-
油藏进入高含水或特高含水期后,储层动用性差,层间矛盾显著,高渗透层注入水窜流严重[1-6]。针对这一开发问题,许多学者提出了一种利用水气分散可调阻力驱替体系开发水驱油田的新理念[7-10],水气分散可调阻力驱替体系可分为 3 类:①针对低渗透油藏的水气分散体系。②适用于中高渗透油藏的泡沫驱体系。③适用于高含水油藏的耐温、耐盐乳状液驱替体系。水气分散驱油体系通过气泡变形以及渗流阻力增加等方式有效改变渗流通道[11],提高剩余油的动用效果。
-
众多学者通过实验对水气分散体系提高原油采收率机理开展了研究工作。俞宏伟等通过岩心驱替实验观察水气分散体系的驱替特征,评价其驱油效率,并研究水气分散体系提高原油采收率的能力[8]。端祥刚研发渗流阻力可调的系列分散体系,证明可调阻力驱油体系的剖面调整性能,能够同时提高中低渗透层和高渗透层采收率,实现剖面均匀推进[12]。可调阻力水气分散体系及其设计方法的建立,为进一步提高水(气)驱波及效率,从而提高原油采收率提供了新的技术思路和理论基础。LIU等通过孔板喷射法制备水气分散体系,并分析不同因素对气泡数量和大小的影响[13]。陈兴隆等建立以气泡直径、气泡上升速度等为关键参数的水气分散体系性能评价方法,从理论上评价了超声波振荡生成方法生成的微米级气泡的特点[11]。根据长度低渗透岩心驱油实验,证明水气分散体系可通过气泡形变及调节渗流阻力等方式有效扩大波及体积,提高剩余油动用效果。
-
然而,对于水气分散体系的实验操作难度很大,且难以直接观察孔隙尺度下两相流运移过程,而基于数值模拟方法可以更好地分析该体系在多孔介质中的运移机理。在孔隙尺度下,水气分散体系是涉及气液界面运动的两相流,其气液界面张力对流动的影响无法忽略,对水气分散体系流动过程模拟难点在于对界面运动的描述。在孔隙尺度上研究气液界面运动的方法有流体体积(Volume of Fluid,简称 VOF)方法[13]、水平集(Level Set)方法[14-17] 以及相场方法(Phase-Field method)[18-19]。VOF 方法最早是由 HIRT 等在 1981 年提出的,基本思想是通过在全流场定义每个欧拉网格单元内某种流体的体积比函数 F来确定界面的位置[20]。部分学者通过VOF方法研究气泡在孔隙和喉道中的运移过程[21-23]。PAN 等利用 VOF方法研究了微通道中气泡传输的动力学[24]。 KANG 等利用 VOF 方法对微蛇形通道中的气泡生成和流动进行建模,通过与大量实验结果比较,讨论和验证了由气液流动、表面张力和黏度影响引起的气泡产生过程[25]。FENG等通过VOF方法研究了低雷诺数下 2 个串联气泡之间的聚并过程,观察气液两相的速度和液膜变化,聚并过程聚结可分为排液(薄膜变薄)和合并(破膜)[26]。相场方法以金兹堡-朗道理论为基础,利用一个有一定厚度的两相间的界面代替实际模型中的尖锐界面,由于流体间扩散效应的存在,相界面的变化为对流与扩散的共同作用[27]。MUKHERJEE 等使用 SIMPLER 方法求解完整的 Navier-Stokes 方程以及连续性和能量方程,利用水平集方法捕获气液界面,并进行实验以验证数值模型,且数值与实验结果之间显示出很好的一致性[28]。梁猛等通过相场方法,研究微观尺度下液滴变形和运动规律,分析表面张力和液滴大小对液滴变形的影响,结果表明当表面张力变小,较大半径的液滴更容易发生较大的形变[29]。水平集方法考虑了两相的接触,已成功应用于模拟液体中的气体流动。朱前林等基于Navier-Stokes方程与守恒的水平集方法,对孔隙介质中气泡尺寸对流动阻力的影响进行了耦合,证明气泡尺寸是影响流体阻力的重要因素[30]。杨银采用水平集方法对带表面张力的二维两相流问题进行数值求解,采用包含界面的小支集的光滑函数近似 δ函数以及二阶精度的投影算法求解 Navier-Stokes方程组,通过数值模拟,证明该方法可以很好地反映界面拓扑变化[31]。
-
