-
南海北部琼东南盆地是天然气的重要探区,中新统浊积体是主要的储集体[1-4]。但由于浊流沉积机理复杂、控制因素多,有效浊积储集体预测难度大[5-8],除了中央峡谷型浊积体预测成功率比较高 (75%)外,其他浊积体类型储层预测成功率较低。琼东南盆地中新统梅山组浊积扇(又称海底扇)为盆地深水油气勘探的重点目标,现阶段勘探证实梅山组不同浊积扇储层物性差别大、非均质性强,导致勘探效果不理想[9-13]。王振峰等认为充足的物源供给、区域性相对海平面大幅下降、适宜的古地貌条件以及频繁构造运动等因素的有机耦合造就了莺—琼盆地中新统主要发育海底扇和轴向水道这2 种大型储集体[14]。谢玉洪等提出梅山组海底扇发育沉积、断裂和挠曲3种坡折类型,其中乐东凹陷和陵水凹陷北坡发育受沉积坡折带控制的大型富砂海底扇,粒度粗、物性好。相对而言,陵水凹陷和松南凹陷北坡的断裂坡折带及宝岛凹陷北坡的挠曲坡折带发育的海底扇则粒度细、物性差[15-16]。甘军等指出琼东南盆地西部昆嵩隆起及北部海南隆起是盆地主要物源区,琼东南盆地新近系自西向东陆坡样式由进积式向加积式演变,提示了物源西强东弱的供给特征[17]。整体而言,前期研究主要侧重于浊积扇发育的宏观背景,亟需对浊积扇类型开展细分及对比研究,进而明确有利浊积储集体控制因素及发育规律,以满足现阶段油气勘探开发的需要。笔者考虑海平面变化、海底地形地貌、同生断裂组合等因素对琼东南盆地梅山组浊积扇进行分类,并总结其储层发育特征及规律,对琼东南盆地梅山组浊积扇勘探具有重要的理论指导及实际应用意义,同时也可以为三亚组浊积扇,甚至更广范围的相似沉积体提供借鉴。
-
1 地质概况
-
琼东南盆地为南海北部新生代陆缘拉张型盆地,主要经历了裂陷和拗陷 2 个构造演化阶段。古近纪裂陷期,盆地接受始新统陆相湖盆充填、崖城组海陆过渡相充填和陵水组滨浅海相充填。新近纪拗陷期,盆地为从浅海相到深海相的连续沉积充填(图1)。研究区中新统自下而上由三亚组、梅山组和黄流组组成,中新世以来在盆地深水区和浅海陆架上发育了数量众多的浊积扇(图2)。
-
图1 琼东南盆地新近系地层综合柱状图
-
Fig.1 Neogene stratigraphic column in Qiongdongnan Basin
-
从 1993 年至 2021 年,琼东南盆地梅山组共有 24口探井钻遇 19个浊积扇,扇体规模可观,其中面积大于 100 km2 的 2 个,50~100 km2 的 8 个,20~40 km2 的 5个,小于 20 km2 的 1个。这些浊积扇现今水深分布为100~2 000 m。浊积扇普遍见油气显示,特别是天然气显示,但商业性发现少,勘探成功率低。
-
2 浊积扇分类
-
浊积扇广泛发育于各种深水环境,受其形成构造背景、物源条件、地形地貌等诸多因素的影响,浊积扇类型及其内部构成存在较大差异,各具独特的储层特征[18-21]。考虑海平面变化、海底地形地貌、同生断裂组合等因素,将琼东南盆地梅山组浊积扇分为陆棚扇(SE)、斜坡扇(SL)和盆底扇(B)3 大类。其中盆底扇又进一步细分为断阶盆底扇、断控缓坡末阶盆底扇、断控陡坡根部盆底扇、朵状盆底扇、峡谷切割盆底扇和局限盆底扇(表1,图3)。
-
图2 琼东南盆地梅山组沉积相及主要探井分布
-
Fig.2 Sedimentary facies and exploratory wells of Meishan Formation in Qiongdongnan Basin
-
3 浊积扇储层特征
-
3.1 陆棚扇
-
陆棚扇主要发育于高位域,沉积在陆架上或陆架边缘,具有浊流沉积特点,扇体呈马蹄形,主体厚,向外展开、减薄、直至尖灭(图4a)。目前琼东南盆地梅山组钻遇 BD19-2 陆棚扇,其位于松涛凸起东倾没端,南临宝岛凹陷,主体位于陆架区。BD19-2陆棚扇岩性为灰色泥岩、粉砂质泥岩、泥质粉砂岩及泥质粉细砂岩,SP 曲线呈齿化箱型(图4b),表明岩性不纯,砂岩中泥质含量高。粒度概率累积曲线为二段式,碎屑颗粒由跳跃总体和悬浮总体组成 (图4c)。其中悬浮总体占比为 80%,斜率为15°;跳跃总体占比为 5%,斜率为 35°~40°。悬浮总体占比高,斜率低,表明其粒度分选差。跳跃总体占比低,斜率高,表明其粒度分选较好(图4c)。
