-
近年来,随着中高渗透油藏勘探开发程度提高,低渗透油藏也逐渐成为勘探开发的重点[1-2]。随着压裂技术的发展及应用,20世纪90年代陆上油田开始了低渗透油藏的商业开发。海上低渗透油藏的开发起步较晚,但也具有可观的开发潜力,据统计渤海、东海、南海东部以及南海西部海域的原油探明地质储量达 5.41×109 t,三级原油地质储量达 7.88×109 t。但海上油田单井压裂成本高、规模小,对于低渗透油藏的动用程度普遍较低,并且由于低渗透油藏非均质性普遍较强,压裂生产后易出现见水快、产量递减快、水驱采收率低的风险[3]。
-
低渗透砂岩储层的形成和分布通常受沉积条件、埋藏过程、成岩改造以及构造活动等多种地质因素的控制[4-5],常呈现出与中高渗透岩储层不同的储集空间类型、孔隙结构及物性等特征,总体上具有孔喉尺度小、孔隙类型多样、孔隙结构复杂、宏观和微观非均质性强等特点[6-8]。受低渗透砂岩储层孔隙结构的复杂性以及研究技术的限制,目前对低渗透砂岩储层中流体可动性和水驱开发过程中剩余油赋存特征的认识仍不够深入,难以制定针对性的开发措施,进而使得低渗透砂岩储层在水驱开发过程中层内、层间及平面矛盾突出,水驱采收率较低且剩余油预测及挖潜难度大,限制了低渗透砂岩储层中油气的动用及挖潜[9-12]。因此,在有限的压裂条件下,表征低渗透砂岩储层的孔隙结构特征,探明不同孔隙内剩余油赋存特征,并制定有效的油气动用开发方案对于海上低渗透油藏的规模化、经济化开发具有重要意义。为此,笔者针对低渗透砂岩岩心开展高压压汞(MICP)、核磁共振(NMR)驱替、微米 CT 驱替实验以及渗流数值模拟,形成 T2谱与孔隙半径间转换系数的确定方法,进而明确低渗透砂岩全孔径的孔隙大小分布特征及其对流体可动性以及剩余油赋存特征的影响,以期为海上低渗透油藏的有效规模开发提供理论依据。
-
1 样品特征
-
实验用岩心样品取自渤海湾盆地某油田沙四段,岩性以细砂岩、粉砂岩和泥质粉砂岩为主,深度为 2 200~3 600 m。受机械压实作用和碳酸盐胶结作用的综合影响,沙四段储层整体呈低孔低渗透的特征[13]。针对低渗透砂岩储层,选取 57块岩心样品进行核磁共振离心实验,以获取低渗透砂岩的孔隙大小分布及流体可动性信息;选取 4 块岩心样品开展核磁共振-高压压汞联合实验,以获得T2谱与孔隙半径间的转换系数;选取 4 块岩心样品开展核磁共振驱替实验,以分析原油及水驱过程中剩余油的赋存特征,并对其中的 5#岩心样品同时开展微米 CT 驱替实验以验证核磁共振驱替实验结果的可靠性 (表1)。
-
2 流体可动性分析
-
目前高压压汞实验被广泛应用以获取岩石的喉道大小分布信息,但由于高压压汞实验所能检测到的最小喉道取决于实验所能达到的最大进汞压力,因此存在分辨率的限制难以反映出低渗透砂岩部分纳米级微喉道信息[14-15]。此外,高压压汞实验还存在大喉道屏蔽效应导致相当一部分大喉道未被检测到[9]。与高压压汞实验相比,核磁共振实验通过将砂岩样品饱和水,并通过测量核磁共振 T2谱来获取全孔径的孔隙信息,检测精度更高。核磁共振实验测量的T2谱与孔隙半径的关系可表示为:
-
由(1)式可以看出,孔隙半径越大,其产生的横向弛豫时间越长[16-17]。因此,为了获取全孔径的孔隙信息,需借助高压压汞实验确定 T2谱与孔隙半径间的转换系数。
-
2.1 转换系数确定
-
由于汞是非润湿相,在进入孔隙空间时需突破喉道的毛细管压力,因此高压压汞实验测得的是喉道半径以及喉道连接的孔隙体积,而由岩心100%饱和水的核磁共振T2谱可以得到全孔径的孔隙大小和对应的孔隙体积分布[18]。因此,高压压汞实验与核磁共振实验获取的孔径范围并不一致,将毛细管压力曲线与 T2谱实际对应的部分孔喉进行对比,则可准确获取两者间的转换系数[19-20]。
-
