].Transport in Porous Media,2002,49:59-76.
参考文献 13
TIAN Weibing,WU Keliu,CHEN Zhangxin,et al.Effect of dy‐ namic contact angle on spontaneous capillary-liquid-liquid imbi‐ bition by molecular kinetic theory [J].SPE Journal,2021,26(4):1-16.
参考文献 14
TIAN Weibing,WU Keliu,CHEN Zhangxin,et al.Dynamic wetting of solid-liquid-liquid system by molecular kinetic theory [J].Journal of Colloid and Interface Science,2020,579:470-478.
参考文献 15
WANG Han,SU Yuliang,WANG Wendong.Investigations on water imbibing into oil-saturated nanoporous media:Coupling molecular interactions,the dynamic contact angle,and the en‐ trance effect [J].Industrial & Engineering Chemistry Research,2021,60(4):1 872-1 883.
参考文献 16
ERICKSON D,LI D,PARK C B.Numerical simulations of cap‐ illary-driven flows in nonuniform cross-sectional capillaries [J].Journal of Colloid and Interface Science,2002,250(2):422-430.
参考文献 17
YOUNG W B.Analysis of capillary flows in non-uniform crosssectional capillaries [J].Colloids and Surfaces A:Physicochemi‐ cal and Engineering Aspects,2004,234(1/3):123-128.
参考文献 18
REYSSAT M,COURBIN L,REYSSAT E,et al.Imbibition in geometries with axial variations [J].Journal of Fluid Mechanics,2008,615:335-344.
参考文献 19
BERTHIER Jean,GOSSELIN David,PHAM Andrew,et al.Spontaneous capillary flows in piecewise varying cross-section microchannels [J].Sensors and Actuators B:Chemical,2016,223:868-877.
参考文献 20
YANG Chun,LI Dongqing.A method of determining the thick‐ ness of liquid-liquid interfaces [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996,113(1/2):51-59.
参考文献 21
王香增,高涛,梁全胜,等.低渗致密油藏适度温和注水技术研究与矿场实践[J].西南石油大学学报:自然科学版,2022,44(4):62-70.WANG Xiangzeng,GAO Tao,LIANG Quansheng,et al.Re‐ search and field practice of moderate mild water injection tech‐ nology in low permeability tight reservoir [J].Journal of South‐ west Petroleum University:Science Technology Edition,2022,44(4):62-70.
参考文献 22
PFITZNER J.Poiseuille and his law [J].Anaesthesia,2010,31(2):273-275.
参考文献 23
KIRBY B J.Micro-and nanoscale fluid mechanics:Transport in microfluidic devices [M].Cambridge:Cambridge University Press,2010.
参考文献 24
CAI Jianchao,PERFECT Edmund,CHENG Chulin,et al.Gen‐ eralized modeling of spontaneous imbibition based on Hagen-Po‐ iseuille flow in tortuous capillaries with variably shaped aper‐ tures [J].Langmuir,2014,30(18):5 142-5 151.
参考文献 25
BELL J M,CAMERON F K.The flow of liquids through capil‐ lary spaces [J].The Journal of Physical Chemistry,1906,10(8):658-674.
参考文献 26
王秀宇,巨明霜,杨文胜,等.致密油藏动态渗吸排驱规律与机理[J].油气地质与采收率,2019,26(3):92-98.WANG Xiuyu,JU Mingshuang,YANG Wensheng,et al.Dy‐ namic imbibition principles and mechanism of tight oil reser‐ voirs [J].Petroleum Geology and Recovery Efficiency,2019,26(3):92-98.
参考文献 27
申哲娜,王香增,康宵瑜,等.延长油田典型致密油储层渗吸-驱替采油机理定量分析[J].油气地质与采收率,2018,25(5):99-103.SHEN Zhena,WANG Xiangzeng,KANG Xiaoyu,et al.Quan‐ titative analysis of the mechanism of imbibition and displace‐ ment recovery of typical tight oil reservoirs in Yanchang Oilfield [J].Petroleum Geology and Recovery Efficiency,2018,25(5):99-103.
参考文献 28
LEVERETT M C.Flow of oil-water mixtures through unconsoli‐ dated sands [J].Transactions of the Aime,1939,132(4):149-171.
参考文献 29
CAI Jianchao,CHEN Yin,LIU Yang,et al.Capillary imbibi‐ tion and flow of wetting liquid in irregular capillaries:A 100-year review [J].Advances in Colloid and Interface Science,2022,304:102654.
参考文献 30
BLAKE T D,CONINCK J D.The influence of solid-liquid inter‐ actions on dynamic wetting [J].Advances in Colloid & Interface Science,2002,96(3):21-36.
参考文献 31
STOSIAK M,ZAWISLAK M,NISHTA B.Studies of resistanc‐ es of natural liquid flow in helical and curved pipes [J].Polish Maritime Research,2018,25(3):123-130.
参考文献 32
YU Fuwei,GAO Zhendong,ZHU Wenhao,et al.Experiments on imbibition mechanisms of fractured reservoirs by microfluidic chips [J].Petroleum Exploration and Development,2021,48(5):1 162-1 172.
参考文献 33
STANDNES D C.Derivation of the conventional and a general‐ ized form of Darcy’s law from the Langevin equation [J].Trans‐ port in Porous Media,2022,141(1):1-15.
参考文献 34
Al-SHAREEF A,NEOGI P,BAI Baojun.Dynamic contact an‐ gles in oil-aqueous polymer solutions [J].Physical Chemistry Chemical Physics,2016,19(4):3 337-3 348.
参考文献 35
PENG Xiaolong,WANG Xiangzeng,LU Xinqian,et al.Imbibi‐ tion into capillaries with irregular cross sections:A modified im‐ bibition equation for both liquid-gas and liquid-liquid systems [J].Transport in Porous Media,2020,135(3):1-26.
目录contents

