-
近年来,致密油藏已经成为我国油气勘探开发的重要领域[1-2],其储层具有低孔隙度、超低渗透率、天然微裂隙发育等特征[3-4],通常需要通过水力压裂改造后才具有经济开发的效果[5-6]。地应力的大小、方向分布是致密储层水力压裂改造的核心参数,直接影响水力压裂改造的最终效果,同时对水平井眼方位、射孔井段和施工工艺等参数具有指导意义,储层原地应力的测量越来越受到工程界的重视[7-8]。长期以来,初始地应力测量[9-10] 从理论方法到应用,已经得到了迅速的发展,储层地应力主要测量方法有:水压致裂法[11-12]、应力恢复法[13]、应力解除法、井下微震法[14]、井壁崩落法和声发射法[15]。其中,利用岩石 Kaiser效应预测地应力的方法,不仅测量精确度高而且经济,得到中外普遍认可。
-
美国材料与实验协会(ASTM)将岩石声发射 (AE)现象定义为材料内局部能量源快速释放的一种现象[16]。1950年 Kaiser发现该现象,对具有应力记忆功能的材料进行再加载,当加载应力达到之前所受的最大应力时将有明显累积声发射数量的突变,这就是著名的 Kaiser 效应[17]。在 Kaiser 发现多晶金属的声发射记忆功能后,GOODMAN通过大量实验证明岩石也具有显著的 Kaiser 效应[18],此后 Kaiser效应成为地应力测量的重要方法之一[19-20]。
-
中外学者针对利用Kaiser效应进行储层地应力预测开展了大量的研究。BOYCE利用声发射方法分析了各类岩石的历史最大应力,认为 Kaiser效应对应于岩石经历的最高应力[21]。LOCKNER 提出 Kaiser点应选取在AE总计数出现的最大弯曲点[22],同时LAVROV也指出在单轴压缩实验中,当加载应力大于岩石峰值强度的 50% 时 Kaiser 效应可能失效[23]。针对如何高效、准确识别Kaiser效应点问题,王小琼等研究了不同加载次数对Kaiser效应点识别的影响,提出多次加载后摩擦类型 AE 事件能被压制掉,从而提高Kaiser效应点的识别精度[24];张延新等认为 Kaiser 效应发生在岩心破裂前弹性变形阶段,建立了应力曲线与声发射累积曲线结合的 Kai‐ ser效应点优选方法,使用应力曲线缩小Kaiser效应点范围,通过声发射累积曲线确定Kaiser效应点[25]; 李庶林等通过实验验证,增量循环加载法能够使 Kaiser 效应点更加明显,提出增量循环加载模式优化 Kaiser效应点选取方法[26-27]。前人通过不同方法不同程度上优化了 Kaiser效应点的选取,但当储层岩心在加载过程中声发射参数变化不显著时,仍然难以清晰、准确的识别Kaiser效应点[28]。笔者研究岩心加载过程中 AE 事件的产生机制与变化规律,通过对 AE参数分析,得到岩石单轴加载过程中 AE 参数变化规律与 Kaiser 效应之间关系,从而建立 Kaiser 效应点识别方法,能够大幅度提高 Kaiser 效应点识别的精度和可靠性,使用该方法对某油田现场储层地应力预测进行研究,取得了优异的效果。
-
1 实验方法
-
1.1 实验样品
-
岩心取自某油田 X 区块的某重点取心井 2 600 m处。分别从水平方向 0°,45°,90°和垂直方向 4个方向钻取,岩心样品为圆柱形,直径为 25 mm,高度为50 mm,端面的平行度达0.01 mm。
-
在加载之前,利用 Panametrics-5058PR 岩石声波仪测试了岩心样品的纵波波速和横波波速,计算其动态泊松比、动态杨氏模量和各向异性系数;由实验的应力-应变曲线得到岩心的静态泊松比和静态杨氏模量(表1)。
-
1.2 实验设备
-
实验采用美国物理声学公司(PAC)的 PCI-II声发射系统,长春朝阳伺服加载系统,压机最大量程为 1 000 kN。PCI-II 声发射系统的采样率高达 40 MHz,18位数模转换,具有连续波形记录力,并可采集20个特征参数,包括AE事件、能量、振铃、上升时间等,另外 PCI-II还有 8个外接参数,可以将压机的应力、岩心上的应变等引入 AE 采集系统保持时间同步记录。实验测试探头使用 PAC 公司的 NANO 声发射探头,探头直径为 8 mm,带宽为 50~750 kHz。
-
1.3 实验流程
-
实验时,在岩心周围安装应变硅,用于测试单轴加载过程中岩心的轴向和径向应变,在圆柱形岩心下端粘贴 1 个 NANO 声发射探头,用于测量加载过程中岩心释放的声学信号;NANO探头将声发射弹性信号转换成电信号,由前置放大器将信号放大后传输至电脑,电脑记录岩石加载过程中产生的 AE 事件,实验过程中保持加载过程与声发射监测同步。加载系统采用加载速率控制,加载速率为2× 10-6 mm/s;声发射监测系统设置采样间隔为 10 μs,为了减少噪音的干扰,选择高的触发阈值。实验流程如图1所示。