当孔隙或喉道的半径小于1 μm时,其直径比基本等于 1,因此高压压汞实验和核磁共振实验此时获得的孔隙和喉道的相对分布信息是一致的[5,9],故选取半径小于 1 μm 的高压压汞实验喉道半径分布与对应的 T2谱进行对比分析。具体流程为:①对高压压汞实验中不同喉道半径所对应的累积孔隙体积分数曲线进行高阶多项式拟合以获取多项式拟合方程(图1a)。②将 T2谱信号强度数据进行归一化,并向孔隙半径增大方向进行累加,得到不同 T2谱对应的累积孔隙体积分数曲线,同样利用高阶多项式拟合该曲线以获取多项式拟合方程(图1b)。③根据高压压汞实验和核磁共振实验的高阶多项式计算得到不同累积孔隙体积分数所对应的喉道半径和 T2 谱,再将核磁共振的 T2谱与高压压汞实验的喉道半径在可对比的孔隙体积分数区间内进行拟合,即可得到转换系数(图1c)。④将核磁共振实验获取的T2 谱与转换系数相乘即可得到全孔径的孔隙大小分布 (图1d)。
-
图1 核磁共振-高压压汞联合实验标定的孔隙大小分布
-
Fig.1 Pore size distribution calibrated by combined nuclear magnetic resonance and high-pressure mercury injection experiments
-
2.2 孔隙大小及分布特征
-
核磁共振实验能检测到高压压汞实验难以获取的部分大孔隙和纳米级微孔隙,其孔隙大小分布范围明显宽于高压压汞实验。从低渗透砂岩孔隙大小分布特征(图2)来看,对于渗透率越高的砂岩样品,其最大孔隙半径越大,同时较大孔隙(0.1~10 μm) 所占的体积分数也越高,反之渗透率越低的砂岩中微小孔隙(<0.1 μm)所占的体积分数越高。低渗透砂岩样品的孔隙大小普遍存在双峰分布的特征,在渗透率较高的砂岩中,微小孔隙峰值较低,较大孔隙的峰值较高(图2a,2b)。随着渗透率降低,微小孔隙的峰值升高,较大孔隙的峰值降低(图2c,2d),表明孔隙系统逐渐被微小孔隙所主导。
-
2.3 孔隙大小对流体可动性的影响
-
核磁共振实验不仅可以获取孔隙大小分布信息,还可以用于研究孔隙中流体可动性,进而预测低渗透油藏的开发效果[21-22]。对于物性相对较好的低渗透砂岩,离心后束缚水的孔隙度分量曲线与横轴所围的面积(即束缚水孔隙度)相比于饱和水的孔隙度分量曲线与横轴所围面积(即总孔隙度)的比例较小,即束缚水饱和度相对较低(图3a,3b),而随着孔隙半径减小、物性变差,束缚水饱和度逐渐升高(图3c),对于部分致密的低渗透砂岩,孔隙内赋存的水基本都是束缚水,孔隙主要由束缚流体孔隙主导(图3d)。低渗透砂岩中流体可动性与孔隙大小关系密切,其中束缚水主要赋存在微小孔隙内,而可动流体则多赋存在较大孔隙内。因此,低渗透砂岩中的可动流体孔隙对应连通性较好的较大孔隙系统,而束缚流体孔隙则对应连通性差的微小孔隙系统。
-
图2 低渗透砂岩孔隙大小分布特征
-
Fig.2 Pore size distribution characteristics of low-permeability sandstones
-
由图4 可知,平均孔隙半径与渗透率及可动流体饱和度呈强正相关,分析认为低渗透砂岩储层中较大孔隙含量较高,连通性较好,从而渗流能力增大,使得储层中流体可动性增强,故孔隙大小是决定低渗透砂岩储层连通性以及流体可动性的关键因素。
-
3 剩余油赋存特征
-
由于核磁共振实验获取的T2谱参数能定量识别和表征孔隙中的流体分布,可将核磁共振实验与驱替实验相结合以明确水驱过程中砂岩多尺度、全孔径孔隙的动用程度和剩余油分布特征,并定量评价孔隙尺度的微观剩余油分布特征[23-24]。核磁共振驱替实验流程主要由饱和水、离心水、饱和油和水驱油4 个部分组成,分别研究原始孔隙分布、束缚水孔隙分布、原始条件下的原油分布和水驱过程中剩余油分布[25],其中水驱油过程中在水驱5和50 PV时各进行一次核磁共振 T2谱测试,分别获取水驱过程中原油动用特征和微观剩余油分布特征。
-
图3 低渗透砂岩总孔隙和束缚流体孔隙大小分布特征
-
Fig.3 Size distribution characteristics of total pore and irreducible fluid pore in low-permeability sandstones