    摘要

    针对等直径毛细管束模型的不足,结合分段法推导得到考虑压差及固-液壁面作用的液-液系统下变径毛细管多段式渗吸理论公式,研究不同毛细管几何结构和流体性质的变化对变径毛细管渗吸-驱替的影响,并通过Python编制随机变径毛细管束模型,建立基于该模型的采出程度及含水率计算方法。结果表明:压差的增大导致变径毛细管段间渗吸速度差异减小,变径毛细管渗吸-驱替具有方向性;基于随机变径毛细管束模型计算的采出程度及含水率与实验真实岩心驱替数据符合较好,且渗吸作用对总采出程度的贡献量达19.97%。

    Abstract

    In view of the shortcomings of the equal-diameter capillary bundle model,this paper theoretically derives the multi-seg‐ ment imbibition formula of the variable-diameter capillary under the liquid-liquid system considering pressure difference and solid-liquid wall effect by using the sectioning method. In addition,the paper studies the influence of changes in different capillary geom‐ etry and fluid properties on the imbibition-displacement of the variable-diameter capillaries and develops a random variable-diame‐ ter capillary bundle model through Python,so as to deduce calculation methods of the recovery and water cut based on this model. The results show that the increase in pressure differences leads to the decrease in the differences of the imbibition velocities between variable-diameter capillary segments,and the imbibition-displacement of the variable-diameter capillaries is directional. The recov‐ ery and water cut calculated based on the random variable-diameter capillary bundle model are in good agreement with the real core displacement data from experiments,and the contribution of the imbibition effects to the total recovery reaches 19.97%.

  • 通过理论研究和矿场实践认为,利用基质与裂缝之间的油水渗吸置换作用可较好地采出基质内常规注水无法动用的原油,基于该开发理念建立的“控速增渗”温和注水技术可有效改善低渗透致密油藏水驱开发效果。基质与裂缝之间的油水渗吸置换作用主要利用毛细管模型表征,进而对致密油藏注水开发方式进行优化。微观渗吸理论上,等直径毛细管[1-5]、非等径毛细管[6]、双毛细管[7-8] 等都具有一定的研究基础。对于等直径毛细管,LUCAS等最早分析了简单毛细管中影响渗吸的动力学因素,提出了经典 LW 方程用于计算毛细管内液面上升高度[9-11],但由于该方程的假设前提为简单毛细管牛顿流体层流,从而限制了其在复杂微观多孔介质中的应用。部分学者基于 LW 方程又开展了大量的研究工作。 BENAVENTE等通过在岩石微观结构中引入各种校正因子,将理论研究扩展到非均质多孔介质[12]; TIAN 等通过引入分子动力学理论研究了动态接触角对双液相系统下毛细管自发渗吸的影响[13-14]; WANG 等分析了分子相互作用及入口效应对纳米多孔介质渗吸的影响[15]。对于非等径毛细管,ER‐ ICKSON 等通过有限元方法模拟了气-液系统在具有变径结构毛细管中的自发渗吸过程[16];YOUNG 推导了非等径毛细管气-液渗吸公式[17];REYSSAT 等通过实验和理论的方法研究了 2 种扩径方式(锲型和幂律型)下的气-液渗吸公式[18];BERTHIER 等研究了在半开放式毛细管中气-液渗吸规律[19]。对于双毛细管,NABIZADEH 等研究了双毛细管系统中液-液非混相渗吸规律[7]。综上可知,大部分研究主要分析简单非等径毛细管在气-液系统下的渗吸规律,而对液-液系统复杂毛细管的渗吸规律研究不够深入。为此,笔者针对液-液系统下非等径毛细管的渗流特点建立了渗吸-驱替双重作用模型,并考虑渗吸-驱替过程中压差及固-液壁面作用对渗吸-驱替的影响,结合真实岩心孔径分布曲线建立了表征真实岩心渗流特征的随机变径毛细管束模型,计算该模型中不同毛细管束的含水率和采出程度,并与室内水驱油实验测试结果进行对比,从而验证了该模型的可靠性。研究成果丰富了延长油田“控速增渗” 温和注水技术,通过发挥渗吸-驱替协同作用对低渗透致密储层提高采收率具有一定指导意义。

  • 1 基础模型

  • 1.1 模型结构

  • 设计2个具有不规则横截面的圆柱变径毛细管 (图1),其几何形状复杂程度不同。毛细管完全饱和非润湿相并处于静态,入口和出口边界分别与润湿相和非润湿相相连。

  • 变径毛细管模型假设条件如下:①流体为不可压缩流体,两相流体不存在混溶,流体流动属于层流。②不考虑相界面厚度对位移距离和渗吸速度的影响[20]。③由于研究的毛细管直径为微米级别,模型推导忽略重力影响。

  • 图1 变径毛细管模型示意

  • Fig.1 Variable-diameter capillary model

  • 1.2 模型推导

  • 1.2.1 单段变径毛细管模型

  • 在渗吸过程中驱替相流体主要受液柱两端压差、毛细管力、管壁施加的黏性力、重力以及惯性力的影响,关系式可表示为:

  • Fs+Fc=Fv+Fg+Fi
    (1)
  • 对于流动方向为水平方向的扩径毛细管模型 (图1a),忽略重力与惯性力在渗吸方向上的影响,则 (1)式简化为:

  • Fs+Fc=Fv
    (2)
  • 假设驱替相流体两端压差等于毛细管两端压差,则有:

  • Fs=πrx2Δps=πrx2psi-pso
    (3)
  • 驱替相流体前缘到达任意毛细管任意截面时的毛细管力可表示为:

  • Fc=πrx2pc=2πrxγcosθ
    (4)
  • 驱替相流体受到的壁面摩擦力等于润湿相流体摩擦力与非润湿相流体摩擦力之和,运用牛顿黏性定理可得:

  • Fv=0lx -2πrxμwdvdrdl-lxl 2πrxμnwdvdrdl
    (5)
  • 将(3)—(5)式代入(2)式可得驱替相流体任意截面处流速分布,其表达式为:

  • V(r)=Δps+pc4×1μw0lx 1rx2-r2dlx+μnwlxl 1rx2-r2dlx
    (6)
  • 根据(6)式可得驱替相渗吸时的体积流量,其表达式为:

