-
中国低渗透油藏油气储量丰富,低渗透油藏探明储量占全国总储量的 49.2%[1]。伴随油气储存总量的逐步下降,低渗透油藏开发的战略意义日渐提高。国际上将渗透率小于 50 mD 的油藏定义为低渗透油藏[2]。结合渗透率及开发方式特点,胜利油区低渗透油藏可细分为 3 大类:渗透率为 10~50 mD 定义为一般低渗透油藏,适合进行常规水驱开发;渗透率为 3~10 mD定义为特低渗透油藏,通过技术适配可注水注气开发;渗透率小于 3 mD 的定义为致密油藏[3]。胜利油区低渗透油藏埋藏深度大于 3 000 m 的储量约占 53.4%,储量丰度低,油层原始含水饱和度高达40%左右。
-
低渗透油藏开发早期地层压力高,通常以弹性开采为主,采收率约为6%[4]。开发中后期地层能量下降,动液面降低,开发难度增加。低渗透油藏开发具有如下特点:一是启动压力与渗透率呈反比; 二是采收率与渗透率呈正比。低渗透油藏开发技术一般为压裂造缝、注水、酸化改造储层增渗[5]、渗吸采油、气动力深穿透增注及合理布井技术等(表1)。其中,效果突出的开发技术有注水作业及渗吸吞吐作业。对一般储层,注水开发能取得有效开采效果,但对于低渗透油藏的注水措施,注入量低、产液量低、采收率低,易出现阻力高、注不进的现象[6]。若强行高压注水,易使地面设备和井下工具受高压损害,造成经济损失,因此须加入活性剂辅助降低注入压力。对于渗吸作业,基于毛细管力实现水对油的顶替,高黏度的原油会抑制渗吸泄油效果,因此开发渗吸剂有望提高吞吐采油效果。此外,注入水在井间渗流过程中,地层吸附、黏土膨胀等因素抑制井间的能量传导,不利于提高油井压力。因此,在水井-油井-井间同时开展的水驱-渗吸-驱泄开发,有助于提高采油效果。将上述 3 种开发措施有机结合,构建减阻-渗吸-驱泄协同开发技术,有望产生“1+1+1>3”的效果,有效提高低渗透油藏的注采能力。
-
1 低渗透油藏减阻-渗吸-驱泄协同开发机理
-
为解决低渗透油藏水井注入量低、单井采出液量低、难以有效驱替等问题,开展注-驱-泄协同开发技术,分别对水井、油井及井间开展活性剂乳化减阻、毛细管力渗吸顶替、驱泄剥离等措施,实现降压增注补能、采油井的渗吸出液以及井间的扩大波及有效驱替。另外,井间驱泄作业的实施,从功能上可以克服单一降压增注措施的局限,例如作用时间短、减阻剂易被地层吸附、作业半径短等问题,提高作业有效期,延长作业距离;同时又可以保障驱替压力的有效传导,提高压力梯度和井间残余油的有效动用。渗吸措施的实施在提高微小裂缝残余油动用的同时,还可以疏通油流通道,促进由水驱及驱泄剂动用原油的泄出。一体化协同增效,总体上达到提高残余油动用、提高采收率的目的。减阻-渗吸-驱泄协同开发机理主要包括以下内容(图1):
-
减阻剂强化水井增注 活性减阻增注技术是应对低渗透油藏注水困难的有效手段之一,作用机制为降低油水界面张力及边界层厚度,提高油水相渗流能力。乳化洗油效率是评价减阻剂性能的关键指标,洗油效率与毛细管准数呈正比。活性减阻剂可降低油水界面张力至 10-3~10-2 mN/m,毛细管准数增加 2~3 个数量级,可显著降低原油的黏附强度,提高洗油效率。在提高相渗流能力方面,减阻剂活性分子可吸附在边界层流体表面,降低流体的流动阻力,增加储层孔隙度,进而提高渗流能力。基于活性减阻剂的双亲性能,疏水组分可吸附在原油疏水链上,减弱原油分子间的 π-π 堆积作用力及范德华力,降低原油黏度及剪切应力,提高采收率。另外,活性减阻剂可与储层基质表面发生吸附,引起储层润湿性翻转,增加岩石与原油接触角,降低油滴与岩石黏附力,促进原油剥离。由于活性减阻剂的特殊结构和界面活性,可以基于活性分子吸附、润湿性改变、增溶胶束理论改善低渗透油藏的渗流特性,实现降压增注目的。
-
图1 低渗透油藏减阻-渗吸-驱泄协同开发机理示意
-