-
图4 低渗透砂岩孔隙大小对渗透率和流体可动性的影响
-
Fig.4 Effect of pore size on permeability and fluid mobility in low-permeability sandstones
-
3.1 原油原始赋存特征
-
原油驱替水相进入低渗透岩石时,原油的核磁信号呈双峰分布特征,其中左峰和右峰分别代表岩石中微小孔隙和较大孔隙中赋存的原油核磁信号 (图5)。在物性较好的岩心中,微小孔隙的含油饱和度明显小于较大孔隙的含油饱和度(图5a,5b),表明原油进入低渗透砂岩储层后主要赋存在较大孔隙中,而微小孔隙中则赋存较少,这主要是由于原油进入亲水岩石中需克服喉道半径控制的毛细管阻力,物性越好的岩石中较大孔隙与微小孔隙的喉道半径差异越大,原油的差异赋存越明显(图6)。随着岩心物性变差,原油核磁信号的左峰和右峰的幅度差异逐渐减少,不同孔隙内的原油相对赋存量基本一致(图5c,5d),微小孔隙和较大孔隙的含油饱和度也大致相同,说明在物性较差、偏致密的岩石中,孔隙非均质性减弱,毛细管阻力差异较小,孔隙内不发育原油的优势渗流通道,基本没有产生原油的差异赋存(图6)。
-
图5 不同驱替阶段低渗透砂岩原油赋存特征
-
Fig.5 Occurrence characteristics of crude oil in low-permeability sandstones at different displacement stages
-
图6 低渗透砂岩不同孔隙原油差异赋存特征
-
Fig.6 Differential occurrence characteristics of crude oil in different pores of low-permeability sandstones
-
3.2 剩余油分布特征
-
水驱 50 PV 后基本不再有原油被驱出,此时岩石中残留的原油可认为是剩余油。同一块岩心中,较大孔隙的驱油效率高于微小孔隙,且在物性越差的岩石中 2 类孔隙系统驱油效率的差异越大,微小孔隙系统驱油效率降低幅度越大(图7a)。此外,不同物性的低渗透砂岩剩余油的分布特征存在显著差异。对于物性较好的 5#和 6#岩心水驱结束后核磁共振T2谱左峰对应的微小孔隙剩余油饱和度要低于右峰对应的较大孔隙(图5a,5b,7b),分析认为在连通性较好的岩石中,微观剩余油主要分布在较大孔隙中,这部分剩余油将是后续挖潜的重点。在物性相对较差的7#和8#岩心中,孔隙系统中的连通路径较少且主要位于较大孔隙中,因此微小孔隙中的驱油效率低,微观剩余油主要赋存在微小孔隙中(图5c,5d,7b),这部分剩余油的挖潜需借助压裂作用来改善孔隙连通性。
-
图7 低渗透砂岩水驱50 PV下驱油效率和剩余油饱和度
-
Fig.7 Oil displacement efficiency and remaining oil saturation of low-permeability sandstones after water-flooding of 50 PV
-
为了验证核磁共振驱替实验获取的微观剩余油分布的可靠性,对 5#岩心开展了微米 CT驱替实验,在饱和油、水驱5和50 PV条件下分别进行。实验结果表明,物性较好的低渗透砂岩微观剩余油主要分布在较大孔隙,以孔隙充填型、半充填型为主,而微小孔隙中残留的剩余油较少,与核磁共振驱替实验结果吻合(图8)。这主要是由于物性较好的低渗透砂岩多尺度孔喉发育,孔喉连通性的非均质性强,更易形成优势渗流通道,使得部分较大孔隙弱波及,在低驱替压力梯度下形成孔隙充填型剩余油,且孔隙结构的非均质性越强,绕流作用越明显,孔隙充填型剩余油越常见,而微小孔隙却由于渗吸作用反而剩余油赋存较少。针对微米 CT 扫描得到的孔隙结构模型开展了基于计算流体力学(CFD)的单相绝对渗透率和油水两相渗流模拟,可以看出优势渗流通道在单相绝对渗透率和油水两相渗流模拟中均有体现,且单相绝对渗透率模拟中的优势渗流通道也是水驱油过程的优势驱替通道,两者基本吻合(图9),这也表明这种优势渗流通道主要是受控于孔隙结构的非均质性,因而在物性较好的低渗透砂岩中孔隙充填型剩余油较为发育。