  • Q=πΔps+pc8×1μw0lx 1rx4dl+μnwlxl 1rx4dl
    (7)
  • 将(3)和(4)式代入(7)式,渗吸速度可表示为:

  • v=psi-psorx+2γcosθ8rx3×1μw0lx 1rx4dl+μnwlxl 1rx4dl
    (8)
  • v=dlx/dt代入(8)式,渗吸时间的表达式为:

  • t=0lx 8rx3psi-psorx+2γcosθ×μw0lx 1rx4dlx+μnwlxl 1rx4dlxdlx
    (9)
  • 1.2.2 多段式变径毛细管模型

  • 对于多段式变径毛细管模型(图1b),渗吸时间可用分段法形式表示[19-23],首先引入中间积分变量:

  • Ci=0li 1ri4dlx,i
    (10)
  • 将(8)和(9)式分别进行变换,其表达式依次为:

  • vk,x=psi-psork,x+2γcosθ8rk,x3×1ek,x
    (11)
  • t=0lx 8rk,x3psi-psork,x+2γcosθek,xdlx
    (12)
  • 其中:

  • ek,x=μw1k-1 Ci+0lk,x 1rk,x4dlk,x+μnwk+1n Ci+lk,xlk 1rk,x4dlk,x
    (13)
  • 1.2.3 考虑固-液壁面作用的多段式变径毛细管模型

  • 多段式变径毛细管模型中驱替相流体黏度与被驱替相流体黏度均假设为定值,这一假设在宏观流动中较为合理,但在微纳米尺度中却存在一定问题[24-25]。由于黏度是流体流动过程中流体分子所受阻力的度量,其本质是对分子间吸引力的表征,在微观流动中由于通道尺寸较小,部分流体分子受管壁固体分子范德华力作用的影响从而产生附加黏性[26-35],其计算公式为:

  • μ=μ0+bAsAw-Awr
    (14)
  • 从(14)式可以看出附加黏度与流动通道尺寸相关,流动通道尺寸越小,附加的黏性效应越明显,在微纳米尺度的流动中,这一附加黏度对流体流动的影响不可忽略。在多段式毛细管渗吸速度求解过程中,由于各段毛细管存在尺寸差异,则附加黏度也各不相同,当计算段数较多或尺寸差异较明显时,累加计算的误差将导致计算结果出现明显偏差,所以在计算渗吸速度时,需对每段的黏度进行修正,修正后的结构参数表示为:

  • ek,x=μw0+bwAsAw-Awr1k-1 Ci+0lk,x 1rk,x4dlk,x+μnw0+bnwAsAnw-Anwrk+1n Ci+lk,xlk 1rk,x4dlk,x
    (15)
  • 将(15)式代入(11)式即可计算考虑附加黏度后的渗吸速度。

  • 1.3 模型验证

  • 选取模型的几何参数和流体参数与 ERICK‐ SON等对简单扩径-缩径毛细管和缩径-扩径毛细管的渗吸研究中一致[16]。所有毛细管均有 2个级别的半径,分别为 25 和 50 μm,每根毛细管内各段长度 l1l12l2l23l3分别为 20,3,40,3和 20 mm。流体参数设置为:表面张力为 0.03 N/m,润湿相黏度为 1 mPa•s,非润湿相黏度为 0.018 mPa•s,接触角为 30°。采用文献中相关的复杂毛细管渗吸数据[1619] 验证新模型的可靠性。

  • 将新模型计算的扩径-缩径毛细管和缩径-扩径毛细管渗吸速度与ERICKSON数值解[16] 和BERTHI‐ ER解析解[19] 的预测结果进行对比(图2),结果显示新模型在 2 种复杂毛细管中的预测结果与 ERICK‐ SON 数值解拟合效果更好。但从图2b 可以看出经过 2次变径后,扩径-缩径毛细管模型变径后半段的 BERTHIER 解析解的拟合效果偏差较大,对于更为复杂的变径毛细管,将会产生较大的计算误差,从而影响预测结果的准确性。相较于BERTHIER等提出的解析模型,新模型在变径段的拟合效果更好,更符合ERICKSON数值模拟的结果。

  • 2 渗流特征的影响因素

  • 2.1 压差

  • 毛细管压力与压差均是渗吸-驱替的动力,但由于圆管中的毛细管压力受毛细管半径的影响,所以结构相同但尺寸不同的变径毛细管对压差与毛细管压力的敏感性不同。为了研究不同压差对变径毛细管渗吸-驱替的影响,选取图2所示2种毛细管结构,分别将其在直径方向上按等比例缩放得到6种不同尺寸变径毛细管(图3a—3b为缩径-扩径毛细管,图3c—3f为扩径-缩径毛细管),各段长度与图2所示相同,毛细管压差设置为0~10 kPa。

  • 图2 2种复杂毛细管不同计算模型下渗吸速度与渗吸距离的关系

  • Fig.2 Relationships between imbibition velocities and imbibition distances under different calculation models of two complex capillaries

  • 图3 不同尺寸变径毛细管渗吸时间随压差的变化

  • Fig.3 Imbibition time with pressure differences of different variable-diameter capillaries

  • 由图3可以看出,随着压差的增大,渗吸时间曲线各段斜率趋于一致,表明各段渗吸速度趋于相同,故毛细管两端压差的增大有助于缩小变径毛细管段间渗吸速度的差距。且对于相同结构不同尺寸的变径毛细管,大尺寸结构的渗吸速度趋同现象更为明显。变径毛细管段间渗吸速度差异主要受毛细管压力与流动阻力的控制,若将(6)式拆分成压力项与毛细管压力项,则可以看出压差对渗吸速度的影响受毛细管半径的二次方控制,与毛细管半径呈线性关系,可简化为:

  • vΔpr2+pcr
    (16)
  • 对于某一确定的变径毛细管结构,毛细管内的小半径段受压力的影响比大半径段更强,所以随着压差的增大,段间渗吸速度差距逐渐消失。而在毛细管整体尺寸变化时,压力的影响将以二次方的形式扩大或缩小,这将导致当毛细管半径足够大时,毛细管压力对渗吸速度的影响减弱,压力的作用占据主导。