-
BD19-2陆棚扇在地震上表现为丘型反射特征,下切现象不明显,内部反射呈强弱振幅相间、连续性弱(图4a)。现有 B9,B10 和 B11 三口探井钻遇,其中 B9 和 B10 井主体钻遇中扇,砂体厚度大,最大近 100 m,以粉砂岩为主,SP曲线呈齿化箱型。B11 井处于扇缘,以泥岩为主,砂岩厚度小于10 m,SP曲线呈齿化漏斗型。
-
3.2 斜坡扇
-
斜坡扇主要发育于低位域晚期,属于浊积沟道溢岸沉积,沉积于陆坡区,在陆架上堆积的三角洲、滨面砂是斜坡扇的主要物质来源。琼东南盆地梅山组陆坡区目前钻遇 LS13-2N 和 BD19-5 两个斜坡扇,扇体沉积物粒度细,以泥岩为主,岩性为浅灰色泥质粉砂岩、粉砂岩。具有频繁侧向迁移特征,一般由多个扇体组成,分布范围广,但相互间以稳定泥岩分隔,互不连通。
-
BD19-5斜坡扇位于宝岛凹陷北坡,为梅山组底部发育的低位域晚期重力流沉积,在地震剖面上振幅异常明显,外部形态为丘型,位于下切沟道边部,下切不明显。内部反射强弱振幅相间、较连续。扇体呈单斜分布,北西高点以相变尖灭为主,砂体在北面及东面的尖灭点清楚,为岩性尖灭线(图5a)。由多期扇体组成,面积为9.8~25.7 km2。
-
图3 琼东南盆地梅山组浊积扇发育模式
-
Fig.3 Sedimentary modes of turbidite fans of Meishan Formation in Qiongdongnan Basin
-
B14 井 3 200~3 563 m 井段钻遇 BD19-5 斜坡扇,岩性为浅灰色泥质粉砂岩,孔隙度为 11.5%,渗透率小于 0.05 mD。在 3 388 m 井段岩性为灰色粉砂岩,孔隙度为19%,渗透率为12 mD(图5b)。 3 445~3 472 m 井段为深灰色玄武安山岩,厚度为 27 m,明显与围岩电性特征不一致。分析认为,火山喷发造成海底地形地貌改变,浊积扇处于敞流环境,底流改造强,是其上覆储层物性变好的主要原因。而 LS13-2N 斜坡扇储层整体泥质含量较高且分布不均,泥质杂基堵塞孔隙造成储层渗透率极低。壁心粒度概率累积曲线以跳跃总体与悬浮总体的两段式组合为主,两者交截点在 3~5 ϕ,悬浮总体占比超过 50%,粒度分选差(图5c)。
-
图4 琼东南盆地梅山组陆棚扇沉积特征(剖面位置见图2)
-
Fig.4 Sedimentary characteristics of shelf fans of Meishan Formation in Qiongdongnan Basin (see profile location in Fig.2)
-
3.3 盆底扇
-
盆底扇是海平面下降期的产物,主要发育于低位域早期,沉积于盆地底部或大陆斜坡下部。
-
3.3.1 断阶盆底扇
-
琼东南盆地中新世发育多个构造坡折带,陵水凹陷北坡二号断裂带表现为断坡特征,向西三号断裂带主要表现为挠曲特征。物源主要来自于西部的昆嵩隆起及海南隆起的宁远河、陵水河和万泉河三大水系(图2)。LS13-2及LS13-2W扇群位于陵水凹陷北坡二号断裂断阶带上(图6a),断阶同沉积活动对物源碎屑物具有拦截效应,形成断阶盆底扇群。目前已有 L3,L4,L5 和 L6 共 4 口探井钻遇(图2)。LS13-2 及 LS13-2W 扇群是多期重力流下切和沉积的叠加结果,与围岩接触关系清楚。砂体整体呈 NE—SW 向条带状展布,水道下切形态明显(眼球状地震反射),向两侧岩性尖灭。扇群在地震剖面上振幅异常明显,砂体表现为明显的强振幅反射特征,顶底同相轴连续性好,主体部位可见透镜状强振幅含气地震反射特征(图6a)。LS13-2和LS13-2W 扇群有较多岩心和旋转壁心,岩性以粉砂岩为主(图6b)。由于2个扇群同沉积期处于底流活跃的敞流环境,底流作用将泥质带走进一步改善了储层物性,因此扇体的中扇、外扇普遍发育好储层。虽然内扇非均质性强、泥质含量高,影响了储层物性,但仍有孔隙度大于 15%、渗透率大于 1 mD 的好-优质天然气储层发育。
-
3.3.2 断控缓坡末阶盆底扇
-