-
图8 基于微米CT驱替实验的低渗透砂岩微观剩余油分布特征
-
Fig.8 Microscopic remaining oil distribution characteristics of low-permeability sandstones based on micron CT displacement experiment
-
图9 低渗透砂岩中优势渗流通道的形成及其对剩余油分布影响
-
Fig.9 Formation of dominant flow channels in low-permeability sandstones and its influence on remaining oil distribution
-
4 剩余油挖潜措施
-
低渗透砂岩孔隙结构具有喉道细小、强水湿、非均质性强等特点,其中较大孔隙所赋存的孔隙充填型剩余油所占比例大,是后期水驱开发的重点挖潜对象,而该类剩余油主要是由于孔隙结构非均质性强,在水驱过程中由于毛细指进作用形成了优势渗流通道导致部分较大孔隙弱波及。LENORMAND 建立的基于相图和统计模型表征非混相驱替方法[26] 表明,通过降低油水界面张力及增大驱替速度可以增加毛细管数,有效减少优势渗流通道的形成。水湿低渗透砂岩由于喉道细小,被水相打散的油滴通过细小喉道的毛细管阻力较大,且作业、洗井过程中水与油层岩石接触时,在毛细管力的作用下被吸入到油层岩石中,使近井地带含水饱和度升高,水的有效流动能力增强导致开发过程中含水率快速上升,因此应降低油水界面张力以削弱贾敏效应[27]。矿场实践表明,J51 井组于 2020 年 4 月加入表面活性剂后,油水界面张力降至0.01 mN/m以下,油井日产液量和日产油量明显增加且含水率变化不大,水湿低渗透砂岩的开发效果显著提升(图10)。此外,增大驱替速度还可以降低毛细指进作用,提高波及效率,有效减少孔隙充填型剩余油,因此在保证井口压力满足安全生产条件下,提高注水井注入量以提升注入强度和注入速度,增大宏观和微观波及范围。
-
5 结论
-
低渗透砂岩的孔隙大小分布呈现较强的非均质性,对流体可动性及微观剩余油分布产生重要影响。通过联合高压压汞和核磁共振实验,利用孔隙与喉道的可对比区间确定了 T2谱与孔隙半径间的转化系数,明确了全孔径的孔隙大小及分布特征。在渗透率越高的低渗透砂岩中,较大孔隙(0.1~10 μm)越占主导。微小孔隙(<0.1 μm)基本为不可动的束缚流体孔隙,随着砂岩平均孔隙半径增大,孔隙流体可动性变好。部分较大孔隙在优势渗流通道的作用下被注入水弱波及,形成孔隙充填型剩余油,是后期水驱开发的重点挖潜目标。通过加入表面活性剂或提高注水井注入量可以增加毛细管数,有效减少低渗透砂岩中微观优势渗流通道以提升开发效果。
-
图10 J51井组注采曲线
-
Fig.10 Injection-production curves of J51 well group
-
符号解释
-
a——形状系数,无量纲;
-
C——转换系数,无量纲;
-
r——孔隙半径,μm;
-
T2——横向弛豫时间,ms;
-
ρ——横向弛豫时间强度,μm/s。
-
参考文献
-
[1] 张冲,杨朝强,汪新光,等.北部湾盆地复杂低渗储层品质分级表征[J].断块油气田,2022,29(4):483-488.ZHANG Chong,YANG Zhaoqiang,WANG Xinguang,et al.Classification and characterization of complex low-permeability reservoir quality in Beibuwan Basin [J].Fault-Block Oil and Gas Field,2022,29(4):483-488.