  • 2.2 毛细管结构

  • 为探究半径分布对渗吸时间的影响,利用固定段长的方法研究三段式半径结构对渗吸-驱替作用的影响。设计6种三段式变径毛细管结构以分析气-液系统和液-液系统条件下渗吸时间的变化。6种三段式变径毛细管内各段长度 l1l12l2l23l3均分别为 30,10,30,10 和 30 mm。每根变径毛细管均由 10, 20,30 μm 三种级别的半径组成,其排列顺序如图4 所示。流体参数设置为:表面张力为30 mN/m,接触角为 30°,润湿相黏度为 1 mPa •s,固相和液相 Ha‐ maker常数均为4.2×10-20 J。

  • 图4 不同半径结构三段式变径毛细管结构示意

  • Fig.4 Three-segment variable-diameter capillary structures with different radii

  • 从图5 可以看出,对于包含相同尺寸及数量直管段的变径毛细管结构,半径排列顺序对最终渗吸时间产生影响。6种不同半径结构的三段式变径毛细管在气-液系统下的渗吸时间曲线趋于同一点,曲线各段斜率不随排列顺序变化而变化,曲线终点对应的最终渗吸时间基本一致。而液-液系统下的最终渗吸时间具有明显差异,且曲线各段斜率因排列顺序不同而变化显著。图5a中气-液系统在最终渗吸时间上的差异主要来源于变径段结构的差异。而在图5b的液-液系统中,流动阻力受润湿相黏度、非润湿相黏度及毛细管半径共同影响,且非润湿相黏度大于润湿相黏度,所以非润湿相的流动阻力贡献量更大,易随出口段毛细管尺寸的减小而增大。结合图4可以看出,图5b中变径毛细管④—⑥所需的渗吸时间大于变径毛细管①—③,这一现象说明变径毛细管在液-液系统下渗吸-驱替会表现出一定的方向性。因此,在变径毛细管中的渗吸过程不仅要考虑孔隙尺寸、段长的分布,还需考虑各段之间的位置关系以及流体流动方向。

  • 图5 不同半径结构三段式变径毛细管在气-液系统及液-液系统下渗吸时间的变化

  • Fig.5 Imbibition time of three-segment variable-diameter capillary structures with different radii under gas-liquid and liquid-liquid systems

  • 3 随机变径毛细管束模型

  • 3.1 模型建立

  • 储层是具有复杂孔隙结构的多孔介质,以往的研究中通常将天然岩石中不规则孔隙简化为等直径毛细管组成的理想流动模型,并基于此模型建立采出程度及含水率的计算公式,但该类模型无法描述重要的变径结构信息。而在变径毛细管模型中,对于毛细管半径分布广、段数多、各段长度不定的变径毛细管,无法对所有可能出现的毛细管结构进行单独分析。

  • 为了反映孔隙结构的弯曲程度,需为单根毛细管引入迂曲度的定义,其表达式为:

  • τ=ltL
    (17)
  • 在多种变量作用下,单独分析某一变径结构意义不大。为了研究复杂结构变径毛细管的渗流特征,利用Python编制变径毛细管生成程序,随机批量生成具有一定半径分布特征及段数分布特征的毛细管,并通过对直管段添加随机长度的方式,生成固定迂曲度条件下任意结构的弯曲随机变径毛细管(图6),将获得的毛细管结构信息代入模型计算,即可得到任意结构弯曲随机变径毛细管的渗吸时间。

  • 图6 随机变径毛细管示意

  • Fig.6 Random variable-diameter capillaries

  • 基于上述毛细管生成程序,进一步构建以真实岩心总孔隙度、孔隙分布实验数据及迂曲度等参数为约束条件的随机变径毛细管束模型(图7),与经典毛细管束模型相比,其更真实地反映孔隙微观结构。通过建立基于随机变径毛细管束模型的采出程度及含水率计算方法分析真实岩心尺度下渗吸-驱替过程。

  • 图7 不同孔隙度和迂曲度下随机变径毛细管束模型

  • Fig.7 Random variable-diameter capillary bundle model under different porosity and tortuosity

  • 3.2 采出程度及含水率表征

  • 对于上述模型中的单根变径毛细管,某一时间t 下,毛细管内油水相界面位于该管第 k段中的 lkt处,且该处毛细管半径为rkt,则在该时间下第i根变径毛细管的水相总体积表达式为:

  • Vwi=j=1kt-1 πrj2lj+0lkt πrkt2dlkt
    (18)
  • 由于水相总体积等于油相采出体积,则求解所有变径毛细管在t时间下的水相体积并求和,即可得到任意时间下变径毛细管束的油相采出体积。油相采出体积与毛细管束总体积的比值即为采出程度,表达式为:

  • R=i=1n j=1kt-1 πrj2lj+0lkt πrkt2dlkti=1n j=1k πrj2lj
    (19)
  • 同理,出口端含水率的表达式为:

  • fw=i=1n Biπrendi,t2vendi,ti=1n πrendi,t2vendi,t
    (20)
  • 其中:

  • (21)
  • 根据连续性定理(20)式可变为:

  • fw=i=1n Biri,kt2vi,kti=1n ri,kt2vi,kt
    (22)
  • Bi为第 i 根毛细管末端的状态参数,是由第 i根毛细管出口端见水时间 tendi与当前渗吸时间相对大小确定,当Bi =1时表明第i根毛细管末端产水,当Bi =0 时表明第i根毛细管末端产油。

  • 4 实例应用

  • 选取延长油田西部油区主力开发层位长6油层岩心 4 块,其平均孔隙度为 10.9%,平均渗透率为 1.53 mD,孔隙半径分布如图8所示。设置随机变径毛细管束模型的段数为 50~100,岩心长度为 0.05 m,迂曲度为1~2,毛细管个数为10 000。