这类扇体位于多条具同沉积活动性的同向铲式断层形成的多级断阶的末级断阶或深海平原,通常扇体面积较大,由于多级断阶的拦截效应,粗碎屑被拦截,以细粒沉积为主,储层极不发育。如来自海南岛水系的浊流被二号断层拦截后,大量细微颗粒及泥质顺坡而下进入末级断阶或深海平原,形成 LS15-1 和 LS15-2 盆底扇(图2,图7a),该浊积扇颗粒很细、单层厚度薄。L17 井梅山组浊积扇岩性为块状泥岩夹薄层粉砂岩条带,扇体中发育一层致密砂岩,为粉砂岩-极细粒砂岩(图7b,3 820 m 处)。 SP 曲线为高值低幅齿化漏斗型,属于扇缘沉积(图7b)。地震剖面上振幅异常明显,沿浊积扇倾向多套连续性较强的近平行连续反射纵向叠置,并且逐层下超,外部形态为帚状,没有明显下切特征;沿浊积扇走向为平行连续、较连续反射,基本等厚,远距离延伸,透镜状或丘型特征不明显,代表水动力条件很弱的流体环境,扇体与围岩边界呈逐渐过渡特征(图7a)。
-
图5 琼东南盆地梅山组斜坡扇沉积特征(剖面位置见图2)
-
Fig.5 Sedimentary characteristics of slope fans of Meishan Formation in Qiongdongnan Basin (see profile location in Fig.2)
-
图6 琼东南盆地梅山组断阶盆底扇沉积特征(剖面位置见图2)
-
Fig.6 Sedimentary characteristics of fault-terrace basin floor fans of Meishan Formation in Qiongdongnan Basin (see profile location in Fig.2)
-
图7 琼东南盆地梅山组断控缓坡末阶盆底扇沉积特征(剖面位置见图2)
-
Fig.7 Sedimentary characteristics of final-terrace basin floor fans of fault-controlled gentle slopes of Meishan Formation in Qiongdongnan Basin (see profile location in Fig.2)
-
3.3.3 断控陡坡根部盆底扇
-
断控陡坡根部盆底扇位于控凹同生断裂根部,多个浊积扇纵横向叠置,陆坡根部一侧以纵向叠置为主,远离根部为侧向叠置。这类浊积扇属于快速堆积,沉积分异差。由于底流改造不活跃,粗颗粒占比高,但分选磨圆欠佳,泥质含量高,储层物性较差。
-
BD31-1和ST35-2盆底扇位于松南-宝岛凹陷凹中-近凹构造带,F2-1 控凹同生大断裂根部,为断控陡坡根部盆底扇(图8a)。该类盆底扇具明显振幅异常,透镜状外形、下切明显,扇体内部断层不发育。该类盆底扇储层呈现高孔隙度(10%~20%)、低渗透率(<10 mD)的特征(图8b)。泥质含量高 (25.0%~52.0%)是储层渗透率低的主要原因。钻遇 BD31-1盆底扇的 B13井 2 820~3 137 m 井段岩性以泥质粉砂岩、粉砂岩为主(图8b),泥质含量为 11.2%~25.0%,大部分样品实测孔隙度能达到 10.0%~20.0%,但渗透率多小于 1.0 mD,未见 10.0 mD以上的优质高产气层(图8c)。钻遇ST35-2盆底扇的S1井岩性以泥质粉砂岩为主,物性特征与B13井相近。
-
3.3.4 朵状盆底扇
-
朵状盆底扇在沉积过程中没有经过断阶的拦截,大部分粗碎屑得以保留,浊积扇沉积自身朵状形态完整且在深海平原成群分布,同时从汇水区到沉积区也没有像控凹大断裂那么高陡的落差,坡度较缓,碎屑物质经过比较好的分异,形成内扇、中扇、外扇及扇缘非常清晰的浊积扇。朵状盆底扇振幅异常明显,丘状外形,下切不明显(图9a)。以钻遇 LS25-1S 朵状盆底扇的 L15 井为例,该井钻遇梅山组厚层灰色细砂岩和灰色油斑细砂岩共 51.0 m (未穿,图9b),泥质含量为 5.6%~17.0%,平均为 9.0%,显著低于其他类型浊积扇的。该盆底扇虽然埋深达到 4 448 m,但储层物性依然很好,孔隙度为 15.8%~23.9%,平均为 20.4%,渗透率为 16.6~99.0 mD。