-
[2] 操应长,杨田,宋明水,等.陆相断陷湖盆低渗透碎屑岩储层特征及相对优质储层成因——以济阳坳陷东营凹陷古近系为例 [J].石油学报,2018,39(7):727-743.CAO Yingchang,YANG Tian,SONG Mingshui,et al.Charac‐ teristics of low-permeability clastic reservoirs and genesis of rel‐ atively high-quality reservoirs in the continental rift lake basin:A case study of Paleogene in the Dongying sag,Jiyang depres‐ sion [J].Acta Petrolei Sinica,2018,39(7):727-743.
-
[3] 范白涛,陈峥嵘,姜浒,等.中国海油非常规和海上低渗储层压裂技术现状与展望[J].中国海上油气,2021,33(4):112-119.FAN Baitao,CHEN Zhengrong,JIANG Hu,et al.Status and prospect of fracturing technology for CNOOC unconventional and offshore low permeability reservoirs [J].China Offshore Oil and Gas,2021,33(4):112-119.
-
[4] YUAN G,GLUYAS J,CAO Y,et al.Diagenesis and reservoir quality evolution of the Eocene sandstones in the northern Don‐ gying Sag,Bohai Bay Basin,East China [J].Marine & Petro‐ leum Geology,2015,62:77-89.
-
[5] JIANG Z,LIU H,ZHANG S,et al.Sedimentary characteristics of large-scale lacustrine beach-bars and their formation in the Eo‐ cene Boxing Sag of Bohai Bay Basin,East China [J].Sedimen‐ tology,2011,58(5):1 087-1 112.
-
[6] 张全培,王海红,刘美荣,等.超低渗透储层全孔径分布及其分形特征研究[J].中国矿业大学学报,2020,49(6):1 137-1 149.ZHANG Quanpei,WANG Haihong,LIU Meirong,et al.Study of the full pore size distribution and fractal characteristics of ul‐ tra-low permeability reservoir [J].Journal of China University of Mining & Technology,2020,49(6):1 137-1 149.
-
[7] 吕天雪,张国一,易立新,等.松辽盆地低渗透储层孔隙结构及分形特征[J].特种油气藏,2022,29(1):59-65.LÜ Tianxue,ZHANG Guoyi,YI Lixin,et al.Pore structure and fractal characteristics of low-permeability reservoirs in Songliao Basin [J].Special Oil & Gas Reservoirs,2022,29(1):59-65.