  • 将图8 中孔隙半径分布作为毛细管束 1 的孔隙半径分布,将得到的毛细管束代入模型中进行计算。同时,通过对原始孔隙半径分布添加微孔隙的方式模拟部分死孔隙,得到毛细管束 2 孔隙半径并代入模型计算。由随机变径毛细管束模型计算的不同毛细管束采出程度及含水率变化(图9)可以看出,毛细管束1计算得到的采出程度在高含水阶段与实验值偏差较大,由于毛细管束 1 采用的半径分布中各级孔隙半径较大,所以毛细管束 1 中的所有孔隙均为连通孔隙,其计算得到的最终采出程度基本达 100%。而毛细管束 2由于添加了微孔隙,计算结果与实验值更加符合,模型计算最终采出程度为 65.6%,实验值为 61.86%。同时含水率的变化不是平滑地上升,而是存在台阶式变化,这与最新的水驱油实验测试结果一致。而传统水驱油实验测试由于计量间隔时间长,数据点是一段时间累积效应并不是瞬时值,故本模型计算的含水率变化特征更能真实地反映储层含水率变化特征。由渗吸-驱替作用在总采出程度中的贡献量(图10)可以看出驱替作用采出程度为 52.5%,渗吸作用采出程度为 13.1%,总采出程度为65.6%。在毛细管束2条件下,渗吸作用对总采出程度的影响可达 19.97%,即对于延长油田长 6 油层渗吸作用对总采出程度的贡献量达 19.97%。但渗吸作用对总采出程度的贡献是由生产压差、孔隙半径、润湿性的强弱共同决定,孔隙半径越小渗吸作用贡献量越大,同时通过改变储层的亲水性以及合理控制生产压差可以进一步提高渗吸作用的贡献。

  • 图8 延长油田西部油区长6油层岩心孔隙半径分布

  • Fig.8 Pore radius distribution of Chang 6 core in western Yanchang Oilfield

  • 图9 不同毛细管束采出程度及含水率的变化

  • Fig.9 Change of water content and recovery degree of different capillary bundles

  • 图10 渗吸-驱替作用在总采出程度中的贡献量

  • Fig.10 Contribution of imbibition-displacement effect to total recovery

  • 5 结论

  • 通过多段式变径毛细管模型,分析了压差与毛细管结构对渗流特征的影响,并建立了符合真实岩心孔隙结构的随机变径毛细管束模型。对于某一确定的变径毛细管结构,毛细管内大半径段的压力敏感性比小半径段更强,当压差高于某一临界值时,变径毛细管的段间渗吸速度差异不明显,且临界压差与毛细管尺寸密切相关。对于包含相同尺寸及数量直管段的变径毛细管结构,半径分布的顺序会对最终渗吸时间产生影响,其中气-液系统受影响较小,而液-液系统的渗吸-驱替过程对变径毛细管结构显示出一定的方向性。采用真实岩心孔隙半径分布数据,构建了随机变径毛细管束模型,计算不同毛细管束的采出程度及含水率,结果表明渗吸作用对总采出程度的贡献量达19.97%。

  • 符号解释

  • Anw——非润湿相流体Hamaker常数,J;

  • As——管壁Hamaker常数,J;

  • Aw——润湿相流体Hamaker常数,J;

  • b——管壁与流体分子作用的黏度系数,Pa•s•m;

  • bw——管壁与润湿相流体分子作用的黏度系数, Pa•s•m;

  • bnw——管壁与非润湿相流体分子作用的黏度系数, Pa•s•m;

  • Bi ——第i根毛细管末端的状态参数;

  • Ci ——中间积分变量,m-3

  • ek,x——多段式变径毛细管内第 k 段距出口 x 处的结构参数,Pa•s/m2

  • fw——含水率,%;

  • Fc——毛细管力,N;

  • Fi ——惯性力,N;

  • Fg——重力,N;

  • Fs——压力,N;

  • Fv——黏性力,N;

  • i——毛细管编号;

  • j——直管段编号;

  • k——任意多段式变径毛细管直管段总数;

  • kt——t时间下含润湿相的直管段总数;

  • l——毛细管长度,m;

  • l1l2,···,ln——多段式变径毛细管内第 1,2,···,n 段直管段长度,m;

  • l12l23——多段式变径毛细管内第 1 和第 2,第 2 和第 3 直管段间变径段长度,m;

  • li——第i段毛细管长度,m;

  • lj ——第j段直管段长度,m;

  • lk——多段式变径毛细管内第k段直管段长度,m;

  • lkt——多段式变径毛细管内 t时间下相界面所在第 k段长度,m;

  • lk,x——多段式变径毛细管内第 k 段距入口 x 处直管段长度,m;

  • lt ——毛细管路径长度,m;

  • lx——毛细管内距入口x处的长度,m;

  • lx,i ——毛细管第i段内距离该段入口x处的长度,m;

  • L——毛细管直线长度,m;

  • n——毛细管根数;

  • pc——毛细管压力,Pa;

  • psi——进口压力,Pa;

  • pso——出口压力,Pa;

  • Q——体积流量,m3 /s;

  • r——半径,m;

  • r0——单段扩径毛细管入口半径,m;

  • r1r2r3,···,rn——多段式变径毛细管内第 1,2,3,···,n 段直管段半径,m;

  • rendi,t ——t时间下第i根毛细管出口半径,m;

  • ri ——第i段毛细管半径,m;

  • ri,kt——第i根毛细管t时间下相界面所在第k段半径,m;

  • rj ——第j段毛细管半径,m;

  • rk——多段式变径毛细管内第k段半径,m;

  • rkt——多段式变径毛细管内 t时间下相界面所在第 k段半径,m;

  • rk,x——多段式变径毛细管内第 k段距入口 x处的半径, m;

  • rl ——长度为l的单段扩径毛细管入口半径,m;

  • rlx——长度为l的单段扩径毛细管距入口x处的半径,m;

  • rn——多段式变径毛细管出口半径,m;

  • rx——变径毛细管内距入口x处的半径,m;

  • R——采出程度,%;

  • t——渗吸时间,s;

  • tendi ——第i根毛细管出口见水时间,s;

  • v——渗吸速度,m/s;

  • vendi,t ——t时间下第i根毛细管出口渗吸速度,m/s;

