-
在凝析气藏衰竭开发过程中,当井底压力降至露点压力以下时,在井筒周围的储层中开始出现反凝析现象[1-3]。随着反凝析程度的不断加重,析出的凝析油会堵塞储层及井筒,造成近井储层渗透率的大幅下降,严重影响油井产能[4-10]。纳米颗粒作为新兴的注入介质已经在油气田开发领域得到了快速发展,纳米颗粒能够覆盖储层岩石表面,通过产生低自由能表面和高表面粗糙度,使接触角和界面张力从强液体润湿变为中等气体润湿,具有极大的应用潜力[11-13]。MOUSAVI 等研究发现含有二氧化硅纳米片的表面活性剂能够产生高粗糙表面且具有较低的表面能,使石灰石的润湿性从液体润湿变为气体润湿[14]。JIN 等通过 FG40 改性二氧化硅纳米颗粒,成功将砂岩润湿性由油润湿变为气体润湿,岩心中液体饱和度也从 80% 降至 20.77%[15]。FRANCO 等采用合成的纳米颗粒制造气体润湿表面,岩心经过纳米颗粒处理后,采收率从 46.6% 增至 78.4%[16]。AH‐ MADI 等在高温高压条件下,通过岩心驱替实验研究了石灰石岩心表面吸附纳米颗粒后的气相相对渗透率变化[17]。综上可知,大部分研究主要是针对二氧化硅纳米颗粒作用下的砂岩润湿性变化,鲜有学者研究纳米颗粒对低渗透碳酸盐岩储层润湿性的影响,从渗吸和渗流方面研究纳米颗粒对储层的影响尤其少见。
-
因此,笔者在Fe3O4-PT合成纳米颗粒的基础上,采用 X 射线衍射(XRD)、傅立叶变换红外光谱(FT‐ IR)和场发射扫描电子显微镜(FESEM)对 Fe3O4-PT 纳米颗粒的晶体结构、表面官能团、表面形态和粒径尺寸进行表征。通过开展静态润湿接触角测定实验、静态渗吸实验、单相渗流和两相渗流实验,研究纳米颗粒处理前后岩石的润湿性变化、水油渗吸和单相渗流变化以及气油两相相对渗透率曲线的变化特征,进而综合评价 Fe3O4-PT 纳米颗粒改善反凝析伤害的潜力,以期为提高碳酸盐岩凝析气藏开发效果提供参考和借鉴。
-
1 实验材料
-
1.1 实验流体及试剂
-
实验所用凝析油取自渤海湾盆地上马家沟组上段碳酸盐岩凝析气藏的地面凝析油。地面条件下 (25℃,0.1 MPa)凝析油密度为 0.692 g/cm3,黏度为 0.983 mPa·s。
-
所需其他试剂包括四水氯化亚铁(质量分数为 97%)、氢氧化钠(质量分数为 96%)、六水合三氯化铁(质量分数为 93%)、高锰酸钾、乙腈(质量分数大于99 %)、聚山梨酯80(质量分数为87%)和噻吩(质量分数大于99 %)等。
-
1.2 纳米颗粒及流体
-
1.2.1 Fe3O4纳米颗粒制备
-
采用共沉淀法合成 Fe3O4纳米颗粒[18]。具体步骤包括:①将 1.0 g 的四水氯化亚铁(FeCl2•4H2O,质量分数为 97%)和 1.5 g 的六水合三氯化铁(FeCl3 • 6H2O,质量分数为 93%)共同溶解于 500 mL 的蒸馏水中。②每30 mL的混合液中加入质量分数为10% 的NaOH溶液,在温度约为70℃下用电磁搅拌器以 500 r/min的转速搅拌均匀,直至形成黑色的Fe3O4纳米颗粒沉淀物。③采用高速离心机在转速 12 000 r/min下将沉淀物与上清液分离,并用蒸馏水反复清洗沉淀物。④将沉淀物放置于80℃烘箱中干燥,获得Fe3O4纳米颗粒。
-
1.2.2 Fe3O4-PT纳米颗粒制备
-
具体步骤包括:①在 60℃下将 1.0 g 的 Fe3O4纳米颗粒加入 10 mL 的乙腈中,并采用超声波均质器均匀混合。②将2 mL的噻吩单体添加到Fe3O4 纳米颗粒的悬浮液中,用电磁搅拌器以 500 r/min的转速均匀搅拌 15 min。在搅拌过程中,向溶液中缓慢持续滴加 50 mL 的无水乙腈(其中高锰酸钾浓度为 6 mol/L),滴加时间约为3 h。③采用强磁铁从溶液中分离Fe3O4-PT纳米颗粒,用蒸馏水和乙醇反复清洗,在70℃下干燥4 h即可获取Fe3O4-PT纳米颗粒。④ 采用 XRD,FTIR 和 FESEM 对合成的 Fe3O4和 Fe3O4-PT纳米颗粒的晶体结构、表面官能团、表面形态、粒径尺寸分别进行表征。
-
1.2.3 Fe3O4-PT纳米流体制备
-
具体步骤包括:①将一定质量的 Fe3O4-PT 纳米颗粒加入蒸馏水中,并在蒸馏水中加入聚山梨酯 80 分散剂。②采用超声波均质器均匀混合Fe3O4-PT纳米颗粒,使其均匀悬浮于溶液中。③分别配制质量分数为 0.2%,0.4%,0.6%,0.8% 和 1.0% 的 Fe3O4-PT 纳米流体。
-
1.3 实验岩心
-