Fig.1 Synergistic development mechanism of drag reduction, imbibition, and displacement in low-permeability reservoir
-
渗吸剂辅助采油提产 渗吸采油是基于毛细管力渗吸顶替微小裂缝油的方法,是低渗透油藏采油的重要方式。该进程中毛细管力为动力,原油流体与基质黏附力为阻力。渗吸剂可协助渗吸吞吐出油,其中活性渗吸剂具有调整界面张力、乳化原油及调控基质润湿性的功能。对于油湿性基质低渗透油藏,需注入润湿反转剂调整润湿性,将亲油性变为亲水性,基于毛细管水被吸附入裂缝并顶替出原油。活性渗吸剂还可以乳化原油,减小油滴尺寸,降低油相在基质微裂缝中的渗流阻力,促进排油。引入活性渗吸剂协助渗吸作业时,应首先确认活性剂融合油水两相即降低油水界面张力的性能,同时考察乳化性能以及调控基质润湿性的能力。
-
驱泄剂促进洗油及驱油 驱泄剂是指既可以乳化原油降黏,又可以在远井地带基于体系黏度对原油进行有效驱替的活性剂。在近井地带,可吸附于油/水/岩界面,改变基质润湿性并将油滴乳化撬离孔喉内壁,降低界面张力,形成尺寸更小的水包油乳化油滴,更易被水驱运移。对于深部的大孔喉可以进行调剖控流,减小油水流度比,迫使流体波及到小孔喉形成新流道,扩大波及体积,提高动液面并降低采出液含水率。
-
2 减阻-渗吸-驱泄协同活性剂体系研制
-
为提高低渗透油藏注采能力,首次提出构建减阻-渗吸-驱泄协同开发技术,3 项措施同时进行,不仅可以实现水井降压增注、油井渗吸置换采油、井间扩大波及驱油的目的,而且各措施之间还可以相互促进,延长措施有效时间、增大作业有效距离,增强注水后水/油井间压力的有效传递,实现更优异的综合开发效果。为此,亟需加强功能性减阻剂、渗吸剂、驱泄剂的筛选优化及研制,以及协同开发工艺的试验优化,以支撑保障协同开发技术,达到改善渗流、提高压力梯度及传导、增强渗吸吐油能力的效果,进而提高油井产能。笔者综合分析了表面活性剂及微乳液降压提注、渗吸剂置换替油、调剖剂扩大波及调流线的相关资料,分别对减阻剂、渗吸剂、驱泄剂开展性能筛选及研制。
-
2.1 降压增注减阻剂
-
降压增注活性减阻剂是一种在表面或界面上以单分子层形式的强吸附材料,由亲水基和亲油基组成,具有两亲性质并可显著降低表面能及界面张力,减小渗流阻力。基于活性减阻剂分子的不同电性及结构,可分为阴离子、阳离子、非离子、两性类、复配型及纳米颗粒型减阻剂[7-18]。
-
阴离子减阻剂最早应用于活性降压增注现场试验,主要有羧酸盐、磺酸盐、磷酸盐和硫酸盐 4 种类型。笔者将聚氧乙烯烷基酚醚羧酸盐类阴离子表面活性剂和聚季铵盐进行复配,并在孤东油田进行配伍性、耐温耐盐性及稳定性试验,油水界面张力可降低至10-2 mN/m,但聚季铵盐的成本较高限制了推广应用。非离子活性剂在水溶液中表现为电中性,一般具有良好的耐盐性能。采用烷基醇酰胺型非离子表面活性剂对纯梁油田的7口注水井进行降压增注试验,试验后注入量均有提升,其中3口井的增注量大于 2 600 m3,有效期超过 130 d。但是,非离子活性剂在高温环境存在浊点易分相浑浊(一般耐温能力小于 90 ºC),因此不适用于高温油藏。相较于单头单链活性剂,双子表面活性剂降低水溶液表面张力的能力和抗盐能力更为突出。采用卤代烷将烷基二甲基叔胺进行季胺化反应,制成双子表面活性剂 SZ,并用于降压增注实验,结果表明该表面活性剂在质量分数为 0.5% 时与原油的界面张力为0.028 mN/m,满足低界面张力性能(图2)。
-
图2 双子表面活性剂结构
-
Fig.2 Molecular structure of Gemini surfactant
-