根据超声波振荡原理,结合孔板微孔的剪切作用,陈兴隆等在实验室已经生成了微米级水气分散体系,将气态CO2在超声波作用下分散于水中,由高速摄像机及体视显微镜获取图像并测量微米气泡半径的平均值约为 2.5 μm,远小于常规孔板喷射法生成的气泡半径(50 μm),气泡的均匀度、分散性及稳定性均大幅提高[11]。根据长度为100 cm、直径为3.8 cm的低渗透岩心的驱油实验,微米级水气分散体系在水驱结束后可继续提高采出程度超过 10%,证明水气分散体系可通过气泡形变及调节渗流阻力等方式有效扩大波及体积,提高剩余油动用效果。由于水气分散体系中分散相气泡对孔隙的封堵具有累加效应,简化孔喉下的单个分散相气泡运移特征的研究将有助于加深对水气分散体系流动的认识。
-
笔者以分散相为CO2的水气分散体系作为研究对象,其中微米气泡的半径为 2.5 μm,基于 COM‐ SOL Multiphysics 开展简化孔喉中的水气分散体系运移过程数值模拟,研究多孔介质中水气分散体系运移机制,以期可以为解决狭窄空间、多孔介质等复杂结构中水气分散体系的微观渗流规律研究提供一定的参考。
-
1 计算模型
-
1.1 水平集方法
-
OSHER 等在 1988 年提出水平集方法,其广泛应用于多孔介质流体力学[14]。水平集方法将平面闭合曲线表示为点集,利用水平集函数曲面的转化来求解运动程[32]。这种转化虽然在一定程度上使问题复杂化,但在问题的求解上具有非常大的优势,可以使曲线的拓扑变化处理十分自然[33]。为了描述两相流气液界面的位置和形态变化,将气液界面转化为更高维的Level Set函数[34],在模拟过程中,可以实时观察界面的变化过程。该方法是一种零等值面函数法,能有效地处理拓扑结构改变,从而在处理大多数相对复杂的多介质问题中得到很好的效果[35]。
-
1.2 流动控制方程
-
水平集函数 ϕ 为光滑连续函数,在界面上其值为 0.5。在界面附近的过渡层,函数 ϕ 由 0 平滑地变为1。在充满水的区域ϕ <0.5,在CO2中ϕ >0.5。
-
水平集函数一般与流场相结合,描述水平集函数的对流:
-
但在模拟移动边界时,流体参数在界面处发生变化后会出现不连续性,通过定义固定的界面厚度可以解决。在这一固定界面上,参数可以平滑地变化。在 COMSOL Multiphysics 的 CFD 模块中,求解以下水平集方程:
-
(2)式包含稳定项和重新初始化项,其左侧定义了界面运动,右侧描述了数值稳定和重新初始化。其中 ε 为界面厚度控制参数,较理想的取值是网格大小控制参数的二分之一,即:
-
由于密度和黏度在界面上的突变会对仿真产生不利影响,为了解决该问题,对水平集函数进行平滑处理[36],消除水与连续相、分散相的密度差、黏度差,其密度与黏度的定义为:
-
水气分散体系为不可压缩流体,流体动量方程用气液两相流不可压缩 Navier-Stokes 方程表示,在计算过程中需考虑表面张力。Navier-Stokes 方程为:
-
在水平集界面上,表面张力表示为:
-
其中:
-
2 水气分散体系运移过程仿真建模
-
根据超声波振荡原理,结合孔板微孔的剪切作用,可在实验室生成分散相为 CO2的微米级水气分散体系,其中微米气泡的平均半径为 2.5 μm(图1)[11]。当微米气泡的半径小于6 μm时,气泡半径与分散性几乎呈线性关系。笔者针对实验室已生成的微米气泡半径为 2.5 μm 的水气分散体系进行建模研究。
-
图1 微米气泡生成效果
-
Fig.1 Effect of micron bubble generation
-
2.1 贾敏效应几何模型建立
-
将 Navier-Stokes 方程与水平集函数耦合,在 COMSOL Multiphysics 中求解,在狭窄孔喉内模拟水气分散体系两相流的流动。孔喉左侧为半径为 R1 = 2.8 μm 的孔隙,长度为 15 μm;右侧为半径为 R2 = 1.4 μm的喉道,长度为15 μm,半径比为2∶1,水气分散体系的分散相气泡半径为 R = 2.5 μm。如图2所示,采用二维平面模型。
-
图2 水气分散体系贾敏效应模型
-
Fig.2 Jamin effect model of water-gas dispersion system
-
2.2 边界条件设置
-