实验岩心取自渤海湾盆地上马家沟组上段的碳酸盐岩储层,其参数见表1。由表1 可以看出,实验岩心经过Fe3O4-PT纳米流体处理后的渗透率变化较小,即纳米流体对岩心绝对渗透率的影响较小。使用岩心切割机将1#和2#岩心样品切割成厚度约为5 mm的薄片,用甲苯和乙醇反复清洗薄片并烘干,以备接触角测定使用。
-
2 实验仪器
-
实验涉及的仪器和装置包括 X 射线衍射仪 (X'Pert PRO型,最高功率为 65 kW,2倍接触角测试范围为 0.4°~160°,测试精度为 0.001°/步),全自动比表面和孔径分布测定仪(ASAP2010 型),傅立叶变换红外成像仪(Spotlight 400/400N 型,波长为 300~8 000 cm-1 ,像素分辨率为 1.56 μ),场发射扫描电子显微镜(Nova NanoSEM 450型,放大倍数 20~100万倍),全自动接触角测量仪(OCA200型,接触角测量范围为 0°~180°,测量精度为 ± 0.1°,分辨率为 ±0.01°),超速离心机(Optima L-100XP型,最大转速为 802 400 r / min),超声波均质器(Sonics VCX / 130PB 型),天平(精度为 0.000 1 g)。此外,还有岩心夹持器(最大夹持岩心长度为 15 cm)、高压恒速驱替泵、中间容器、阀门等。
-
3 实验步骤
-
3.1 接触角测定实验
-
具体步骤包括:①将岩心(1#和 2#)薄片表面抛光,用乙醇清洗,然后放置于80℃烘箱中充分干燥。 ②采用静滴法[19] 测定水(或凝析油)在岩心薄片表面的接触角。每组实验的接触角重复测量 3 次,取平均值作为最终接触角。③纳米颗粒质量分数对岩石润湿性的影响。将岩心薄片分别浸入质量分数为 0,0.2%,0.4%,0.6%,0.8% 和 1.0% 的 Fe3O4-PT 纳米流体中浸泡 48 h,然后在 60℃温度下干燥,重复步骤②,测定水和凝析油在不同质量分数纳米流体处理后岩心薄片上的接触角。④温度对纳米流体的影响。将岩心薄片分别在 25,40,60和 80℃温度下浸入 Fe3O4-PT 纳米流体中浸泡 48 h,取出后在室温下慢慢干燥。重复步骤②,测定水和凝析油在纳米流体处理后的岩心薄片上的接触角。并采用场发射扫描电子显微镜观测纳米流体处理后的岩心薄片表面的图像。⑤压力对纳米流体的影响。将岩心薄片分别在 1,5,10和 20 MPa压力下浸入 Fe3O4-PT纳米流体中浸泡48 h,取出后在室温下干燥。重复步骤②,测定水和凝析油在纳米流体处理后岩心薄片上的接触角。⑥无机盐对纳米流体的影响。将一定质量的无机盐(包括 NaCl,KCl,CaCl2 和 MgSO4)加入 Fe3O4-PT纳米流体中,配制质量分数为 0.1%,0.3%, 0.5%,1%,3% 和 5% 的无机盐纳米流体。然后将岩心薄片分别浸入不同质量分数的无机盐纳米流体中浸泡48 h,在60℃温度下干燥,重复步骤②,测定盐水和凝析油在纳米流体处理后岩心薄片上的接触角。
-
3.2 渗吸实验
-
具体步骤包括:①将 3#或 4#岩心悬挂在支架上,浸泡在渗吸池中,池中分别装有水和凝析油。岩心除两端面外,全部用特氟龙均匀涂抹,使岩心仅从两端面垂直渗吸。在相同时间间隔下记录天平读数,计算岩心渗吸水量和渗吸油量。②取出实验岩心,清洗烘干并抽真空后,将 Fe3O4-PT 纳米流体在 80℃,5 MPa下注入3#或4#岩心,连续驱替5 PV,再用蒸馏水反复清洗、烘干。重复步骤①,测定纳米流体处理后岩心的渗吸水量和渗吸油量。
-
3.3 岩心驱替实验
-
3.3.1 单相渗流实验
-
具体步骤包括:①将5#或6#岩心装入岩心夹持器,加围压为 8 MPa,模拟上覆岩石压力。以 0.05 mL/min恒速向岩心中注入水(或凝析油),岩心出口端管线与大气压力相连通,记录驱替过程中水(或凝析油)注入体积及岩心入口压力的变化。②取出实验岩心,清洗烘干并抽真空后,将Fe3O4-PT纳米流体在80℃,5 MPa下注入5#或6#岩心,连续驱替5 PV,对岩心进行饱和和老化,再用蒸馏水反复清洗、烘干。重复步骤①,测定纳米流体处理后的岩心在单相水(或凝析油)驱替过程中心入口压力的变化。
-
3.3.2 气油两相渗流实验
-