-
图1 Kaiser实验测试流程
-
Fig.1 Kaiser experimental test
-
2 结果分析与讨论
-
2.1 声发射累积曲线变化特征
-
根据应力、累积声发射事件数与时间的关系曲线,将岩心单轴加载实验结果划分为压密、弹性形变和破裂3个阶段(图2)。
-
在压密阶段,岩心为塑性形变,应力曲线呈略微向上弯曲的特点。加载过程中岩心存在微裂隙、孔隙闭合,矿物颗粒之间的挤压摩擦,释放大量的声发射信号,累积声发射事件数曲线呈上升趋势;但是岩心内部形变无规律以及声发射信号释放的随机性,导致累积声发射事件数曲线出现多个跳跃点。
-
图2 应力、累积声发射事件数与时间的关系
-
Fig.2 Relationship between time and cumulative AE curve/ stress
-
在弹性形变阶段,应力增量与加载时间成正比关系,应力曲线呈直线上升。弹性形变阶段前期,矿物颗粒之间的挤压、错动随机释放强度不同的声发射信号,累积声发射事件数曲线出现多个无规律突变点;弹性形变阶段中期,岩心弹性压缩,声发射数量少,累积声发射事件数曲线趋于平缓,即AE平静期;弹性形变阶段末期,由于岩心内矿物晶体滑移、微裂隙形成且扩展,岩心将持续释放大量声发射信号,累积声发射事件数曲线持续上升,并出现多个突变点。
-
在岩心破裂阶段,应力曲线呈先略微向下弯曲随后迅速跌落的特点。岩心内形成大量小裂隙,裂隙之间连通形成大裂缝,大量矿物颗粒破碎,最终岩心破碎,岩心释放大量声发射信号,累积声发射事件数曲线呈直线上升趋势。
-
2.2 声发射能量变化特征
-
分析岩心压密、弹性形变、破裂3个阶段声发射能量变化规律(图3)。岩心压密过程中释放的声发射能量有强有弱,在较大范围内上下波动。弹性形变前期,声发射能量较小,并且相对均一;弹性形变中期,声发射能量较低,部分时间内没有声发射信号;弹性形变末期,声发射信号数量增加,声发射能量相对增加。岩心破碎过程中释放大量的声发射信号,声发射能量急剧增加,达到最高峰。
-
由图3可以看出,在弹性形变阶段中前期,岩心释放声发射信号较少,并且声发射能量普遍较低,部分时间段没有声发射信号;然而在 186 s处,岩心突然释放了强的声发射信号,声发射信号能量和数量突然增加,随后又回落,在200~400 s声发射能量处于较低的静默状态,表明在186 s处岩心达到之前所受最大历史应力突然释放大量的强声发射信号,该现象与 Kaiser现象相吻合,因此能够判定在能量突变点附近时刻为该岩心的Kaiser效应点。
-
图3 声发射能量图谱
-
Fig.3 AE energy spectrum
-
2.3 Kaiser效应点优化识别方法
-
实验研究发现,岩心加载过程中 Kaiser 效应点不仅与声发射累积曲线有关,同时与声发射能量变化密切相关,因此提出声发射能量图谱与声发射累积曲线结合的 Kaiser 效应点优化识别方法(图4)。通过能量图谱,首先将能量剧烈浮动的前期压密阶段、能量达到峰值的破裂阶段排除,选定声发射释放数量较少、能量较低的弹性形变前阶段;其次,在声发射能量较低的弹性形变前中期,选定声发射能量突变时间点;最后,在标定声发射能量突变点时刻点,对应声发射累积曲线跳跃点,确定为Kaiser效应点。
-
图4 声发射能量图谱与声发射累积曲线结合识别 Kaiser效应点
-
Fig.4 Kaiser effect point discriminant method combining AE energy spectrum and cumulative AE curve
-
3 基于 Kaiser 效应点识别的储层地应力预测
-
3.1 Kaiser效应点识别
-
针对X区块,使用Kaiser效应点优化识别方法,分析岩心所受历史最大应力。对于水平方向 0°岩心,95 s 前是岩心压密阶段,声发射数量较多,能量变化幅度范围较大;95~430 s 为岩心弹性形变阶段,声发射数量较少,能量相对较低;430 s后为岩心破裂阶段,岩心发生剪切和拉张破坏,释放大量能量,声发射数量和声发射能量都急剧增加,声发射能量达到峰值(图5a)。在 186 s处有声发射数量和能量的突变点,释放出大量的能量,声发射能量突增,声发射累积曲线出现跳跃点,说明在该点达到了岩心历史承受的最大应力释放能量,与 Kaiser现象相吻合。因此将 186 s 作为水平方向 0°岩心的 Kaiser 效应点,应力曲线上该点处的应力为 43.9 MPa。