由于简化的渗流孔喉中流体雷诺数(Re)很小,即 Re ≪ 1,因此流体流态为层流。针对水气分散体系在简化孔喉中运移的仿真模型,设置边界条件如下:①入口边界条件。水气分散体系以一定流速从左侧入口流入,通过狭窄孔喉,使用水平集函数为 1 的水平集变量的入口边界条件。②出口边界条件。水气分散体系流体从固定出口流出时的压力恒定,出口压力为0 MPa(此处为相对压力,参考压力为10 MPa)。③润湿壁边界条件。将简化的孔喉壁面加入润湿性属性[37],壁面润湿程度设置接触角为 θ,润湿壁的滑移长度设置为1 μm。如图3所示为贾敏效应模型边界条件。
-
图3 水气分散体系贾敏效应模型边界条件
-
Fig.3 Boundary conditions for Jamin effect model of water-gas dispersion system
-
2.3 初始条件设置
-
模拟过程中水气分散体系的分散相与连续相的物理参数,在地层条件下(50 °C,10 MPa),通过实验测量得到数据(图4)[38]。其中,连续相(水)的密度为 1 000 kg/m3,黏度为 0.562 4×10-3 Pa·s,矿化度为 20 000 mg/L,接触角为 90°,滑移长度为 1 μm;分散相(CO2)的密度为 377 kg/m3,黏度为 2.779 08×10-5 Pa·s,表面张力为 34.9 mN/m,接触角为 90°,滑移长度为1 μm。
-
图4 界面接触角θ的定义
-
Fig.4 Definition of contact angle θ at interface
-
2.4 网格单元划分
-
由于分散相气泡在通过孔喉时,气液界面形态发生变化。为精确描述分散相与连续相之间的界面,在仿真过程中使用自适应网格划分。自适应网格细化有许多优势,在不对网格进行全局加密的前提下可以提高计算精度,同时降低求解自由度。
-
在计算过程中,COMSOL Multiphysics 计算占用内存大,对网格尺寸有一定要求。应合理安排网格尺寸,使划分后的网格具有 1 000~100 000单元、 15 000~48 000 个自由度,且二维模型网格质量应大于 0.3。水气分散体系贾敏效应模型网格划分如图5 所示,采用自由三角形网格进行剖分,包含 9 846 个三角形网格单元和 5 125 个网格顶点,其中最小单元质量为0.533 7,平均单元质量为0.934 6。
-
图5 水气分散体系贾敏效应模型网格划分
-
Fig.5 Meshing of Jamin effect model of water-gas dispersion system
-
3 模拟结果及讨论
-
水气分散体系在多孔介质中的运移机理包括贾敏效应、聚并机理、卡断机理等,其中驱替体系在贾敏效应的作用下可提高渗流阻力,抑制驱替流体的窜流,扩大流体在油层中的波及体积。
-
3.1 贾敏效应
-
如图6所示,分散相 CO2气泡在孔喉中运移时,其直径大于喉道直径,使得分散相气泡在运移过程中存在一定阻力并发生形变。为了克服阻力通过喉道,当分散相气泡运移至 0.02 s时开始拉伸变形,随着气泡逐渐运移,在 0.07 s 时气泡变形程度达到最大,在 0.30 s时气液界面方向发生变化,直至完全通过简化孔喉。因此,如果依靠单个水气分散体系 CO2分散相气泡的贾敏效应,在地层中不具有较强的封堵能力,但当 CO2分散相气泡由较大直径通过喉道且流速较大时,分散相气泡将卡堵在孔喉处,此时流动阻力增大,可以达到封堵效果。
-
为研究水气分散体系分散相气泡通过狭窄孔喉时的压力变化,以图7中点 1作为压力分析研究点。当分散相气泡通过狭窄孔喉时,由于之间存在一定半径差,分散相气泡在运移过程中必须改变自身形状以通过狭窄喉道。从图8 可以看出,孔喉所受压力为动态变化过程,当分散相气泡变形程度最大时,孔喉受到压力最大。当分散相气泡大部分通过孔喉,此时压力快速降低,气液界面方向发生跳跃变化,压力出现负值。由于孔喉处压力与水气分散体系本身特征具有相关性,因此着重分析表面张力与孔喉所受压力的关系。
-
图9表示当气液界面张力不同时,研究点1处的孔喉压力随时间的变化曲线。在整体情况下,当气液界面张力增大时,压力也会随之增大;在分散相气泡运移过程中,随着表面张力的增大,分散相气泡越不易发生拉伸变形;随着分散相气泡所受压力增大,孔喉处所受压力也随之增大。将气泡在运移过程中变形的最大点作为研究点,通过曲线反映出表面张力与最大孔喉压力之间的关系(图10),表面张力与最大孔喉压力呈正比关系:
-
图6 水气分散体系分散相气泡运移过程
-
Fig.6 Transport process of dispersed-phase bubbles in water-gas dispersion system
-
图7 孔喉处压力分析研究点
-
Fig.7 Pressure analysis point at pore throat
-
图8 孔喉处压力随时间变化曲线
-
Fig.8 Variation curve of pressure at pore throat with time
-
当水气分散体系界面张力减小时,孔喉压力减小,渗流阻力减小,水气分散体系更易通过多孔介质,但不利于水气分散体系封堵孔隙,改变渗流通道,提高剩余油的动用效果。
-
图9 不同表面张力下孔喉压力随时间的变化曲线
-
Fig.9 Variation curve of pore throat pressure with time under different surface tension
-
图10 表面张力与最大孔喉压力关系曲线
-
Fig.10 Relationship between pressure at maximum pore throat and surface tension
-
3.2 聚并机理
-
水气分散体系在多孔介质运移过程中,当分散相气泡之间的间距小于一定距离时,两者之间会发生聚并现象。如图11所示,针对该现象建立二维轴对称聚并模型并进行模拟。
-
简化渗流通道半径为 3.8 μm,孔喉长度为30 μm,水为连续相,CO2为分散相,2 个分散相气泡初始半径均为 2.5 μm,气液界面张力为 34.9 mN/m,入口流速为50 mm/s,出口端压力为0 Pa。通过自由三角形网格对聚并模型进行网格剖分(图12)。
-
图11 二维轴对称聚并模型
-
Fig.11 Two-dimensional axisymmetric coalescence model
-
图12 水气分散体系分散相气泡聚并模型网格划分
-
Fig.12 Meshing of coalescence model of dispersed-phase bubbles in water-gas dispersion system
-
由分散相气泡聚并过程模拟结果(图13)可以看出,2 个分散相气泡在 0.001 s 时逐渐接近并发生接触,其间会形成一薄液膜,相撞的分散相气泡逐渐靠近,使两者间的连续相逐渐向外排出,当连续相液体被排出到临界点时,分散相气泡聚集在一起,界面开始融合,分散相气泡界面逐渐向最小表面能趋势进化。图14为分散相气泡接触后的流场分布,流线沿计算区域的两极朝赤道方向分布,同时 2 个分散相气泡中间的液体由中线流向外缘,实现排液过程,达到聚并。而在实际地层温度与压力条件下,水气分散体系可压缩,其运移速度远小于数值模拟过程,且水气分散体系所处的温度条件是不断变化的,其黏度与表面张力也在不断变化。
-
3.3 卡断机理
-
水气分散体系在简化渗流通道中流动,通过狭窄孔喉时易发生卡断现象。建立简化孔喉下的二维卡断模型(图15),并对水气分散体系卡断机理进行分析。
-
模拟渗流通道宽度为 5.6 μm,长度为 30 μm,分散相气泡初始半径均为 2.5 μm,其中水为连续相, CO2为分散相,气液界面张力为 34.9 mN/m,入口流速为 20 mm/s,出口端压力为0 Pa。如图16所示,采用自由三角网格对水气分散体系卡断模型进行网格划分。
-
如图17所示,由于模拟的渗流通道尺寸存在较大差异,水气分散体系的分散相在通过狭窄喉道前,所受压力逐渐增大,分散相气泡被压缩。当分散相气泡运移至接近 0.03 s时,喉道阻力达到一定程度,此时分散相气泡前端通过狭窄喉道,并且产生局部卡断,形成小气泡。由于此时小气泡距离较近,达到了聚并临界距离,从而产生聚并。随后通过的小气泡在喉道右侧与分散相气泡发生聚并形成大气泡,随着液体流出。
-
4 结论
-