具体步骤包括:①将7#岩心装入夹持器中,加8 MPa 围压后,对岩心抽真空。将水以 0.1 mL/min 的速度注入岩心,再将凝析油以0.05 mL/min的速度注入岩心驱替水,直至出口端不产水为止。②以1 mL/ min速度注入N2(N2为惰性气体,不会与凝析油发生反应),直至不产油为止,N2注入过程中记录岩心入口压力、产油量和产气量。计算气油两相相对渗透率并绘制相对渗透率曲线。③取出岩心,清洗烘干并抽真空后,将 Fe3O4-PT 纳米流体在 80℃,5 MPa 下注入 5#或 6#岩心,连续驱替 5 PV,再用蒸馏水反复清洗、烘干。然后重复步骤①—②,测定纳米流体处理后岩心的气油两相相对渗透率曲线。
-
4 实验结果及分析
-
4.1 纳米颗粒结构特征分析
-
4.1.1 XRD分析
-
由图1a可以看出,Fe3O4-PT纳米颗粒的XRD图谱中所有峰值与 Fe3O4纳米颗粒的衍射数据相匹配 (参考 JCPDS 00-003-0863,JCPDS 为粉末衍射标准联合委员会简称,对应的编号为卡片号),且 2 种纳米颗粒在相同范围 2 倍接触角内呈现相同的峰值,但 Fe3O4-PT 纳米颗粒的峰值强度更大,这一方面说明聚噻吩涂层不会改变Fe3O4纳米颗粒的原有结构,另一方面也证实噻吩分子确有附着在 Fe3O4纳米颗粒表面,使得衍射强度增大。
-
采用 Debye-Scherrer(德拜-谢勒)公式[20] 可以计算出纳米颗粒的平均粒径:
-
由(1)式计算出Fe3O4和Fe3O4-PT纳米颗粒的平均晶粒尺寸分别为20.5和17.2 nm。
-
4.1.2 FTIR分析
-
FTIR 可用于评价纳米颗粒表面附着的官能团类型。由图1b可以看出,Fe3O4 纳米颗粒位于563和 1 632.8 cm-1 附近的 2 个强吸附峰分别对应于 Fe-O 和 FeOO-的伸缩振动。Fe3O4-PT 纳米颗粒位于 1 622 cm-1 处的峰值归因于噻吩环的 C=C伸缩振动, 2 925.25 cm-1 处的峰值与聚噻吩的 C-H 的伸缩振动有关,1 056.37 cm-1 处的峰值与噻吩环的 C-H 芳香弯曲键的振动有关,540~665 cm-1 的宽峰除与Fe3O4 中的 Fe-O 的振动有关外,还归因于噻吩中 C-S 和 C-S-C 的弯曲振动。FTIR 分析结果也进一步证实Fe3O4纳米颗粒表面的确有噻吩分子附着。
-
4.1.3 FESEM分析
-
由图2可以看出,2种纳米颗粒均近似球形且两者大小相近,平均粒径约为 40 nm,而 Fe3O4-PT纳米颗粒平均粒径略小于 Fe3O4,与 XRD测定结果一致。但 FESEM 测得的纳米颗粒平均粒径大于 XRD 的,说明Fe3O4和Fe3O4-PT纳米颗粒具有多晶结构,表明这 2 种纳米颗粒均为强大的吸附剂,能够通过吸附束缚流体附着在岩石表面,同时由于粒径很小,不会对岩石渗透性产生明显影响,由表1 可见纳米流体处理前后渗透率变化很小(表1)。
-
4.2 Fe3O4-PT纳米流体对润湿性的影响
-
4.2.1 纳米颗粒质量分数
-
通过测定水或凝析油在Fe3O4-PT纳米流体处理后岩心表面的接触角,可以评价岩心表面润湿性的变化。由图3可以看出,有空气存在的条件下,水和凝析油在岩石表面的接触角随Fe3O4-PT纳米颗粒质量分数的增加呈先增大后缓慢降低的趋势,这是因为岩石表面 Fe3O4-PT 纳米颗粒密度增加,能够减少岩石表面与水分子或凝析油分子之间的相互作用,提高岩石表面的疏水性。但当纳米颗粒质量分数超过0.4%时,由于岩石表面粗糙度降低导致接触角逐渐减小。因此,在后续实验中选取质量分数为 0.4% 的 Fe3O4-PT 纳米颗粒作为最佳质量分数,以达到最大程度改变岩石表面润湿性的效果。
-
图1 Fe3O4和Fe3O4-PT纳米颗粒XRD和FTIR图谱对比
-
Fig.1 Comparison of XRD and FTIR images of Fe3O4 and Fe3O4-PT nanoparticles
-
图2 Fe3O4和Fe3O4-PT纳米颗粒FESEM图像对比
-
Fig.2 Comparison of SEM images of Fe3O4 and Fe3O4-PT nanoparticles
-
图3 水和凝析油与空气在纳米流体处理后的岩石表面接触角随纳米颗粒质量分数的变化
-
Fig.3 Variation of contact angles between water and air as well as condensate and air on rock surfaces with nanoparticle concentration after nanofluid treatment
-