-
3.3.5 峡谷切割盆底扇
-
琼东南盆地部分梅山组朵状盆底扇被后期黄流组峡谷水道切割并充填,将这类盆底扇称为峡谷切割盆底扇(图10a)。这类盆底扇同沉积期多处于敞流环境,底流改造活跃,砂层内泥质含量低,中扇、外扇甚至部分内扇储层物性较好。以 L12 井为例,岩性以细砂-粉砂岩为主。孔隙度普遍大于 15.0%,部分高达 26.8%;渗透率普遍大于 10.0 mD (图10b)。
-
图8 琼东南盆地梅山组断控陡坡根部盆底扇沉积特征(剖面位置见图2)
-
Fig.8 Sedimentary characteristics of basin floor fans of fault-controlled steep slope roots of Meishan Formation in Qiongdongnan Basin (see profile location in Fig.2)
-
3.3.6 局限盆底扇
-
从海南隆起区到中央坳陷带(深海平原),经过了北部坳陷带、中部隆起带。中部隆起带由高凸起、低凸起、鞍部组成,局部地区发育早期形成的冲沟为主的低洼处,浊流事件在这些低洼处堆积形成局限盆底扇(图11a)。由于沉积环境局限,从汇水区到沉积区落差小,水动力弱,重力分异差,这类盆底扇内部泥质含量往往较高(图11)。
-
以LS13-1盆底扇为例,其处于琼东南盆地中央坳陷带陵水凹陷的北缘,松涛凸起与崖城凸起之间的鞍部(图2),位于琼东南盆地 2-1 号断层的上升盘。Y13 井井壁取心表明(图11b),LS13-1 盆底扇岩性以泥质粉砂岩为主,夹粉砂质泥岩和粉砂岩,泥质含量普遍大于15%,最高达44%。
-
LS13-1 盆底扇地震剖面显示为一大型地震异常体,面积约为 560 km2,平均厚度达 80 m,表现为顶平底凹特征。沿低洼长轴方向振幅异常明显,顶底反射清楚。垂直低洼方向,下凹特征显著,为平行上超充填反射。内部反射轴强弱振幅相间,弱连续-较连续,周围地层超覆在扇体顶界之上,内部反射的振幅和频率与上下地层存在显著差别(图11a)。
-
4 勘探意义
-
浊积扇储层物性可能受控于多种因素,如不同物源区岩性、河流水系、海平面升降、浊积扇类型及其内部组成、底流改造强弱等均可导致碎屑颗粒成分及大小、泥质含量、碳酸盐含量、单砂层厚度等和储层物性相关参数的变化[22-24]。对琼东南盆地梅山组已钻24口探井、19个浊积扇的分类及对比分析可知,浊积扇类型是影响储层物性的关键因素之一。陆棚扇由于发育于高位域,浊流特征明显,泥质含量高,粒度分选差,储层物性差。斜坡扇发育于低位域晚期的陆坡区,为浊积沟道溢岸沉积,沉积物粒度细,以泥岩为主,储层物性较差。盆底扇发育于低位域早期的坡折带根部或深海平原沉积区,由于受底流改造,砂层内泥质含量低,储层物性明显好于前二者。其中,发育于缓坡和开阔洼地的盆底扇包括峡谷切割盆底扇好—优质储层发育,是重要勘探目标。断控陡坡根部盆底扇由于从汇水区到沉积区坡度太陡,碎屑颗粒大小混杂,沉积分异差,泥质含量高,储层物性较差,勘探风险较大。断控缓坡末阶盆底扇颗粒细、泥质含量异常高,缺乏储层,不能作为勘探目标。
-
图9 琼东南盆地梅山组朵状盆底扇沉积特征(剖面位置见图2)
-
Fig.9 Sedimentary characteristics of lobate basin floor fans of Meishan Formation in Qiongdongnan Basin (see profile location in Fig.2)
-
图10 琼东南盆地梅山组峡谷切割盆底扇沉积特征(剖面位置见图2)
-
Fig.10 Sedimentary characteristics of basin floor fans cut by canyons of Meishan Formation in Qiongdongnan Basin (see profile location in Fig.2)
-
图11 琼东南盆地梅山组局限盆底扇沉积特征(剖面位置见图2)
-