基于水平集方法与气液两相流模型,通过多物理场耦合方法,对水气分散体系在多孔介质简化模型中的贾敏效应、聚并机理、卡断机理进行一系列数值模拟,得出以下结论:①针对超声波振荡法产生的分散相为 CO2的微米级水气分散体系建立二维模型,对不同孔喉形状下的水气分散体系运移过程进行模拟,分析水气分散体系在孔喉运移过程中的贾敏效应,探讨水气分散体系运移过程中孔喉压力的影响因素。研究发现在孔喉中,分散相气泡的变形程度愈大,孔喉中的压力愈大,渗流阻力越大。②建立水气分散体系在孔喉中的聚并、卡断模型,研究分散相气泡聚并、卡断现象的动态特征,结果表明,距离较近的水气分散体系的分散相气泡在运移过程中会逐渐聚集在一起,界面发生融合,分散相气泡界面逐渐向最小表面能趋势进化,其流场表现为流线沿计算区域的两极朝赤道方向分布,分散相气泡中间的液体由中线流向外缘,实现排液过程,达到聚并; 分散相气泡在通过狭窄孔喉时会发生卡断现象产生小气泡,当到达聚并临界距离时,会再次产生聚并随着液体流出。
-
图13 水气分散体系分散相气泡聚并过程模拟结果
-
Fig.13 Simulation results of coalescence process of dispersed-phase bubbles in water-gas dispersion system
-
图14 水气分散体系分散相聚并过程及对应的流场分布
-
Fig.14 Dispersed-phase coalescence process and correspond‐ ing flow field distribution of water-gas dispersion system
-
图15 二维卡断模型
-
Fig.15 Two-dimensional division model
-
图16 水气分散体系卡断模型网格划分
-
Fig.16 Meshing of division model of water-gas dispersion system
-
图17 水气分散体系卡断过程模拟结果
-
Fig.17 Simulation results of division process of water-gas dispersion system
-
通过数值模拟可以直接观察分散相气泡在孔喉运移过程中的变化,明确水平集方法在计算过程中的优势。建立的数值模拟方法在研究微细气泡运移方面具有一定的应用前景,可以为水气分散体系通过气泡形变及调节渗流阻力、有效扩大波及体积、提高剩余油动用效果的数值模拟研究提供一种新的思路与方法。
-
符号解释
-
F——在全流场定义每个欧拉网格单元内某种流体的体积比函数;
-
Fst ——气液界面张力,N/m;
-
hmax——网格大小控制参数,m;
-
I——单位矩阵;
-
k——曲率,m-1;
-
n——指向分散相的界面单位法线界向量;
-
p——最大孔喉压力,Pa;
-
Re——渗流孔喉中的流体雷诺数;
-
t——时间,s;
-
u——流体速度向量,m/s;
-
u——流体速度,m/s;
-
γ——界面初始化参数(等于入口速度),m/s;
-
δ——流体界面处非零的狄拉克函数;
-
ε——界面厚度控制参数,m;
-
θ——界面接触角,(°);
-
κ——比例系数;
-
μ——动力黏度,Pa·s;
-
μg——CO2的黏度,Pa·s;
-
μl ——水的黏度,Pa·s;
-
ρ——密度,kg/m3;
-
ρg——CO2的密度,kg/m3;
-
ρl ——水的密度,kg/m3;
-
σ——表面张力系数;
-
ϕ——水平集函数;
-
ϕt ——水平集函数对t的时间偏导数;
-
∇——拉普拉斯算子。
-
参考文献
-
[1] 熊春明,唐孝芬.国内外堵水调剖技术最新进展及发展趋势[J].石油勘探与开发,2007,34(1):83-88.XIONG Chunming,TANG Xiaofen.Technologies of water shutoff and profile control:An overview [J].Petroleum Exploration and Development,2007,34(1):83-88.