对于水平45°方向岩心,92 s前为岩心压密阶段,92~530 s为岩心弹性形变阶段,530 s后为岩心破裂阶段。在 230 s处轴向载荷达到了岩心历史承受的最大应力,岩心释放大量能量,出现能量的突变点和声发射累积曲线跳跃点。因此 230 s作为水平45°方向岩心的Kaiser效应点,其应力为42.5 MPa (图5b)。对于水平 90°方向岩心,105 s前为岩心压密阶段,105~420 s 为岩心弹性形变阶段,420 s 后为岩心破裂阶段。在 194 s处轴向载荷达到了岩心历史承受的最大应力,出现能量突变点和声发射累积曲线跳跃点。因此 194 s 为水平 90°方向岩心的 Kaiser 效应点,其应力为 34.6 MPa(图5c)。对于垂向岩心,112 s 前为岩心压密阶段,112~380 s 为岩心弹性形变阶段,380 s后为岩心破裂阶段。在 278 s处出现岩心能量的突变点和声发射累积曲线跳跃点,因此 278 s 为垂向岩心的 Kaiser 效应点,其应力为46.1 MPa(图5d)。
-
3.2 储层地应力计算
-
根据 Kaiser实验测试得到的水平面上 3个方向的正应力分量,使用摩尔库伦准则计算不同方向正应力分量:
-
将 3 个方向的正应力分量代入(1)式,以 σx,σy 和 τxy 为未知数联立方程组计算得到 σx,σy 和 τxy。把其代入现弹性理论公式,可以求出最大和最小水平主应力,其表达式分别为:
-
图5 不同方向岩心声发射累积曲线与能量图谱
-
Fig.5 AE energy spectrum and cumulative AE curve of cores in different directions
-
垂直方向岩心Kaiser效应点对应的应力与孔隙压力之和即为储层上覆岩层应力,其表达式为:
-
根据 Kaiser 效应实验分别得到,水平方向 0°应力分量为 43.9 MPa,水平方向 45°应力分量为 42.5 MPa,水平方向 90°应力分量为 34.6 MPa,垂直方向应力分量为 41.6 MPa;将应力分量代入(1)—(4)式得到 X 区块最大水平主应力为 64.7 MPa,最小水平主应力为 53.5 MPa,上覆岩层压力为 66.1 MPa,则该区块水平地应力差为11.2 MPa。
-
3.3 结果验证
-
通过测井评价分析得到 X 区块埋深为 2 600 m 处储层地应力(图6),该区块的最小水平主应力约为 54 MPa,最大水平主应力约为 63 MPa,上覆岩层压力为 64 MPa。依据 Kaiser效应点识别方法,通过理论计算得到储层地应力与现场实测储层地应力吻合,说明利用能量图谱与声发射累积曲线的 Kai‐ ser效应点优化识别方法,能精确、可靠的得到储层地应力分布。
-
4 结论
-
通过对某油田 X 区块某重点取心井岩心开展单轴压缩 AE 实验,阐明了不同加载阶段声发射累积曲线及能量变化规律,通过对 AE 事件机制及规律研究,建立了Kaiser效应点识别方法,准确计算X 区块储层地应力。
-
图6 X区块测井评价储层地应力
-
Fig.6 Reservoir in-situ stress evaluation of Block X
-
通过声发射能量变化,将岩心单轴加载分为 3 个阶段:①岩心压实阶段。岩心产生相对较多的声发射数,声发射能量波动较。②岩心弹性形变阶段。声发射能量较为均一,声发射数量较少。③岩心破碎阶段。声发射数量和能量急剧增加,声发射能量值达到峰值。
-
相比较传统的 Kaiser 点识别方法,通过声发射能量图谱与声发射累积曲线结合的方法,能更加准确、有效的选择 Kaiser效应点。通过单轴压缩声发射实验,利用优化的Kaiser效应点识别方法,分析某油田储层地应力分布,理论计算结果和现场实测得到地应力结果吻合度较高,验证了 Kaiser点识别新方法的可靠性。
-
符号解释
-
pp——孔隙压力,MPa;
-
α——地层孔隙压力系数;
-
σV——垂直方向主应力,MPa;
-
σ'V——Kaiser 效应点识别的垂直方向岩心的应力, MPa;
-
σh——最小水平主应力,MPa;
-
σH——最大水平主应力,MPa;
-
σx——x轴方向应力,MPa;
-
σy——y轴方向应力,MPa;
-
σθ——θ方向应力,MPa;
-
τxy——切应力,MPa;
-
θ——与x轴方向的夹角,(°)。
-
参考文献
-