-
[8] JIN L,WANG G,WANG Z,et al.A review on pore structure characterization in tight sandstones [J].Earth-Science Reviews,2017,177:436-457.
-
[9] WANG Y,YANG S,ZHANG Y,et al.Investigation of pore structure and reservoir quality of Eocene beach-bar sandstones in Dongying Depression,Bohai Bay Basin,East China [J].Journal of Petroleum Science and Engineering,2020,189:106854.
-
[10] 苏玉亮,李新雨,李蕾,等.基于核磁共振可视化试验的致密气藏气水两相渗流机制[J].中国石油大学学报:自然科学版,2021,45(5):104-112.SU Yuliang,LI Xinyu,LI Lei,et al.Gas-water two-phase per‐ colation mechanism in tight gas reservoirs based on NMR visual‐ ization experiment [J].Journal of China University of Petro‐ leum:Edition of Natural Science,2021,45(5):104-112.
-
[11] 崔建,沈贵红,商琳,等.低渗透储层油水相对渗透率最优目标函数处理方法[J].特种油气藏,2022,29(1):85-90.CUI Jian,SHEN Guihong,SHANG Lin,et al.Optimal objec‐ tive function processing method for oil-water relative permeabili‐ ty of low-permeability reservoirs [J].Special Oil & Gas Reser‐ voirs,2022,29(1):85-90.
-
[12] 何辉,周永强,龙卫江,等.低-特低渗透储层微观孔喉结构特征及对水驱油特征的影响——以鄂尔多斯盆地渭北油田长3油层组储层为例[J].油气地质与采收率,2021,28(4):23-34.HE Hui,ZHOU Yongqiang,LONG Weijiang,et al.Pore throat microstructures of low-ultra-low permeability reservoirs and their influence on water displacement characteristics:Taking the Chang 3 reservoir of Weibei Oilfield in Ordos Basin as an exam‐ ple [J].Petroleum Geology and Recovery Efficiency,2021,28(4):23-34.
-
[13] 王亚,杨少春,路研,等.渤海湾盆地东营凹陷高青地区中生界低渗透碎屑岩有效储层特征及发育控制因素[J].石油与天然气地质,2019,40(2):271-283.WANG Ya,YANG Shaochun,LU Yan,et al.Characteristics and controlling factors of effective reservoirs of Mesozoic lowpermeability clastic rocks in Gaoqing Region,Dongying Depres‐ sion,Bohai Bay Basin,China [J].Oil & Gas Geology,2019,40(2):271-283.
-
[14] 余玥,孙一迪,高睿,等.基于T2截止值确定致密岩心表面弛豫率[J].石油实验地质,2022,44(2):342-349.YU Yue,SUN Yidi,GAO Rui,et al.Determination of the sur‐ face relaxivity for tight sandstone cores based on T2 cut-off value [J].Petroleum Geology & Experiment,2022,44(2):342-349.
-
[15] 吴蒙,秦勇,王晓青,等.中国致密砂岩储层流体可动性及其影响因素[J].吉林大学学报:地球科学版,2021,51(1):35-51.WU Meng,QIN Yong,WANG Xiaoqing,et al.Fluid mobility and its influencing factors of tight sandstone reservoirs in China [J].Journal of Jilin University:Earth Science Edition,2021,51(1):35-51.
-
[16] 陈瑶,张宫,郑国庆,等.T2-Pc二维核磁共振岩心测试技术与应用[J].石油实验地质,2021,43(3):549-556.CHEN Yao,ZHANG Gong,ZHENG Guoqing,et al.Core test‐ ing technology with T2-Pc two-dimensional nuclear magnetic res‐ onance and its application [J].Petroleum Geology & Experi‐ ment,2021,43(3):549-556.