Fig.11 Sedimentary characteristics of confined basin floor fans of Meishan Formation in Qiongdongnan Basin (see profile location in Fig.2)
-
此外,物源体系也是梅山组浊积扇储层物性的重要控制因素。中中新世盆地西段海南隆起乐东陵水区物源及西部昆嵩隆起物源供应充足,以进积型坡折为主,碎屑颗粒粗,各类储层发育。而中段宝岛区及东段长昌区距物源区较远且供应不足,以加积型坡折或退积-加积型坡折为主,碎屑颗粒细、泥质含量高,不利于好储层发育[14-17,25-29]。如琼东南盆地西区乐东凹陷内的 YC35-1盆底扇碎屑颗粒成分杂、大小悬殊、最大可达卵石级。向东 YC24-1盆底扇碎屑颗粒变细,以中粗砂为主,再往东陵水凹陷内的LS25-1S盆底扇为细砂岩,最东边的LS13-2, LS13-2W 和松南-宝岛凹陷内的盆底扇以粉砂岩为主。
-
综合而言,为提高勘探成功率,琼东南盆地中新统梅山组浊积扇勘探应以寻找优质储层为核心。断阶盆底扇、朵状盆底扇、峡谷切割盆底扇因发育好—优质储层,可作为天然气勘探的重点目标。断控陡坡根部盆底扇由于优质储层较不发育,应慎重勘探。断控缓坡末阶盆底扇、局限盆底扇缺乏优质储层,需要尽量规避对其进行勘探。同时,与东部退积坡折区的梅山组陆棚扇、斜坡扇相比,西部前积坡折区的陆棚扇、斜坡扇粗碎屑增多、储层物性较好,可成为有利勘探目标。
-
5 结论
-
琼东南盆地浊积扇分为陆棚扇、斜坡扇和盆底扇三大类。其中盆底扇可进一步细分为断阶盆底扇、断控缓坡末阶盆底扇、断控陡坡根部盆底扇、朵状盆底扇、峡谷切割盆底扇、局限盆底扇6亚类。
-
陆棚扇发育于高位域的陆棚或陆棚边缘区,斜坡扇发育于低位域晚期的陆坡区,盆底扇发育于低位域早期的坡折带根部或深海平原沉积区,其储层物性总体好于前二者。
-
断阶盆底扇、朵状盆底扇、峡谷切割盆底扇好—优质储层发育,是重要勘探目标。断控陡坡根部盆底扇由于从汇水区到沉积区坡度太陡,沉积分异差,泥质含量高,储层物性较差,勘探风险较大。断控缓坡末阶盆底扇颗粒细、泥质含量异常高,局限盆底扇碎屑颗粒大小混杂,储层不发育,不能作为勘探目标。
-
参考文献
-
[1] 张功成,谢晓军,王万银,等.中国南海含油气盆地构造类型及勘探潜力[J].石油学报,2013,34(4):611-627.ZHANG Gongcheng,XIE Xiaojun,WANG Wanyin,et al.Tec‐ tonic types of petroliferous basins and its exploration potential in the South China Sea [J].Acta Petrolei Sinica,2013,34(4):611-627.
-
[2] 王振峰,孙志鹏,张迎朝,等.南海北部琼东南盆地深水中央峡谷大气田分布与成藏规律[J].中国石油勘探,2016,21(4):54-64.WANG Zhenfeng,SUN Zhipeng,ZHANG Yingzhao,et al.Distribution and hydrocarbon accumulation mechanism of the gi‐ ant deepwater Central Canyon gas field in Qiongdongnan Basin,northern South China Sea [J].China Petroleum Exploration,2016,21(4):54-64.
-
[3] 李绪深,张迎朝,杨希冰,等.莺歌海-琼东南盆地天然气勘探新认识与新进展[J].中国海上油气,2017,29(6):1-11.LI Xushen,ZHANG Yingzhao,YANG Xibing,et al.New un‐ derstandings and achievements of natural gas exploration in Yinggehai-Qiongdongnan basin,South China Sea [J].China Offshore Oil and Gas,2017,29(6):1-11.