由图4可以看出,在岩心薄片处理前,水和凝析油在岩石表面的接触角分别为74.5°和24.6°,说明有空气存在的情况下,岩石的润湿性为液体润湿(即水湿和油湿)。而当岩心薄片经过纳米流体处理后,水和凝析油在岩石表面的接触角分别增至 145.8°和 85.6°,说明有空气存在的情况下,岩石的润湿性由液体润湿反转为气体润湿或偏中性润湿。
-
图4 水和凝析油与空气在纳米流体质量分数为0.4% 处理前后岩石表面的接触角对比
-
Fig.4 Comparison of contact angles of between water and air as well as condensate and air on rock surfaces before and after 0.4 wt% nanofluid treatment
-
4.2.2 温度和压力
-
从图5a可以看出,水和凝析油在岩石表面的接触角随温度的升高而增加,其中水在岩石表面的接触角由 25℃的 140°增至 80℃的 168.7°,凝析油的接触角则由 25℃的 83.4°增至 80℃的 121.1°,说明温度升高能够进一步使处理后的岩石表面由中性润湿向强气体润湿转变,有利于提高纳米流体的作用效果。从图5b 可以看出,不同压力下,水在岩石表面的接触角为137°~140°,凝析油在岩石表面的接触角为109°~112°,表明压力对纳米流体处理后岩石的润湿性变化影响较小。
-
图5 水或凝析油在纳米流体处理后岩石表面的接触角随温度和压力的变化
-
Fig.5 Variation of contact angles of rock surfaces with temperature and pressures after treatment of water or condensate with nanofluid
-
4.2.3 无机盐类型及浓度
-
通过向Fe3O4-PT纳米流体中添加一定浓度无机盐(包括NaCl,KCl,CaCl2和MgSO4),研究无机盐影响下纳米流体作用效果。由图6 可以看出,盐水和凝析油在岩石表面的接触角随无机盐质量分数的增加整体呈减小趋势,其中,MgSO4对气-水和气-油的接触角影响最小,而 NaCl 对气-水接触角的影响最大,CaCl2对气-油的接触角影响最大。这是因为随着无机盐质量分数的增加,纳米流体的 Zeta电位降低,导致纳米流体稳定性变差。据研究显示,当纳米流体悬浮液具有高 Zeta电位(正电位或负电位)时,其稳定性较好,而当Zeta电位较低时,纳米颗粒则会快速沉积,影响效果[21-22]。因此,纳米流体中盐离子的存在会导致其稳定性降低,从而降低纳米颗粒对岩石润湿性的反转性能。
-
4.3 纳米颗粒对渗吸量的影响
-
由图7可以看出,岩心在纳米流体处理前,水和凝析油的渗吸量分别为0.708和1.21 cm3,分别占岩心总孔隙体积的24.7%和39.8%,由于未处理前岩石润湿性偏油湿,导致油渗吸效率大于水。而当岩心经过纳米流体处理后,水和凝析油的渗吸量均大幅降低,分别降至 0.218 和 0.431 cm3,降幅达 69.2% 和 64.3%。说明当岩石润湿性由液体润湿变为气体润湿后,能够显著降低水和凝析油的渗吸量。此外,从渗吸量随时间的变化曲线还可以看出,在渗吸发生初期的0.2 h内,润湿相会在毛管压力作用下首先进入小孔径孔隙,此时由于小孔径孔隙内毛管压力巨大,渗吸速率更快,渗吸量快速增加。而当渗吸时间大于 0.2 h 后,润湿相开始进入孔径相对较大的孔隙,大孔径孔隙由于毛管压力小,渗吸速率非常缓慢,导致渗吸量增幅缓慢。由此可以进一步看出,纳米流体能够进入小孔径孔隙中,并附着于孔壁表面,改变小孔隙表面的润湿性,大幅降低小孔径孔隙的渗吸量和渗吸速率。因此,Fe3O4-PT 纳米流体在改变岩石润湿性、降低油水渗吸效率以及提高凝析油采收率方面具有极大潜力。
-
图6 盐水或凝析油在纳米流体处理后岩石表面的接触角随无机盐质量分数的变化
-
Fig.6 Variation of contact angles of rock surfaces with salt concentration after treatment of brine or condensate with nanofluid
-
图7 纳米流体处理岩心前后水和凝析油渗吸量变化
-
Fig.7 Variation of water and condensate imbibition volumes before and after nanofluid treatment
-