[1] 罗群,高阳,张泽元,等.中国与美国致密油形成条件对比研究 [J].石油实验地质,2022,44(2):199-209.LUO Qun,GAO Yang,ZHANG Zeyuan,et al.A comparative study of geological conditions of tight oils in China and USA [J].Petroleum Geology & Experiment,2022,44(2):199-209.
-
[2] 王卓,赵靖舟,孟选刚,等.鄂尔多斯盆地东南部柴上塬区三叠系延长组长6致密油成藏主控因素及富集规律[J].石油实验地质,2022,44(2):251-261.WANG Zhuo,ZHAO Jingzhou,MENG Xuangang,et al.Key controlling factors and enrichment mechanisms of tight reser‐ voirs in 6th member of Triassic Yanchang Formation,Chais‐ hangyuan area,southeastern Ordos Basin [J].Petroleum Geol‐ ogy & Experiment,2022,44(2):251-261.
-
[3] 汪新光,郇金来,彭小东,等.基于数字岩心的致密砂岩储层孔隙结构与渗流机理[J].油气地质与采收率,2022,29(6):22-30.WANG Xinguang,HUAN Jinlai,PENG Xiaodong,et al.Flow mechanism and pore structures of tight sandstone based on digi‐ tal core analysis [J].Petroleum Geology and Recovery Effi‐ ciency,2022,29(6):22-30.
-
[4] 胡渤,蒲军,苟斐斐.基于数字岩心的致密砂岩微观孔喉结构定量表征[J].油气地质与采收率,2022,29(3):102-112.HU Bo,PU Jun,GOU Feifei.Quantitative characterization of pore throat microstructure of tight sandstone based on digital core technology [J].Petroleum Geology and Recovery Effi‐ ciency,2022,29(3):102-112.
-
[5] 徐加祥,丁云宏,杨立峰,等.致密油藏分段多簇压裂水平井复杂缝网表征及产能分析[J].油气地质与采收率,2019,26(5):132-138.XU Jiaxiang,DING Yunhong,YANG Lifeng,et al.Character‐ ization and productivity analysis of complex fracture network of multi cluster fracturing horizontal wells in tight reservoirs [J].Petroleum Geology and Recovery Efficiency,2019,26(5):132-138.
-
[6] 赵国翔,姚约东,王链,等.基于三维嵌入式离散裂缝模型的致密油藏体积压裂水平井数值模拟[J].大庆石油地质与开发,2022,41(6):143-152.ZHAO Guoxiang,YAO Yuedong,WANG Lian,et al.3D EDFM⁃Based numerical simulation of volume fractured horizon‐ tal wells in tight oil reservoirs [J].Petroleum Geology & Oil‐ field Development in Daqing,2022,41(6):143-152.
-
[7] 刘爱群,范彩伟,吴云鹏,等.南海高温高压领域基于传递模式的它源压力预测方法研究[J].中国海上油气,2021,33(1):50-55.LIU Aiqun,FAN Caiwei,WU Yunpeng,et al.Study on predic‐ tion method of allochthonous pressure based on transfer mode in high temperature and high pressure field of South China Sea[J].China Offshore Oil and Gas,2021,33(1):50-55.