  • vi,kt ——第i根毛细管t时间下第k段渗吸速度,m/s;

  • vk,x——多段式变径毛细管内第 k 段距入口 x 处的渗吸速度,m/s;

  • Vr)——流速分布函数,m/s;

  • Vw——毛细管束的水相总体积,m3

  • Vwi ——第i根毛细管的水相体积,m3

  • x——相界面距毛细管入口距离,m;

  • Δp——压差,Pa;

  • Δps ——毛细管两端压差,Pa;

  • γ——界面张力,N/m;

  • θ——接触角,(°);

  • μ——总黏度,Pa•s;

  • μ0——初始黏度,Pa•s;

  • μnw——非润湿相黏度,Pa•s;

  • μnw0——非润湿相初始黏度,Pa•s;

  • μw——润湿相黏度,Pa•s;

  • μw0——润湿相初始黏度,Pa•s;

  • τ ——迂曲度。

  • 参考文献

    • [1] XIAO Junfeng,LIU Xiang,LUO Youming,et al.Oscillations of free surface at the edge of short capillary tubes [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,591:124572.

    • [2] 黎明,廖晶,王肃,等.鄂尔多斯盆地超低渗透油藏渗吸特征及其影响因素——以渭北油田三叠系延长组三段储层为例[J].石油实验地质,2022,44(6):971-980.LI Ming,LIAO Jing,WANG Su,et al.Imbibition characteris‐ tics and influencing factors of reservoirs with ultra-low permea‐ bility of Ordos Basina case study of third member of Triassic Yanchang Formation in Weibei Oil Field [J].Petroleum Geology & Experiment,2022,44(6):971-980.

    • [3] XIAO Junfeng,LUO Youming,NIU Muyuan,et al.Study of imbibition in various geometries using phase field method [J].Capillarity,2019,2(4):57-65.

    • [4] PETER L L W,GRÉGOIRE D,JAMES C B,et al.Capillary displacement of viscous liquids [J].Langmuir,2016,32(13):3 186-3 190.

    • [5] GORCE J B,HEWITT I J,VELLA D.Capillary imbibition into converging tubes:Beating Washburn’s law and the optimal imbi‐ bition of liquids [J].Langmuir,2016,32(6):1 560-1 567.

    • [6] 李颖,李茂茂,李海涛,等.水相渗吸对页岩储层的物化作用机理研究[J].油气藏评价与开发,2023,13(1):64-73.LI Ying,LI Maomao,LI Haitao,et al.Physicochemical mecha‐ nism of water phase imbibition in shale reservoirs [J].Reservoir Evaluation and Development,2023,13(1):64-73.

    • [7] NABIZADEH A,ADIBIFARD M,HASSANZADEH H,et al.Computational fluid dynamics to analyze the effects of initial wetting film and triple contact line on the efficiency of immisci‐ ble two-phase flow in a pore doublet model [J].Journal of Molec‐ ular Liquids,2019,273:248-258.

    • [8] CHATZIS I,DULLIEN F.Dynamic immiscible displacement mechanisms in pore doublets:Theory versus experiment [J].Journal of Colloid & Interface Science,1983,91(1):199-222.

    • [9] LUCAS R.Ueber das Zeitgesetz des kapillaren aufstiegs von Flüssigkeiten [J].Kolloid-Zeitschrift,1918,23:15-22.

    • [10] CAI Jianchao,JIN Tingxu,KOU Jisheng,et al.Lucas-Wash‐ burn equation-based modeling of capillary-driven flow in porous systems [J].Langmuir,2021,37(5):1 623-1 636.

    • [11] WASHBURN E W.The dynamics of capillary flow [J].Physical Review,1921,17(3):273-283.

    • [12] BENAVENTE D,LOCK P,MÁNGELES G D,et al.Predict‐ ing the capillary imbibition of porous rocks from microstructure [J].Transport in Porous Media,2002,49:59-76.

    • [13] TIAN Weibing,WU Keliu,CHEN Zhangxin,et al.Effect of dy‐ namic contact angle on spontaneous capillary-liquid-liquid imbi‐ bition by molecular kinetic theory [J].SPE Journal,2021,26(4):1-16.

    • [14] TIAN Weibing,WU Keliu,CHEN Zhangxin,et al.Dynamic wetting of solid-liquid-liquid system by molecular kinetic theory [J].Journal of Colloid and Interface Science,2020,579:470-478.

    • [15] WANG Han,SU Yuliang,WANG Wendong.Investigations on water imbibing into oil-saturated nanoporous media:Coupling molecular interactions,the dynamic contact angle,and the en‐ trance effect [J].Industrial & Engineering Chemistry Research,2021,60(4):1 872-1 883.

    • [16] ERICKSON D,LI D,PARK C B.Numerical simulations of cap‐ illary-driven flows in nonuniform cross-sectional capillaries [J].Journal of Colloid and Interface Science,2002,250(2):422-430.

    • [17] YOUNG W B.Analysis of capillary flows in non-uniform crosssectional capillaries [J].Colloids and Surfaces A:Physicochemi‐ cal and Engineering Aspects,2004,234(1/3):123-128.

    • [18] REYSSAT M,COURBIN L,REYSSAT E,et al.Imbibition in geometries with axial variations [J].Journal of Fluid Mechanics,2008,615:335-344.

    • [19] BERTHIER Jean,GOSSELIN David,PHAM Andrew,et al.Spontaneous capillary flows in piecewise varying cross-section microchannels [J].Sensors and Actuators B:Chemical,2016,223:868-877.

    • [20] YANG Chun,LI Dongqing.A method of determining the thick‐ ness of liquid-liquid interfaces [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996,113(1/2):51-59.

    • [21] 王香增,高涛,梁全胜,等.低渗致密油藏适度温和注水技术研究与矿场实践[J].西南石油大学学报:自然科学版,2022,44(4):62-70.WANG Xiangzeng,GAO Tao,LIANG Quansheng,et al.Re‐ search and field practice of moderate mild water injection tech‐ nology in low permeability tight reservoir [J].Journal of South‐ west Petroleum University:Science Technology Edition,2022,44(4):62-70.