4.4 纳米颗粒对流体渗流的影响
-
4.4.1 单相渗流特征
-
为了评估 Fe3O4-PT 纳米流体处理后的岩石对水或凝析油渗流的影响,以及对降低井筒周围凝析油反凝析的影响,开展了岩心单相渗流实验。由图8a可以看出,纳米流体处理后的岩心在注水过程中最大压差由处理前的 0.45 MPa降至 0.32 MPa,降幅达 28.9%,且水突破时间对应的注入量也由 0.98 PV 提前至0.84 PV;水突破后稳定期的岩心压差由0.43 MPa降至 0.28 MPa,降幅为 34.9%,说明纳米流体在改变岩石润湿性后,水由润湿相变为非润湿相,驱替压差大幅降低。同时,凝析油在注入过程中岩心压差的变化与注水类似,在凝析油突破后,压差急剧降低,然后缓慢增加,直至趋于稳定(稳态条件)。注凝析油过程中最大压差降幅达 46.7%,凝析油突破时间对应的注入量由 1 PV 提前至 0.86 PV,压差稳定后的降幅为 37.1%,均大于注水驱替的压差降幅(图8b)。通过对比处理前后的压差变化可以看出,Fe3O4-PT 纳米颗粒能够有效降低凝析油渗流阻力,减少井筒周围凝析油堵塞,增加流动性,从而缓解孔隙中凝析油的堵塞问题。
-
图8 纳米流体处理前后岩心注水和注凝析油过程中压差随注入量的变化
-
Fig.8 Variation of differential pressures with injection volumes during water injection and condensate injection before and after core treatment with nanofluid
-
4.4.2 油气两相渗流特征
-
由图9可以看出,相比纳米流体处理前,处理后岩心的两相相对渗透率曲线中,束缚水饱和度和剩余油饱和度均明显减小,分别由0.32和0.3降至0.24 和 0.23,降低幅度分别为 25% 和 23.3%,可以看出束缚水饱和度的降幅大于剩余油饱和度,这主要是岩石经过 Fe3O4-PT 纳米流体处理后,润湿性由液体润湿向气体润湿转变所致,而水在岩石表面接触角的变化比油更大。此外,油气两相相对渗透率均大幅增加,尤其是束缚水饱和度下的最大油相相对渗透率,其增幅远大于气相,这一方面说明岩石润湿性变化后,虽然气相由非润湿相变为润湿相,但其相对渗透率也明显增大,有利于提高产气量;另一方面岩石润湿性的变化对油相相对渗透率的影响程度大于气相,有利于提高凝析油产量。
-
在凝析气藏实际开发中,由于近井地带反凝析伤害的影响,导致近井储层绝对渗透率降低,气相和凝析油的相对渗透率也降低,进而引发油气产量双降。然而,本次研究发现,Fe3O4-PT纳米颗粒能够改变近井地带储层的润湿性,将液体润湿转变为气体润湿,降低孔隙毛管压力和凝析油流动阻力,提高凝析气和凝析油的相对渗透率,达到解堵提产增效的效果。同时,Fe3O4和Fe3O4-PT纳米颗粒均为绿色纳米材料,由于包裹纳米颗粒的外壳具有一定磁性,可以采用磁场从采出液中进行回收,并开展多次重复使用[23]。但由于合成纳米颗粒成本较高,在矿场实施前需对其经济可行性进行全面评估。
-
图9 纳米流体处理岩心前后油气两相相对渗透率曲线的变化
-
Fig.9 Variation of relative permeability curves of gas and oil phases before and after core treatment with nanofluid
-
5 结论
-
XRD,FTIR 和 FESEM 分析结果均证实噻吩分子附着于纳米颗粒表面,聚噻吩涂层不会改变Fe3O4 纳米颗粒的原有结构,但会使原有衍射峰强度增强, Fe3O4和 Fe3O4-PT 纳米颗粒的平均粒径分别为 20.5 和17.2 nm。岩石经过Fe3O4-PT纳米流体处理后,润湿性由液体润湿(水湿和油湿)变为气体润湿或中性润湿,水和凝析油在岩石表面的接触角随纳米颗粒质量分数的增加先增大后降低,随温度的升高而增加,但受压力影响很小,随无机盐质量分数的增加而减小。最佳纳米颗粒质量分数为0.4%,MgSO4对气-水和气-油的接触角影响最小。纳米流体能够进入岩心小孔径孔隙中,改变小孔隙表面的润湿性,大幅降低小孔径孔隙的渗吸量和渗吸速率。经过纳米流体处理后,水和凝析油渗吸量的降幅分别达 69.2% 和 64.3%。纳米流体处理后的岩心在单相(水或油) 渗流中,最大压差降幅分别为 28.9% 和 46.7%,水油突破时间提前,渗流阻力下降。在气油两相渗流中,气油两相共渗区变宽,等渗点向左上方偏移,束缚水饱和度和剩余油饱和度减小,两相相对渗透率大幅增加,有利于提高凝析气和凝析油产量。