-
[4] 张迎朝,徐新德,甘军,等.琼东南盆地深水大气田地质特征、成藏模式及勘探方向研究[J].地质学报,2017,91(7):1 620-1 633.ZHANG Yingzhao,XU Xinde,GAN Jun,et al.Study on the geological characteristics,accumulation model and exploration direction of the giant deepwater gas field in the Qiongdongnan Basin [J].Acta Geologica Sinica,2017,91(7):1 620-1 633.
-
[5] MIDDLETON G V,HAMPTON M A.Subaqueous sediment transport and deep sediment gravity flows [M]//STANLEY D J,SWIFT D J P.Marine sediment transport and environmental management.New York:Wiley Inter-science,1976:197-218.
-
[6] WYNN R B,STOW D A V.Classification and characterization of deep-water sediment waves [J].Marine Geology,2002,192(1/3):7-22.https://doi.org/10.1016/j.marpetgeo.2020.104814.
-
[7] 李建平,廖计华,方勇.基于露头和岩心的深水重力流沉积新认识及其油气地质意义[J].油气地质与采收率,2020,27(6):30-37.LI Jianping,LIAO Jihua,FANG Yong.New understanding of deep-water gravity flow deposition and its significance in petro‐ leum geology based on outcrops and cores [J].Petroleum Geol‐ ogy and Recovery Efficiency,2020,27(6):30-37.
-
[8] 李建平,刘子玉,谢晓军,等.深水重力流沉积机理新认识及其在北海G油田发现中的应用[J].中国海上油气,2021,33(1):23-31.LI Jianping,LIU Ziyu,XIE Xiaojun,et al.New understanding of deep-water gravity flow deposition mechanism and its applica‐ tion in the discovery of G oilfield in North Sea [J].China Off‐ shore Oil and Gas,2021,33(1):23-31.
-
[9] 李磊,王英民,徐强,等.被动陆缘深水重力流沉积单元及沉积体系——以尼日尔三角洲和珠江口盆地白云凹陷深水区为例 [J].地质论评,2012,58(5):846-853.LI Lei,WANG Yingmin,XU Qiang,et al.Deep-water gravity flow depositional elements and depositional systems in passive margin:case studies in deep-water areas of Niger delta and Bai‐ yun sag,Pearl River Mouth Basin [J].Geological Review,2012,58(5):846-853.
-
[10] 王亚辉,张道军,陈杨,等.琼东南盆地陵水凹陷梅山组深水扇特征及控制因素[J].新疆石油地质,2014,35(6):664-667.WANG Yahui,ZHANG Daojun,CHEN Yang,et al.Character‐ istics and controlling factors of Meishan deep-water fans in Lingshui Sag,Qiongdongnan Basin [J].Xinjiang Petroleum Ge‐ ology,2014,35(6):664-667.
-
[11] 尤丽,江汝锋,徐守立,等.琼东南盆地深水区乐东-陵水凹陷梅山组天然气成藏特征与勘探潜力[J].中国海上油气,2021,33(5):24-31.YOU Li,JIANG Rufeng,XU Shouli,et al.Accumulation charac‐ teristics and exploration potential of Meishan Formation gas in Ledong-Lingshui sag,deep water area of Qiongdongnan basin [J].China Offshore Oil and Gas,2021,33(5):24-31.
-
[12] 尤丽,刘才,钟佳,等.琼东南盆地西区梅山组海底扇岩相-地球化学特征及源区意义[J].地球科学,2017,42(9):1 531-1 540.YOU Li,LIU Cai,ZHONG Jia,et al.Petrographygeochemistry and source significance of submarine fan from west area of Qiongdongnan basin [J].Earth Science,2017,42(9):1 531-1 540.
-
[13] 罗泉源,焦祥燕,刘昆,等.乐东-陵水凹陷梅山组海底扇识别及沉积模式[J].海洋地质与第四纪地质,2020,40(2):90-99.LUO Quanyuan,JIAO Xiangyan,LIU Kun,et al.Identifica‐ tion of submarine fan in the Meishan Formation of the LedongLingshui Sag in the Qiongdongnan Basin and its depositional model [J].Marine Geology and Quaternary Geology,2020,40(2):90-99.