-
[2] 冯其红,王波,王相,等.高含水油藏细分注水层段组合优选方法研究[J].西南石油大学学报:自然科学版,2016,38(2):103-108.FENG Qihong,WANG Bo,WANG Xiang,et al.Study on layer combination optimization method of subdivision water injec‐ tion in high water-cut reservoirs [J].Journal of Southwest Petro‐ leum University:Science and Technology Edition,2016,38(2):103-108.
-
[3] 胡文瑞,魏漪,鲍敬伟.中国低渗透油气藏开发理论与技术进展[J].石油勘探与开发,2018,45(4):646-656.HU Wenrui,WEI Yi,BAO Jingwei.Development of the theory and technology for low permeability reservoirs in China [J].Pe‐ troleum Exploration and Development,2018,45(4):646-656.
-
[4] 张世明,杨勇.特高含水水驱油藏流场边界动态追踪模型研究 [J].油气地质与采收率,2021,28(2):91-99.ZHANG Shiming,YANG Yong.Study on the dynamic tracking model of flow field boundaries in water drive reservoirs at ultrahigh water cut stage [J].Petroleum Geology and Recovery Effi‐ ciency,2021,28(2):91-99.
-
[5] 夏惠芬,王立辉,韩培慧,等.薄膜状剩余油动用条件研究[J].特种油气藏,2021,28(3):106-111.XIA Huifen,WANG Lihui,HAN Peihui,et al.Research on production conditions of film remaining oil [J].Special Oil & Gas Reservoirs,2021,28(3):106-111.
-
[6] 张庆龙.多层非均质层间窜流定量表征及开发对策[J].特种油气藏,2021,28(1):136-141.ZHANG Qinglong.Quantitative characterization and develop‐ ment countermeasures of multi-layer heterogeneous interlayer channeling flow [J].Special Oil & Gas Reservoirs,2021,28(1):136-141.
-
[7] 俞宏伟,李实,陈兴隆,等.微分散驱油体系流动性能实验评价 [J].科学技术与工程,2013,13(22):6 426-6 429.YU Hongwei,LI Shi,CHEN Xinglong,et al.The evaluation of flow properties for differential oil flooding system [J].Science Technology and Engineering,2013,13(22):6 426-6 429.
-
[8] 俞宏伟,马德胜,李实,等.水气分散体系提高采收率实验研究 [J].科学技术与工程,2013,13(33):9 946-9 949.YU Hongwei,MA Desheng,LI Shi,et al.Experimental study on enhanced oil recovery by water-gas dispersion flooding sys‐ tem [J].Science Technology and Engineering,2013,13(33):9 946-9 949.
-
[9] 王琼,王金光.自生泡沫复合驱油体系性能研究[J].内蒙古石油化工,2017,43(9):115-117.WANG Qiong,WANG Jinguang.Research on the performance of authigenic foam composite flooding system [J].Inner Mongo‐ lia Petrochemical,2017,43(9):115-117.
-
[10] 孙哲,吴行才,康晓东,等.连续相与分散相驱油体系驱油机理及其性能对比[J].石油勘探与开发,2019,46(1):116-124.SUN Zhe,WU Xingcai,KANG Xiaodong,et al.Comparison of oil displacement mechanisms and performances between con‐ tinuous and dispersed phase flooding agents [J].Petroleum Ex‐ ploration and Development,2019,46(1):116-124.
-
[11] 陈兴隆,伍家忠,韩海水,等.水气分散体系的超声波振荡生成方法及驱油实验研究[J].天然气与石油,2021,39(4):48-52.CHEN Xinglong,WU Jiazhong,HAN Haishui,et al.Forma‐ tion of gas bubble-water dispersion system using ultrasonic vi‐ bration method and research on its impact on ultimate oil recov‐ ery [J].Natural Gas and Oil,2021,39(4):48-52.
-
[12] 端祥刚.可调阻力水气分散体系提高采收率方法与理论研究 [D].北京:中国石油大学(北京),2015.DUAN Xianggang.The method and theoretical research on EOR of water-gas dispersion system with adjustable resistance [D].Beijing:China University of Petroleum(Beijing),2015.