-
符号解释
-
D——晶粒垂直于晶面方向的平均厚度,nm;
-
Krg——气相相对渗透率,无因次;
-
Kro——油相相对渗透率,无因次;
-
β——衍射峰半高宽度,需转换为弧度,rad;
-
θ——布拉格衍射角,(°);
-
λ——X射线波长,nm,取值为0.154 056。
-
参考文献
-
[1] 杜建芬,肖翠,汪周华,等.BK 气藏反凝析污染评价及解除方法实验[J].天然气工业,2015,35(4):52-56.DU Jianfen,XIAO Cui,WANG Zhouhua,et al.Laboratory study on the evaluation and removal of retrograde condensate damage in the Baka Gas Reservoir,Tuha Basin [J].Natural Gas Industry,2015,35(4):52-56.
-
[2] 张杜杰,金军斌,康毅力.工作液顺序接触诱发超致密砂岩气藏液相圈闭损害评价[J].油气地质与采收率,2020,27(6):114-121.ZHANG Dujie,JIN Junbin,KANG Yili.Evaluation of compre‐ hensive liquid trapping damage of ultra-tight sandstone gas reser‐ voir induced by sequential contact of working fluids[J].Petro‐ leum Geology and Recovery Efficiency,2020,27(6):114-121.
-
[3] 王奥,李菊花,郑斌.多孔介质中凝析气相态特征[J].大庆石油地质与开发,2021,40(1):61-67.WANG Ao,LI Juhua,ZHENG Bin.Study on the phase behaviors of the condensate gas in porous media[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(1):61-67.
-
[4] 高振南,耿志刚,张风义,等.基于流固耦合的变质岩潜山裂缝型凝析气藏数值模拟研究[J].特种油气藏,2020,27(1):121-128.GAO Zhennan,GENG Zhigang,ZHANG Fengyi,et al.Numeri‐ cal simulation of metamorphis buried-hill fractured condensate gas reservoir based on fluid-sloid coupling[J].Special Oil & Gas Reservoirs,2020,27(1):121-128.
-
[5] 冯强汉,邓宝康,杨映洲,等.致密砂岩凝析气藏反凝析伤害评价及解除方法[J].大庆石油地质与开发,2020,39(2):139-146.FENG Qianghan,DENG Baokang,YANG Yingzhou,et al.Eval‐ uations and removing methods of the retrograde condensate dam‐ age for the gas condensate reservoirs in the tight sandstone[J].Pe‐ troleum Geology & Oilfield Development in Daqing,2020,39(2):139-146.
-
[6] 丁志文,陈方方,谢恩,等.塔中M区奥陶系碳酸盐岩凝析气藏综合分类及开发技术对策[J].油气地质与采收率,2017,24(5):84-92.DING Zhiwen,CHEN Fangfang,XIE En,et al.Comprehensive classification and development strategies of Ordovician carbon‐ ate condensate gas reservoirs in Tazhong M area [J].Petroleum Geology and Recovery Efficiency,2017,24(5):84-92.