-
[14] 王振峰,裴健翔,郝德峰,等.莺-琼盆地中新统大型重力流储集体发育特征及天然气勘探有利方向[J].中国海上油气,2015,27(4):13-21.WANG Zhenfeng,PEI Jianxiang,HAO Defeng,et al.Develop‐ ment conditions,sedimentary characteristic of Miocene large gravity flow reservoirs and favorable gas explorations in YingQiong basin [J].China Offshore Oil and Gas,2015,27(4):13-21.
-
[15] 谢玉洪,范彩伟,周家雄,等.琼东南盆地中中新世重力流海底扇沉积特征及控制因素[J].天然气地球科学,2016,27(2):220-228.XIE Yuhong,FAN Caiwei,ZHOU Jiaxiong,et al.Sedimentary features and controlling factors of the gravity flows in submarine fan of Middle Miocene in the Qiongdongnan Basin [J].Natural Gas Geoscience,2016,27(2):220-228.
-
[16] 谭建财,范彩伟,宋鹏,等.琼东南盆地中中新统古沟谷和坡折带特征及油气勘探意义[J].油气地质与采收率,2017,24(3):30-36,43.TAN Jiancai,FAN Caiwei,SONG Peng,et al.Characteristics of the mid-Miocene paleo ravine-slope break zones in Qiong‐ dongnan basin and its significance for oil-gas exploration [J].Petroleum Geology and Recovery Efficiency,2017,24(3):30-36,43.
-
[17] 甘军,梁刚,李兴,等.琼东南盆地梅山组海底扇天然气成因类型及成藏模式[J].地质学报,2022,96(3):1 069-1 078.GAN Jun,LIANG Gang,LI Xing,et al.Genetic types and ac‐ cumulation model of submarine fan gas in the Meishan Forma‐ tion,Qiongdongnan basin [J].Acta Geologica Sinica,2022,96(3):1 069-1 078.
-
[18] NORMARK W R.Growth patterns of deep sea fans [J].AAPG Bulletin,1970,54(11):2 170-2 195.
-
[19] WALKER R G.Deep water sandstone facies and ancient subma‐ rine fans:models for exploration for stratigraphic traps [J].AAPG Bulletin,1978,62(5):239-263.
-
[20] MUTTI E,NORMARK W R.Comparing examples of modern and ancient turbidite systems:Problems and concepts [J].Ma‐ rine Clastic Sedimentology,1987:1-38.
-
[21] RIDING R,BRAGA J C,MARTIN J M,et al.Mediterranean messinian salinity crisis:constraints from a coeval marginal ba‐ sin,Sorbas,southeastern Spain [J].Marine Geology,1998,146(1/4):1-20.
-
[22] 李安琪,胡林,王真真,等.琼东南盆地乐东凹陷梅山组海底扇沉积演化及油气地质意义[J].油气地质与采收率,2021,28(2):76-84.LI Anqi,HU Lin,WANG Zhenzhen,et al.Sedimentary evolu‐ tion of Meishan Formation submarine fan in Ledong Sag,Qion‐ gdongnan Basin and its significance in hydrocarbon exploration [J].Petroleum Geology and Recovery Efficiency,2021,28(2):76-84.
-
[23] 晁彩霞,于俊峰,胡胜辉,等.东方B气田海底扇复杂砂体地震刻画[J].断块油气田,2022,29(1):66-71.CHAO Caixia,YU Junfeng,HU Shenghui,et al.Seismic char‐ acterization of complex sand bodies of submarine fan in the Dongfang B gas field [J].Fault-Block Oil and Gas Field,2022,29(1):66-71.
-
[24] 晁彩霞,于俊峰,袁丙龙,等.波形指示反演在海底扇砂体边界刻画中的应用[J].断块油气田,2021,28(5):645-648.CHAO Caixia,YU Junfeng,YUAN Binlong,et al.Application of waveform indication inversion in boundary characterization of sandbody in submarine fan [J].Fault-Block Oil and Gas Field,2021,28(5):645-648.
-
[25] CHAO Li,GCA B,QZA B,et al.Seismic geomorphology of three types of deepwater fans and their relationship with slope morphology:Qiongdongnan Basin,northern South China Sea [J].Marine and Petroleum Geology,2020,124:1-21.
-
[26] 徐长贵,范彩伟.南海西部近海大中型油气田勘探新进展与思考[J].中国海上油气,2021,33(2):13-25.XU Changgui,FAN Caiwei.New exploration progress and think‐ ing of offshore large-medium-sized oil and gas fields in the west‐ ern South China Sea[J].China Offshore Oil and Gas,2021,33(2):13-25.