-
[13] LIU N,CHEN X,JU B,et al.Microbubbles generation by an orifice spraying method in a water-gas dispersion flooding sys‐ tem for enhanced oil recovery [J].Journal of Petroleum Science and Engineering,2021,198:108196.
-
[14] OSHER S,SETHIAN J A.Fronts propagating with curvature-de‐ pendent speed:Algorithms based on Hamilton-Jacobi formula‐ tions [J].Journal of Computational Physics,1988,79(1):12-49.
-
[15] OLSSON E,KREISS G,ZAHEDI S.A conservative level set method for two phase flow II [J].Journal of Computational Phys‐ ics,2007,225(1):785-807.
-
[16] RAEINI A Q,BLUNT M J,BIJELJIC B.Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method [J].Journal of Computational Physics,2012,231(17):5 653-5 668.
-
[17] OSHER S,FEDKIW R.Level set methods and dynamic implicit surfaces[M].New York:Springer,2003:23.
-
[18] SUN Y,BECKERMANN C.Sharp interface tracking using the phase-field equation [J].Journal of Computational Physics,2007,220(2):626-653.
-
[19] CHIU P H,LIN Y T.A conservative phase field method for solv‐ ing incompressible two-phase flows [J].Journal of Computation‐ al Physics,2011,230(1):185-204.
-
[20] HIRT C W,NICHOLS B D.Volume of fluid(VOF)method for the dynamics of free boundaries [J].Journal of Computational Physics,1981,39(1):201-225.
-
[21] 孙红霞,姚军.VOF 方法在孔隙尺度剩余油模拟方面的探索应用[C]//第九届全国流体力学学术会议论文摘要集.南京:第九届全国流体力学学术会议,2016.SUN Hongxia,YAO Jun.Exploration and application of VOF method in pore-scale remaining oil simulation [C]//Collection of Abstracts of the Ninth National Conference on Fluid Mechanics.Nanjing:The Ninth National Fluid Mechanics Conference,2016.
-
[22] 钱凯凯,王治云.水平管道内横向流气泡生长变化模拟研究[J].建模与仿真,2021,10(2):424-434.QIAN Kaikai,WANG Zhiyun.Simulation of bubble growth in transverse flow in horizontal pipe [J].Modeling and Simulation,2021,10(2):424-434.
-
[23] 张晟庭,李靖,陈掌星,等.气液非混相驱替过程中的卡断机理及模拟研究[J].力学学报,2022,54(5):1 429-1 442.ZHANG Shengting,LI Jing,CHEN Zhangxing,et al.Study on snap-off mechanism and simulation during gas-liquid immiscible displacement [J].Chinese Journal of Theoretical and Applied Mechanics,2022,54(5):1 429-1 442.
-
[24] PAN K L,CHEN Z J.Simulation of bubble dynamics in a micro‐ channel using a front-tracking method [J].Computers & Mathe‐matics with Applications,2014,67(2):290-306.
-
[25] KANG S,ZHOU B.Numerical study of bubble generation and transport in a serpentine channel with a T-junction [J].Interna‐ tional Journal of Hydrogen Energy,2014,39(5):2 325-2 333.
-
[26] FENG J,LI X,BAO Y,et al.Coalescence and conjunction of two in-line bubbles at low Reynolds numbers [J].Chemical Engi‐ neering Science,2016,141:261-270.
-
[27] ARANSON I S,KRAMER L.The world of the complex Ginz‐ burg-Landau equation [J].Reviews of Modern Physics,2002,74(1):99-143.
-
[28] MUKHERJEE A,KANDLIKAR S G,EDEL Z J.Numerical study of bubble growth and wall heat transfer during flow boiling in a microchannel [J].International Journal of Heat and Mass Transfer,2011,54(15/16):3 702-3 718.
-
[29] 梁猛,李青,王奎升,等.匀强电场作用下分散相液滴的变形和破裂[J].化工学报,2014,65(3):843-848.LIANG Meng,LI Qing,WANG Kuisheng,et al.Deformation and breakup of dispersed phase droplets in uniform electric field [J].CIESC Journal,2014,65(3):843-848.
-
[30] 朱前林,李小春,魏宁,等.多孔介质中气泡尺寸对流动阻力的影响[J].岩土力学,2012,33(3):913-918.ZHU Qianlin,LI Xiaochun,WEI Ning,et al.Influence of bub‐ ble size on fluid resistance in porous media [J].Rock and Soil Mechanics,2012,33(3):913-918.