-
[7] 房忱琛,翟佳,胡国艺,等.凝析油中金刚烷类和硫代金刚烷类化合物同步检测方法及地质意义——以塔里木盆地塔中地区凝析油为例[J].石油实验地质,2021,43(5):906-914.FANG Chenchen,ZHAI Jia,HU Guoyi,et al.A simultaneous determination method for diamondoids and thiadiamondoids in condensate oil and its geological significance:taking condensate oil from central Tarim Basin as an example[J].Petroleum Geolo‐ gy & Experiment,2021,43(5):906-914.
-
[8] 冯强汉,邓宝康,杨映洲,等.鄂尔多斯盆地致密砂岩凝析气藏合理高效注气开发方式[J].大庆石油地质与开发,2020,39(6):52-59.FENG Qianghan,DENG Baokang,YANG Yingzhou,et al.Rea‐ sonable and high-efficiency gas injection mode for the tight sand‐ stone condensate-gas reservoirs in Ordos Basin[J].Petroleum Ge‐ ology & Oilfield Development in Daqing,2020,39(6):52-59.
-
[9] 李建伟,黄成.高温低压凝析气藏弹性凝胶储层保护液[J].断块油气田,2020,27(4):533-535.LI Jianwei,HUANG Cheng.Elastic gel reservoir protection fluid for high temperature and low pressure condensate gas reservoir [J].Fault-Block Oil and Gas Field,2020,27(4):533-535.
-
[10] 王恩成.纳米颗粒增强 AM/AMPS 复合凝胶反向堵水技术[J].特种油气藏,2021,28(2):108-111.WANG Encheng.Study on reverse water plugging technology of nanoparticle reinforced AM/AMPS composite hydrogel[J].Spe‐ cial Oil & Gas Reservoirs,2021,28(2):108-111.
-
[11] KAZEMZADEH Y,MALAYERI M R,RIAZI M,et al.Impact of Fe3O4 nanoparticles on asphaltene precipitation during CO2 in‐ jection [J].Journal of Natural Gas Science and Engineering,2015,22:227-234.
-
[12] KAZEMZDEH Y,SHARIFI M,RIAZI M,et al.Potential effects of metal oxide/SiO2 nanocomposites in EOR processes at differ‐ ent pressures [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,559:372-384.
-
[13] ALEMI F M,MOUSAVI DEHGHANI S A,RASHIDI A,et al.Potential application of Fe2O3 and functionalized SiO2 nanoparti‐ cles for inhibiting asphaltene precipitation in live oil at reservoir conditions[J].Energy & Fuels,2021,35(7):5 908-5 924.
-
[14] MOUSAVI M A,HASSANAJILI S,RAHIMPOUR M R.Syn‐ thesis of fluorinated nano-silica and its application in wettability alteration near-wellbore region in gas condensate reservoirs[J].Applied Surface Science,2013,273:205-214.
-
[15] JIN Jiafeng,WANG Yanling,WANG Kun,et al.The effect of fluorosurfactant-modified nano-silica on the gas-wetting altera‐ tion of sandstone in a CH4-liquid-core system[J].Fuel,2016,178:163-171.
-
[16] FRANCO-AGUIRRE M,ZABALA R D,LOPERA S H,et al.Interaction of anionic surfactant-nanoparticles for gas-wettability alteration of sandstone in tight gas-condensate reservoirs[J].Jour‐ nal of Natural Gas Science and Engineering,2018,51:53-64.
-
[17] AHMADI M,SHARMA M M,POPE G A,et al.Chemical treatment to mitigate condensate and water blocking in gas wells in carbonate reservoirs[J].SPE Production & Operations,2011,26(1):67-74.
-
[18] SAFAEI A,ESMAEILZADEH F,SARADRIAN A,et al.Ex‐ perimental investigation of wettability alteration of carbonate gascondensate reservoirs from oil-wetting to gas-wetting using Fe3O4 nanoparticles coated with Poly(vinyl alcohol),(PVA)or Hydroxyapatite(HAp)[J].Journal of Petroleum Science and En‐ gineering,2020,184:106530.
-
[19] 李奋,刘丽,马炳杰,等.油藏岩石润湿性测定方法:SY/T 5153— 2017 [S].北京:石油工业出版社,2017.LI Fen,LIU Li,MA Bingjie,et al.Test method of reservoir rock wettability:SY/T 5153-2017 [S].Beijing:Petroleum Indus‐ try Press,2017.
-
[20] 叶航,刘琦,彭勃,等.纳米颗粒抑制 CO2驱过程中沥青质沉积的研究进展[J].油气地质与采收率,2020,27(5):86-96.YE Hang,LIU Qi,PENG Bo,et al.Inhibition of nanoparticles on asphaltene deposition during CO2 flooding:a review[J].Petro‐ leum Geology and Recovery Efficiency,2020,27(5):86-96.