-
[8] 宋昊,蒋有录,侯帅,等.长岭断陷龙凤山地区下白垩统地层压力特征及其对油气成藏的影响[J].特种油气藏,2022,29(2):42-50.SONG Hao,JIANG Youlu,HOU Shuai,et al.Pressure charac‐ teristics and its influence on hydrocarbon accumulation of Lower Cretaceous Formation in Longfengshan Area,Changling Faulted Depression [J].Special Oil & Gas Reservoirs,2022,29(2):42-50.
-
[9] 蔡美峰,乔兰,李华斌.地应力测量原理和技术[M].北京:科学出版社,1995.CAI Meifeng,QIAO Lan,LI Huabin.Principle and technique of in-situ stress measurement [M].Beijing:Science Press,1995.
-
[10] AMADEI B,STEPHANSSON O.Rock stress and its measure‐ ment [M].London:Chapman and Hall,1997.
-
[11] 王建军.应用水压致裂法测量三维地应力的几个问题[J].岩石力学与工程学报,2000,19(2):229-233.WANG Jianjun.Several problems in application of hydraulic fracturing method to in-situ 3D stress measurement [J].Chinese Journal of Rock Mechanics and Engineering,2000,19(2):229-233.
-
[12] 刘允芳.水压致裂法地应力测量的校核和修正[J].岩石力学与工程学报,1998,17(3):297-304.LIU Yunfang.Check and modification for geostress measure‐ ment by hydraulic fracturing technique [J].Chinese Journal of Rock Mechanics and Engineering,1998,17(3):297-304.
-
[13] 靳晓光,王兰生,李晓红.地下工程围岩二次应力场的现场测试与监测[J].岩石力学与工程学报,2002,21(5):651-653.JIN Xiaoguang,WANG Lansheng,LI Xiaohong.Site testing and monitoring of induced stress field in surrounding rocks of underground engineering [J].Chinese Journal of Rock Mechan‐ ics and Engineering,2002,21(5):651-653.
-
[14] 陈忠辉,唐春安,徐小荷,等.岩石声发射Kaiser效应的理论和实验研[J].中国有色金属学报,1997,7(1):9-12.CHEN Zhonghui,TANG Chun’an,XU Xiaohe,et al.Theoreti‐ cal and experimental studies for Kaiser effect in rock [J].Trans‐ actions of Nonferrous Metals Society of China,1997,7(1):9-12.
-
[15] 李志明,张金珠.地应力与油气勘探开发[M].北京:石油工业出版社,1997.LI Zhiming,ZHANG Jinzhu.Crustal stresses and petroleum ex‐ ploration and development [M].Beijing:Petroleum Industry Press,1997.
-
[16] 张茹,谢和平,刘建锋,等.单轴多级加载岩石破坏声发射特性试验研究[J].岩石力学与工程学报,2006,25(12):2 584-2 588.ZHANG Ru,XIE Heping,LIU Jianfeng,et al.Experimental study on acoustic emission characteristics of rock failure under uniaxial multistage loading [J].Chinese Journal of Rock Me‐ chanics and Engineering,2006,25(12):2 584-2 588.
-
[17] KAISER E J.A study of acoustic phenomena in tensile tests [D].Munich,Germany:Technische Hochschule München,1959.
-
[18] GOODMAN R E.Subaudible noise during compression of rocks [J].Geological Society of America Bulletin,1963,74(4):487-490.
-
[19] SETOL M,UTAGAWAL M,KATSUYAMAL K,et al.In-situ stress determination by acoustic emission technique [J].Interna‐ tional Journal of Rock Mechanics and Mining Sciences,2000,37(3):543-547.
-
[20] LAVROV A.The Kaiser effect in rocks principles and stress esti‐ mation techniques [J].International Journal of Rock Mechanics and Mining Sciences,2003,40(2):151-171.
-
[21] BOYCE G M.A study of the acoustic emission response of vari‐ ous rock types[D].Philadelphia:Drexel University,1981.
-
[22] LOCKNER D A.The role of acoustic emission in the study of rock fracture [J].International Journal of Rock Mechanics and Mining Science and Geomechanics,1993,30(7):893-899.
-
[23] LAVROV A.The Kaiser effect in rocks principles and stress esti‐ mation techniques [J].International Journal of Rock Mechanics and Mining Sciences,2003,40(2):151-171.