-
[31] 杨银.基于水平集方法的不可压两相流的数值模拟[J].工程数学学报,2013,30(2):243-251.YANG Yin.Numerical simulation of incompressible two-phase flows based on level set method [J].Chinese Journal of Engineer‐ ing Mathematics,2013,30(2):243-251.
-
[32] 孙海鹏,余伟巍,席平.基于 Level Set 的交互式快速分割算法 [J].工程图学学报,2011,32(3):45-51.SUN Haipeng,YU Weiwei,XI Ping.The three-dimensional fast segmentation algorithm based on level set method [J].Journal of Graphics,2011,32(3):45-51.
-
[33] 王涵.基于COMSOL的喷墨打印机喷射墨滴过程的仿真分析 [J].机械管理开发,2021,36(6):65-67.WANG Han.Simulation analysis of ink-jet drop injection pro‐ cess based on COMSOL ink-jet printer [J].Mechanical Manage‐ ment and Development,2021,36(6):65-67.
-
[34] SETHIAN J A,WIEGMANN A.Structural boundary design via level set and immersed interface methods [J].Journal of Compu‐ tational Physics,2000,163(2):489-528.
-
[35] 韩丹.电场作用下两相流的计算方法研究[D].兰州:兰州理工大学,2019.HAN Dan.Study on the calculation method of two-phase flow under electric field [D].Lanzhou:Lanzhou University of Tech‐ nology,2019.
-
[36] YUE Pengtao,JAMES J,LIU Chun,et al.A diffuse-interface method for simulating two-phase flows of complex fluids [J].Journal of Fluid Mechanics,2004,515(1):293-318.
-
[37] 王月,徐博,王艳丽.同轴式微通道内气泡生成特性数值模拟及试验验证[J].液压与气动,2021,45(7):95-100.WANG Yue,XU Bo,WANG Yanli.Numerical simulation and experimental verification of bubble formation characteristics in coaxial microchannels [J].Chinese Hydraulics and Pneumatics,2021,45(7):95-100.
-
[38] CHIQUET P,DARIDON J L,BROSETA D,et al.CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage [J].Energy Conversion and Manage‐ ment,2007,48(3):736-744.
-
摘要
水气分散体系可有效改变地层油渗流通道,抑制驱替流体的窜流,扩大水气分散体系在油层中的波及体积,提高剩余油的动用效果。由于难以直接观察多孔介质中水气分散体系的流动,因此对于水气分散体系在多孔介质中的运移机理研究较少。笔者提出一种研究水气分散体系在多孔介质中运移的仿真模拟新方法,基于水平集方法和气液两相流,使用多物理场耦合数值计算软件COMSOL Multiphysics进行研究。对水气分散体系在孔喉中的贾敏效应、聚并和卡断机理进行了仿真研究,探讨了水气分散体系运移过程中孔喉压力的影响因素,分析分散相气泡聚并过程的形态变化,研究水气分散体系在孔喉中发生卡断现象的动态特征,结果表明数值模拟可以直观的体现水气分散体系在多孔介质中的运移机制。
Abstract
The water-gas dispersion system can effectively change flow channels of formation oil,inhibit the channeling of dis‐ placement fluid,expand the swept volume of the water-gas dispersion system in reservoirs,and enhance the producing effect of the remaining oil. Since it is difficult to directly observe the flow of the water-gas dispersion system in porous media,there are few stud‐ ies on the transport mechanism of the water-gas dispersion system in porous media. The author proposes a new simulation method to study the transport of the water-gas dispersion system in porous media. The level set method and the gas-liquid two-phase flow are adopted,and the coupled numerical calculation software COMSOL Multiphysics is employed for research. The mechanisms of the Jamin effect,coalescence,and division of the water-gas dispersion system in the pore throat are simulated and studied. The influ‐ encing factors of dynamic pressures during the transport of the water-gas dispersion system are discussed,and the morphological changes of the dispersed-phase bubble during the coalescence process are analyzed. The dynamic characteristics of the water-gas dis‐ persion system during division in the pore throat are studied. The result shows that numerical simulation can intuitively reflect the transport mechanism of the water-gas dispersion system in the porous media.