-
[21] NAGHIZADEH A,AZIN R,OSFOURI S,et al.Wettability al‐ teration of calcite and dolomite carbonates using silica nanoparti‐ cles coated with fluorine groups[J].Journal of Petroleum Science and Engineering,2020,188:106915.
-
[22] 曲海莹,刘琦,彭勃,等.纳米颗粒对 CO2泡沫体系稳定性的影响[J].油气地质与采收率,2019,26(5):120-126.QU Haiying,LIU Qi,PENG Bo,et al.Effect of nanoparticle on stability of CO2 foam flooding system[J].Petroleum Geology and Recovery Efficiency,2019,26(5):120-126.
-
[23] SETODEH N,DARVISHI P,ESMAEILZADEH F.Adsorption of asphaltene from crude oil by applying polythiophene coating on Fe3O4 nanoparticles[J].Journal of Dispersion Science and Technology,2018,39(4):578-588.
-
摘要
改变凝析气井近井储层润湿性是减少凝析油堵塞的有效方法。在人工合成聚噻吩包裹的Fe3O4纳米颗粒(Fe3O4-PT)基础上,采用共沉淀方法对Fe3O4-PT纳米颗粒的晶体结构、表面官能团、表面形态和粒径尺寸进行表征。通过开展静态润湿接触角测定实验、静态渗吸实验、单相渗流和两相渗流实验,研究纳米颗粒处理前后岩石的润湿性变化、水油渗吸和单相渗流变化以及气油两相相对渗透率曲线的变化特征,综合评价Fe3O4-PT纳米颗粒改善反凝析堵塞的可行性。实验结果表明,聚噻吩涂层不但不会改变Fe3O4纳米颗粒的原有结构,还会增强原有衍射峰强度,Fe3O4-PT纳米颗粒平均粒径为17.2 nm。经过纳米流体处理后的岩石,润湿性由液体润湿变为气体润湿或中性润湿,水和凝析油在岩石表面的接触角随纳米颗粒质量分数的增加先增加后降低,随温度的升高而增加,但受压力影响很小,随盐水浓度的增加而减小。水和凝析油渗吸量的降幅分别达69.2% 和64.3%。单相水驱或油驱过程中最大压差降幅分别为28.9%和46.7%,两相渗流中,气油两相共渗区变宽,等渗点向左上方偏移,束缚水饱和度和剩余油饱和度减小,两相相对渗透率大幅增加。Fe3O4-PT纳米颗粒能够降低水油渗吸效率、减小水油渗流阻力,增加凝析油流动性,提高气/油产量,有效改善反凝析伤害。
Abstract
Changing the wettability of reservoirs near condensate gas wells is an effective method to reduce condensate plugging. The crystal structures,surface functional groups,surface morphology,and particle sizes of Fe3O4-PT nanoparticles are character‐ ized by the coprecipitation method based on the synthetic polythiophene encapsulated Fe3O4 nanoparticles(Fe3O4-PT). Through ex‐ periments of static wetting contact angle measurement,static imbibition,single-phase flow,and two-phase flow,this paper studies the changes in rock wettability,water oil imbibition,single-phase flow before and after nanoparticle treatment,and the change char‐ acteristics of gas-oil two-phase relative permeability curves. Additionally,the feasibility of Fe3O4-PT nanoparticles to improve re‐ verse condensate plugging is comprehensively evaluated. The experimental results show that the polythiophene coating will not change the original structure of Fe3O4 nanoparticles but enhance the original diffraction peak intensity. The average particle size of Fe3O4-PT nanoparticles is 17.2 nm. After nanofluid treatment,the wettability of rock changes from liquid wetting to gas wetting or neutral wetting. The contact angle between water and condensate on the rock surface first increases and then decreases with the in‐ creasing nanoparticle concentration,and increases with the rising temperature. However,it is little affected by pressure and decreas‐ es with the increase in salt concentration. The water and condensate imbibition volumes decrease 69.2% and 64.3% respectively. The maximum pressure drops in single-phase water drive or oil drive are reduced by 28.9% and 46.7% respectively. In two-phase flow, the gas-oil two-phase co-permeability areas widen and the isotonic points shift to the upper left. The irreducible water saturation and remaining oil saturation decrease,and the two-phase relative permeability increases significantly. Fe3O4-PT nanoparticles can reduce the imbibition efficiency and flow resistance of water and oil,increase condensate fluidity,and improve gas and oil production, thus effectively improving reverse condensate damage.
Keywords
nanoparticles ; thiophene ; reverse condensation ; contact angle ; oil-gas relative permeability