-
[17] WU Y,TAHMASEBI P,LIN C,et al.A comprehensive study on geometric,topological and fractal characterizations of pore systems in low-permeability reservoirs based on SEM,MICP,NMR,and X-ray CT experiments [J].Marine and Petroleum Ge‐ ology,2019,103:12-28.
-
[18] 欧阳思琪,孙卫,黄何鑫.多方法协同表征特低渗砂岩储层全孔径孔隙结构——以鄂尔多斯盆地合水地区砂岩储层为例[J].石油实验地质,2018,40(4):595-604.OUYANG Siqi,SUN Wei,HUANG Hexin.Multi-method syn‐ ergistic characterization of total pore structure of extra-low per‐ meability sandstone reservoirs:case study of the Heshui area of Ordos Basin [J].Petroleum Geology and Experiment,2018,40(4):595-604.
-
[19] 房涛,张立宽,刘乃贵,等.核磁共振技术定量表征致密砂岩气储层孔隙结构:以临清坳陷东部石炭系—二叠系致密砂岩为例[J].石油学报,2017,38(8):902-915.FANG Tao,ZHANG Likuan,LIU Naigui,et al.Quantitative characterization of pore structure of tight sandstone reservoirs by NMR T2 spectrum technology:a case study of CarboniferousPermian tight sandstone reservoir in Linqing depression [J].Acta Petrolei Sinica,2017,38(8):902-915.
-
[20] 惠威,贾昱昕,程凡,等.苏里格气田东部盒8储层微观孔隙结构及可动流体饱和度影响因素[J].油气地质与采收率,2018,25(5):10-16.HUI Wei,JIA Yuxin,CHENG Fan,et al.Impact of microscop‐ ic pore structure on moveable fluid saturation in He8 reservoir of eastern Sulige Gasfield [J].Petroleum Geology and Recovery Ef‐ ficiency,2018,25(5):10-16.
-
[21] 黄兴,李天太,王香增,等.致密砂岩储层可动流体分布特征及影响因素——以鄂尔多斯盆地姬塬油田延长组长8油层组为例[J].石油学报,2019,40(5):557-567.HUANG Xing,LI Tiantai,WANG Xiangzeng,et al.Distribu‐ tion characteristics and its influence factors of movable fluid in tight sandstone reservoir:a case study from Chang-8 oil layer of Yanchang Formation in Jiyuan oilfield,Ordos Basin [J].Acta Petrolei Sinica,2019,40(5):557-567.
-
[22] 李晓骁,任晓娟,罗向荣.低渗透致密砂岩储层孔隙结构对渗吸特征的影响[J].油气地质与采收率,2018,25(4):115-120,126.LI Xiaoxiao,REN Xiaojuan,LUO Xiangrong.Influence of pore structures on the characteristic of spontaneous imbibition in low-permeability tight sandstone reservoir [J].Petroleum Geolo‐ gy and Recovery Efficiency,2018,25(4):115-120,126.
-
[23] 高辉,程媛,王小军,等.基于核磁共振驱替技术的超低渗透砂岩水驱油微观机理实验[J].地球物理学进展,2015,30(5):2 157-2 163.GAO Hui,CHENG Yuan,WANG Xiaojun,et al.Experiment of microscopic water displacement mechanism based on NMR displacement technology in ultra-low permeability sandstone [J].Progress in Geophysics,2015,30(5):2 157-2 163.
-
[24] 王香增,赵习森,党海龙,等.基于核磁共振的致密油藏自发渗吸及驱替特征研究[J].地球物理学进展,2020,35(5):1 870-1 877.WANG Xiangzeng,ZHAO Xisen,DANG Hailong,et al.Re‐ search on the characteristics of spontaneous imbibition and dis‐ placement of the tight reservoir with the NMR method [J].Prog‐ ress in Geophysics,2020,35(5):1 870-1 877.