-
[24] 王小琼,葛洪魁,宋丽莉.两类岩石声发射事件与Kaiser效应点识别方法的实验研究[J].岩石力学与工程学报,2011,30(3):580-588.WANG Xiaoqiong,GE Hongkui,SONG Lili.Experimental study of two types of rock sample acoustic emission events and Kaiser effect point recognition approach [J].Chinese Journal of Rock Mechanics and Engineering,2011,30(3):580-588.
-
[25] 张延新,曹龙辉,李泽杰,等.不同循环加载应力下花岗岩Kai‐ ser效应特征的试验研究[J].实验力学,2021,36(1):123-132.ZHANG Yanxin,CAO Longhui,LI Zejie,et al.Experimental study on Kaiser effect characteristics of granite under different cyclic loading stresses [J].Journal of Experimental Mechanics,2021,36(1):123-132.
-
[26] 李庶林,尹贤刚,王泳嘉,等.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2 499-2 503.LI Shulin,YIN Xiangang,WANG Yongjia,et al.Study on acoustic emission characteristics of rock failure under uniaxial compression [J].Chinese Journal of Rock Mechanics and Engi‐ neering,2004,23(15):2 499-2 503.
-
[27] 李庶林,周梦婧,高真平,等.增量循环加卸载下岩石峰值强度前声发射特性实验研究[J].岩石力学与工程学报,2019,38(4):724-735.LI Shulin,ZHOU Mengjing,GAO Zhenping,et al.Experimen‐ tal study on acoustic emission characteristics of rock before peak strength under incremental cyclic loading and unloading [J].Chinese Journal of Rock Mechanics and Engineering,2019,38(4):724-735.
-
[28] 张广清,金衍,陈勉.利用围压下岩石的凯泽效应测定地应力 [J].岩石力学与工程学报,2002,21(3):360-363.ZHANG Guangqing,JIN Yan,CHEN Mian.Determination of in-situ stress by Kaiser effect of rock under confining pressure [J].Chinese Journal of Rock Mechanics and Engineering,2002,21(3):360-363.
-
摘要
在储层岩心Kaiser实验中,声发射累积曲线通常出现多个突变点,导致常规Kaiser效应点识别方法不精确,甚至存在无法读取Kaiser点的问题。为此,提出将声发射能量图谱与声发射累积曲线结合的Kaiser效应点优化识别方法,并用于某油田 X区块储层地应力预测。岩心单轴加载实验结果表明:加载初期,岩心处于压缩阶段,声发射数量较多,声发射能量值波动范围较大;加载中期,岩心处于弹性形变阶段,声发射数量较少,声发射能量值较低,变化幅度均一;加载后期,应力达到储层岩心破裂压力,岩心发生破裂,声发射数量急剧增加,声发射能量值达到峰值。加载中期阶段,当轴向应力达到储层岩心承受的历史最大应力时,岩心突然释放大量能量,声发射数量和能量值均突增,随后迅速降低,该现象与Kaiser现象相吻合,因此通过声发射能量图谱与声发射累积曲线结合的方法能够识别Kaiser效应点。利用优化后的Kaiser效应点识别方法,分析某油田X区块地应力分布,计算结果与现场测试结果吻合。
Abstract
There are multiple mutation points in the acoustic emission (AE) cumulative curve in the Kaiser experiments of reservoir cores, causing the routine Kaiser effect point discriminant method to be inaccurate, and there is even a problem that the Kaiser point cannot be read. To solve this problem, an optimized Kaiser effect point discriminant method combining AE energy spectrum and cumulative AE curve is proposed in this paper and applied to the prediction of reservoir in-situ stress in Block X of an Oilfield. The experimental results of core uniaxial loading show that at the initial period of core loading, the core is in the compression stage, with a large number of AE and a wide fluctuation range of AE energy values. In the middle period of loading, the core is in the elastic deformation stage. The amount of AE is small, and the AE energy value is low. The range of change is uniform. At the late loading period, the stress reaches the fracture pressure of the reservoir core, and the core ruptures. The number of AE increases sharply, and the AE energy value reaches a peak. In the middle period of loading, the core suddenly releases a large amount of en‐ ergy, and the AE number and energy value have a sudden increase, followed by a rapid decrease when the axial stress reaches the historical maximum stress of the reservoir core. This phenomenon is in accordance with that of Kaiser. Therefore, the Kaiser effect point can be determined by combining the AE energy spectrum and cumulative AE curve. By using the optimized Kaiser effect point discriminant method, the in-situ stress distribution in Block X of an Oilfield is analyzed, and the results are in good agreement with the field test results.