-
[27] 陈林,范彩伟,刘新宇,等.珠江口盆地西部文昌A凹陷油气富集规律与有利勘探方向[J].中国海上油气,2021,33(5):14-23.CHEN Lin,FAN Caiwei,LIU Xinyu,et al.Hydrocarbon enrich‐ ment laws and favorable exploration directions of Wenchang A sag,western Pearl River Mouth Basin[J].China Offshore Oil and Gas,2021,33(5):14-23.
-
[28] 梁建设,孔令武,邱春光,等.东非海岸盆地渐新世浊积体沉积特征及油气勘探意义[J].中国海上油气,2021,33(6):25-33.LIANG Jianshe,KONG Lingwu,QIU Chunguang,et al.Sedi‐ mentary characteristics of Oligocene turbidite and its signifi‐ cance for hydrocarbon exploration in coastal basins of East Af‐ rica[J].China Offshore Oil and Gas,2021,33(6):25-33.
-
[29] 杨朝强,周伟,王玉,等.莺歌海盆地东方区黄流组一段小层划分及海底扇沉积演化主控因素[J].中国海上油气,2022,34(1):55-65.YANG Zhaoqiang,ZHOU Wei,WANG Yu,et al.Subdivision of the first member of Huangliu Formation in Dongfang area of Yinggehai Basin and the main factors controlling the sedimen‐ tary evolution of submarine fan[J].China Offshore Oil and Gas,2022,34(1):55-65.
-
摘要
琼东南盆地中新统梅山组浊积扇是南海北部天然气勘探的重要目标,浊积扇类型与储层发育程度密切相关。根据海平面变化、海底地形地貌、同生断裂组合等因素,将琼东南盆地梅山组浊积扇分为陆棚扇、斜坡扇和盆底扇三大类。高位域主要在陆棚或陆棚边缘沉积陆棚扇,低位域晚期主要在陆坡区沉积斜坡扇,盆底扇发育于低位域早期,可进一步划分为断阶盆底扇、断控缓坡末阶盆底扇、断控陡坡根部盆底扇、朵状盆底扇、峡谷切割盆底扇、局限盆底扇。浊积扇类型和物源体系是影响储层物性的重要控制因素。断阶盆底扇、峡谷切割盆底扇和朵状盆底扇储层发育,是重要勘探目标。断控陡坡根部盆底扇、陆棚扇、斜坡扇沉积分异较差,泥质含量高,勘探风险相对较大。断控缓坡末阶盆底扇和局限盆底扇颗粒细、泥质含量高,是勘探需要规避的类型。琼东南盆地西段乐东-陵水区物源供应充足,各类扇体储层发育,而中段宝岛区及长昌区距物源区较远且供应不足,碎屑颗粒细、泥质含量高,好—优质储层欠发育。
Abstract
The turbidite fans of Miocene Meishan Formation in Qiongdongnan Basin are important targets for natural gas explora‐ tion in the northern South China Sea, and the types of turbidite fan is closely related to reservoir development. The turbidite fans of Meishan Formation in Qiongdongnan Basin can be divided into shelf fans, slope fans, and basin floor fans according to the factors of sea level change, submarine topography, and syndepositional faults. The shelf fans at the shelf or shelf edge and the slope fans at the slope zone are mainly deposited in the highstand system and the late lowstand system respectively. The basin floor fans deposited in the early lowstand system can be further divided into six types: fault-terrace basin floor fan, final-terrace basin floor fan of faultcontrolled gentle slopes, basin floor fan of fault-controlled steep slope roots, lobate basin floor fan, basin floor fan cut by canyons, and confined basin floor fan. The turbidite fan type and provenance system are important controlling factors affecting reservoirs’ physical properties. The reservoirs of fault-terrace basin floor fans, basin floor fans cut by canyon, and lobate basin floor fans are developed and are important exploration targets. Due to poor sedimentary differentiation and high mud content, the exploration risks are relatively large in the basin floor fans of fault-controlled steep slope roots, shelf fans, and slope fans. Final-terrace basin floor fans of fault-controlled gentle slopes and confined basin floor fans have fine grain and high mud content, which should be avoided in exploration. The various fan reservoirs are developed due to the sufficient provenance supply of Ledong-Lingshui area in the west‐ern part of Qiongdongnan Basin; however the excellent and high-quality reservoirs are underdeveloped due to the fine detrital par‐ ticles and high mud content, and the lack provenance supply of Baodao area and Changchang area in the middle part of Qiongdong‐ nan Basin, which are far away from the provenance area.