-
[25] 肖文联,杨玉斌,李闽,等.鄂尔多斯盆地不同类型储集层水驱油特征实验[J].石油勘探与开发,2021,48(4):807-816.XIAO Wenlian,YANG Yubin,LI Min,et al.Experimental study on the oil production characteristics during the waterflood‐ ing of different types of reservoirs in Ordos Basin,NW China [J].Petroleum Exploration and Development,2021,48(4):807-816.
-
[26] LENORMAND R.Liquids in porous media [J].Journal of Phys‐ ics Condensed Matter,1999,2(S):79.
-
[27] 杨森,舒政,闫婷婷,等.超低界面张力强乳化复合驱油体系在低渗透油藏中的应用[J].断块油气田,2021,28(4):561-565.YANG Sen,SHU Zheng,YAN Tingting,et al.Application of ultra-low interfacial tension and strong emulsion composite flooding system in low permeability reservoir [J].Fault-Block Oil and Gas Field,2021,28(4):561-565.
-
摘要
海上低渗透油藏动用程度低,具有巨大的开发潜力,但由于其孔隙结构非均质性强导致流体可动性和油水赋存特征非常复杂,使得低渗透砂岩在开发阶段剩余油挖潜难度大。利用核磁共振驱替实验结合高压压汞、微米CT驱替实验以及渗流数值模拟方法,探究低渗透砂岩全孔径的孔隙大小分布特征及其对流体可动性以及剩余油赋存特征的影响。结果表明:低渗透砂岩的孔隙大小具多尺度特征,呈双峰分布,其中可动流体主要赋存在较大孔隙(0.1~10 μm)内,微小孔隙(<0.1 μm)内主要赋存束缚水。原油进入低渗透砂岩时存在优先赋存于较大孔隙的差异赋存现象,且物性越好,原油差异赋存现象越显著。在物性相对较好的低渗透砂岩中微观剩余油主要以孔隙充填形式赋存于较大孔隙,而在物性相对较差的砂岩中主要赋存于微小孔隙中。孔隙充填型剩余油是由于非均质的孔隙结构在水驱过程中产生优势渗流通道导致部分较大孔隙弱波及形成的,是后期重点挖潜对象。通过降低油水界面张力、增大驱替速度可以有效减少优势渗流通道,提高低渗透砂岩剩余油的动用程度。
Abstract
Offshore low-permeability reservoirs have a low percentage of producing reserves and thus are of great development po‐ tential. However,the strong heterogeneity of pore structures in low-permeability reservoirs has resulted in complex fluid mobility and oil -water occurrence characteristics,which makes it difficult to tap the remaining oil potential in low-permeability sandstone reservoirs at the development stage. The full-aperture pore size distribution characteristics of low-permeability sandstones and their influence on fluid mobility and occurrence characteristics of remaining oil were investigated by using nuclear magnetic resonance displacement experiments supplemented by high-pressure mercury injection,micron CT displacement experiments,and flow nu‐ merical simulation. The results show that the multi-scale pore sizes in low-permeability sandstones are featured by bimodal distribu‐ tion. The movable fluids mainly occur in large pores(0.1 -10 μm),while the irreducible water mainly occurs in micropores(< 0.1 μm). When the crude oil enters the low-permeability sandstone,it preferentially occurs in the large pores,and the sandstone with favorable physical properties shows a more significant differential occurrence of crude oil. For the sandstone with relatively favor‐ able physical properties,the microscopic remaining oil mainly occurs in the large pores in the form of pore filling. For the sandstone with worse physical properties,the microscopic remaining oil mainly occurs in the micropores. The pore-filling remaining oil is formed by the weak sweep of relatively large pores due to the dominant flow channel generated by the heterogeneous pore structures during water flooding,which is the key target of potential tapping. By reducing the oil-water interfacial tension and increasing the displacement speed,the dominant flow channels can be effectively reduced,and the percentage of producing remaining oil in low-permeability sandstones can be improved.