    • [22] PFITZNER J.Poiseuille and his law [J].Anaesthesia,2010,31(2):273-275.

    • [23] KIRBY B J.Micro-and nanoscale fluid mechanics:Transport in microfluidic devices [M].Cambridge:Cambridge University Press,2010.

    • [24] CAI Jianchao,PERFECT Edmund,CHENG Chulin,et al.Gen‐ eralized modeling of spontaneous imbibition based on Hagen-Po‐ iseuille flow in tortuous capillaries with variably shaped aper‐ tures [J].Langmuir,2014,30(18):5 142-5 151.

    • [25] BELL J M,CAMERON F K.The flow of liquids through capil‐ lary spaces [J].The Journal of Physical Chemistry,1906,10(8):658-674.

    • [26] 王秀宇,巨明霜,杨文胜,等.致密油藏动态渗吸排驱规律与机理[J].油气地质与采收率,2019,26(3):92-98.WANG Xiuyu,JU Mingshuang,YANG Wensheng,et al.Dy‐ namic imbibition principles and mechanism of tight oil reser‐ voirs [J].Petroleum Geology and Recovery Efficiency,2019,26(3):92-98.

    • [27] 申哲娜,王香增,康宵瑜,等.延长油田典型致密油储层渗吸-驱替采油机理定量分析[J].油气地质与采收率,2018,25(5):99-103.SHEN Zhena,WANG Xiangzeng,KANG Xiaoyu,et al.Quan‐ titative analysis of the mechanism of imbibition and displace‐ ment recovery of typical tight oil reservoirs in Yanchang Oilfield [J].Petroleum Geology and Recovery Efficiency,2018,25(5):99-103.

    • [28] LEVERETT M C.Flow of oil-water mixtures through unconsoli‐ dated sands [J].Transactions of the Aime,1939,132(4):149-171.

    • [29] CAI Jianchao,CHEN Yin,LIU Yang,et al.Capillary imbibi‐ tion and flow of wetting liquid in irregular capillaries:A 100-year review [J].Advances in Colloid and Interface Science,2022,304:102654.

    • [30] BLAKE T D,CONINCK J D.The influence of solid-liquid inter‐ actions on dynamic wetting [J].Advances in Colloid & Interface Science,2002,96(3):21-36.

    • [31] STOSIAK M,ZAWISLAK M,NISHTA B.Studies of resistanc‐ es of natural liquid flow in helical and curved pipes [J].Polish Maritime Research,2018,25(3):123-130.

    • [32] YU Fuwei,GAO Zhendong,ZHU Wenhao,et al.Experiments on imbibition mechanisms of fractured reservoirs by microfluidic chips [J].Petroleum Exploration and Development,2021,48(5):1 162-1 172.

    • [33] STANDNES D C.Derivation of the conventional and a general‐ ized form of Darcy’s law from the Langevin equation [J].Trans‐ port in Porous Media,2022,141(1):1-15.

    • [34] Al-SHAREEF A,NEOGI P,BAI Baojun.Dynamic contact an‐ gles in oil-aqueous polymer solutions [J].Physical Chemistry Chemical Physics,2016,19(4):3 337-3 348.

    • [35] PENG Xiaolong,WANG Xiangzeng,LU Xinqian,et al.Imbibi‐ tion into capillaries with irregular cross sections:A modified im‐ bibition equation for both liquid-gas and liquid-liquid systems [J].Transport in Porous Media,2020,135(3):1-26.

  • 参考文献

    • [1] XIAO Junfeng,LIU Xiang,LUO Youming,et al.Oscillations of free surface at the edge of short capillary tubes [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,591:124572.

    • [2] 黎明,廖晶,王肃,等.鄂尔多斯盆地超低渗透油藏渗吸特征及其影响因素——以渭北油田三叠系延长组三段储层为例[J].石油实验地质,2022,44(6):971-980.LI Ming,LIAO Jing,WANG Su,et al.Imbibition characteris‐ tics and influencing factors of reservoirs with ultra-low permea‐ bility of Ordos Basina case study of third member of Triassic Yanchang Formation in Weibei Oil Field [J].Petroleum Geology & Experiment,2022,44(6):971-980.

    • [3] XIAO Junfeng,LUO Youming,NIU Muyuan,et al.Study of imbibition in various geometries using phase field method [J].Capillarity,2019,2(4):57-65.

    • [4] PETER L L W,GRÉGOIRE D,JAMES C B,et al.Capillary displacement of viscous liquids [J].Langmuir,2016,32(13):3 186-3 190.

    • [5] GORCE J B,HEWITT I J,VELLA D.Capillary imbibition into converging tubes:Beating Washburn’s law and the optimal imbi‐ bition of liquids [J].Langmuir,2016,32(6):1 560-1 567.

    • [6] 李颖,李茂茂,李海涛,等.水相渗吸对页岩储层的物化作用机理研究[J].油气藏评价与开发,2023,13(1):64-73.LI Ying,LI Maomao,LI Haitao,et al.Physicochemical mecha‐ nism of water phase imbibition in shale reservoirs [J].Reservoir Evaluation and Development,2023,13(1):64-73.

    • [7] NABIZADEH A,ADIBIFARD M,HASSANZADEH H,et al.Computational fluid dynamics to analyze the effects of initial wetting film and triple contact line on the efficiency of immisci‐ ble two-phase flow in a pore doublet model [J].Journal of Molec‐ ular Liquids,2019,273:248-258.

    • [8] CHATZIS I,DULLIEN F.Dynamic immiscible displacement mechanisms in pore doublets:Theory versus experiment [J].Journal of Colloid & Interface Science,1983,91(1):199-222.

    • [9] LUCAS R.Ueber das Zeitgesetz des kapillaren aufstiegs von Flüssigkeiten [J].Kolloid-Zeitschrift,1918,23:15-22.

    • [10] CAI Jianchao,JIN Tingxu,KOU Jisheng,et al.Lucas-Wash‐ burn equation-based modeling of capillary-driven flow in porous systems [J].Langmuir,2021,37(5):1 623-1 636.

    • [11] WASHBURN E W.The dynamics of capillary flow [J].Physical Review,1921,17(3):273-283.

    • [12] BENAVENTE D,LOCK P,MÁNGELES G D,et al.Predict‐ ing the capillary imbibition of porous rocks from microstructure [J].Transport in Porous Media,2002,49:59-76.

    • [13] TIAN Weibing,WU Keliu,CHEN Zhangxin,et al.Effect of dy‐ namic contact angle on spontaneous capillary-liquid-liquid imbi‐ bition by molecular kinetic theory [J].SPE Journal,2021,26(4):1-16.

    • [14] TIAN Weibing,WU Keliu,CHEN Zhangxin,et al.Dynamic wetting of solid-liquid-liquid system by molecular kinetic theory [J].Journal of Colloid and Interface Science,2020,579:470-478.

    • [15] WANG Han,SU Yuliang,WANG Wendong.Investigations on water imbibing into oil-saturated nanoporous media:Coupling molecular interactions,the dynamic contact angle,and the en‐ trance effect [J].Industrial & Engineering Chemistry Research,2021,60(4):1 872-1 883.

    • [16] ERICKSON D,LI D,PARK C B.Numerical simulations of cap‐ illary-driven flows in nonuniform cross-sectional capillaries [J].Journal of Colloid and Interface Science,2002,250(2):422-430.

    • [17] YOUNG W B.Analysis of capillary flows in non-uniform crosssectional capillaries [J].Colloids and Surfaces A:Physicochemi‐ cal and Engineering Aspects,2004,234(1/3):123-128.

    • [18] REYSSAT M,COURBIN L,REYSSAT E,et al.Imbibition in geometries with axial variations [J].Journal of Fluid Mechanics,2008,615:335-344.

    • [19] BERTHIER Jean,GOSSELIN David,PHAM Andrew,et al.Spontaneous capillary flows in piecewise varying cross-section microchannels [J].Sensors and Actuators B:Chemical,2016,223:868-877.

    • [20] YANG Chun,LI Dongqing.A method of determining the thick‐ ness of liquid-liquid interfaces [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996,113(1/2):51-59.

    • [21] 王香增,高涛,梁全胜,等.低渗致密油藏适度温和注水技术研究与矿场实践[J].西南石油大学学报:自然科学版,2022,44(4):62-70.WANG Xiangzeng,GAO Tao,LIANG Quansheng,et al.Re‐ search and field practice of moderate mild water injection tech‐ nology in low permeability tight reservoir [J].Journal of South‐ west Petroleum University:Science Technology Edition,2022,44(4):62-70.

    • [22] PFITZNER J.Poiseuille and his law [J].Anaesthesia,2010,31(2):273-275.

    • [23] KIRBY B J.Micro-and nanoscale fluid mechanics:Transport in microfluidic devices [M].Cambridge:Cambridge University Press,2010.

    • [24] CAI Jianchao,PERFECT Edmund,CHENG Chulin,et al.Gen‐ eralized modeling of spontaneous imbibition based on Hagen-Po‐ iseuille flow in tortuous capillaries with variably shaped aper‐ tures [J].Langmuir,2014,30(18):5 142-5 151.

    • [25] BELL J M,CAMERON F K.The flow of liquids through capil‐ lary spaces [J].The Journal of Physical Chemistry,1906,10(8):658-674.

    • [26] 王秀宇,巨明霜,杨文胜,等.致密油藏动态渗吸排驱规律与机理[J].油气地质与采收率,2019,26(3):92-98.WANG Xiuyu,JU Mingshuang,YANG Wensheng,et al.Dy‐ namic imbibition principles and mechanism of tight oil reser‐ voirs [J].Petroleum Geology and Recovery Efficiency,2019,26(3):92-98.

    • [27] 申哲娜,王香增,康宵瑜,等.延长油田典型致密油储层渗吸-驱替采油机理定量分析[J].油气地质与采收率,2018,25(5):99-103.SHEN Zhena,WANG Xiangzeng,KANG Xiaoyu,et al.Quan‐ titative analysis of the mechanism of imbibition and displace‐ ment recovery of typical tight oil reservoirs in Yanchang Oilfield [J].Petroleum Geology and Recovery Efficiency,2018,25(5):99-103.

    • [28] LEVERETT M C.Flow of oil-water mixtures through unconsoli‐ dated sands [J].Transactions of the Aime,1939,132(4):149-171.

    • [29] CAI Jianchao,CHEN Yin,LIU Yang,et al.Capillary imbibi‐ tion and flow of wetting liquid in irregular capillaries:A 100-year review [J].Advances in Colloid and Interface Science,2022,304:102654.

    • [30] BLAKE T D,CONINCK J D.The influence of solid-liquid inter‐ actions on dynamic wetting [J].Advances in Colloid & Interface Science,2002,96(3):21-36.

    • [31] STOSIAK M,ZAWISLAK M,NISHTA B.Studies of resistanc‐ es of natural liquid flow in helical and curved pipes [J].Polish Maritime Research,2018,25(3):123-130.

    • [32] YU Fuwei,GAO Zhendong,ZHU Wenhao,et al.Experiments on imbibition mechanisms of fractured reservoirs by microfluidic chips [J].Petroleum Exploration and Development,2021,48(5):1 162-1 172.

    • [33] STANDNES D C.Derivation of the conventional and a general‐ ized form of Darcy’s law from the Langevin equation [J].Trans‐ port in Porous Media,2022,141(1):1-15.

    • [34] Al-SHAREEF A,NEOGI P,BAI Baojun.Dynamic contact an‐ gles in oil-aqueous polymer solutions [J].Physical Chemistry Chemical Physics,2016,19(4):3 337-3 348.

    • [35] PENG Xiaolong,WANG Xiangzeng,LU Xinqian,et al.Imbibi‐ tion into capillaries with irregular cross sections:A modified im‐ bibition equation for both liquid-gas and liquid-liquid systems [J].Transport in Porous Media,2020,135(3):1-26.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告