两性类表面活性剂是一种既有阴离子又有阳离子基团的表面活性剂,常见为咪唑啉型及甜菜碱型。笔者评价了咪唑啉型表面活性剂,可降低油水界面张力至 10-3 mN/m。另外,评价甜菜碱型表面活性剂的界面活性及调控润湿性性能,发现对于非常规油气藏储层,由于甜菜碱易被岩层吸附,椰油丙磺基甜菜碱型表面活性剂的适用性要弱于阴离子表面活性剂。纳米颗粒由于其纳米尺度特性,经过亲水/亲油改性后具备两亲性质,可构建pickering 乳液,或吸附于基质表面降低渗流过程中的边界层厚度,实现降压增注目的。评估纳米 SiO2粉末减阻剂性能,该增注剂可改变岩石的润湿性,由亲水性转变成疏水性;当注入体积为 0.6 PV 时,减压率为 52.78%,提高采收率为 6.84%。
-
由于地层环境复杂,将多种活性剂进行复配,可兼容各自优点。针对低渗透油藏注水井注入压力高的特点,开发出聚醚阴离子/甜菜碱复配表面活性剂体系,用于防膨剂以及防垢剂的优选复配。该体系能够将油水界面张力值降低至1.8×10-2 mN/m,当复配体系注入体积为 0.3 PV时,驱替压力降幅达到 26.18 %,注入 0.6 PV 时,岩心驱替压力降低至 30%。
-
2.2 活性渗吸剂
-
渗吸采油作业过程中,需要往注入水中添加渗吸剂以改变储层润湿性促进排油。渗吸剂一般为表面活性剂和活性纳米材料。活性渗吸剂分子与亲油岩石接触后会使储层转变为亲水性油藏,诱导水相对微裂缝的侵入,增大顶替渗吸作用力。表面活性剂还能通过对原油的乳化使油滴变小,减少渗流阻力,促进渗吸[19-26]。
-
逆向渗吸作业过程中采收率与界面张力呈反比,同向渗吸过程中则相反。渗吸过程的不同模式是由界面张力与基质渗透率决定。渗吸采收率与一定范围内的基质渗透率呈正比,渗透率过大反而不利于渗吸排油。与纯水渗吸相比,活性剂溶液因可融合油水界面,可促进孔隙深处残余油的排出,提高原油采出程度。
-
笔者将脂肪醇聚氧乙烯醚和马来酸酐通过酯化、磺化反应制备得到阴非型活性渗吸剂 AN211。该活性渗吸剂可有效剥离吸附于岩心的油膜,提高动用,且该类型渗吸剂对岩心的渗吸泄油效率高达 48%。针对孤岛油田低渗透储层,开发出前置增能体积压裂技术,基于该工艺可提高造缝能力,增加岩心基质渗吸效率。相较于对照组,应用该技术的油井岩心渗吸采收率可提高 1.56 倍。对低液低产且油压不足的油井,基于乳化增溶作用及润湿性改变,该渗吸剂体系可洗出基质孔隙中的残余油,高压力传递及驱替压差,实现油井增能增产目的(图3)。张星等考察了渗吸采油主控因素,指出影响渗吸采收率的 3 个重要因素为润湿性、界面张力和裂缝条数,并开发出CO2辅助微乳渗吸采油技术,在大 35区块共实施6井次,累积增油量为2 510 t[27]。
-
2.3 驱泄调控剂
-
在注入井-生产井井间的流体渗流过程中,驱泄是提采增效的主要方式。影响驱泄效果的因素为波及系数和洗油效率,其中波及系数是指被驱替液扫及到的体积占总油藏体积的比率,洗油效率由毛细管准数决定。驱泄剂是一类功能性活性剂的总称,其既可以调整注水剖面提高波及动用,又可以泄出残余油提高采油率[28-29]。
-
笔者开发的驱泄剂QXJ-1可自发迁移并吸附于油水两相界面,降低界面张力,分散得到微纳米小尺寸油滴,增强渗流能力;在远井地带,可提高流体黏度,选择性封堵大孔道,使驱替液渗流进入小孔道增大波及体积、提高动用程度。泡沫驱是将微纳米气泡稳定分散在流体中的驱油体系,基于贾敏效应可调整注液剖面扩大波及体积,基于气泡的弹性变形可深入微小裂缝驱出残余油,提高动用比率[30-31]。对于非均质油藏,开发出泡沫驱-表面活性剂交替注入方式,相较于单纯表面活性剂驱,交替注入方式具有优异的调剖性能及开发效率。乳状液转向也是重要的调剖方式[32-33],乳状液可以对非均质柱状岩心实现有效封堵,且比具有相同黏度的聚合物溶液呈现更好的调剖封堵性能,这是由于乳状液可在孔道处产生架桥堆积,进而提高封堵效果,影响封堵效果的关键在于乳液粒径与孔喉尺寸的匹配性。乳状液的调剖机理为,当非均质基质喉道与乳状液粒径比较接近时,乳状液的渗流阻力系数较大,可有效降低驱油剂的流速。开展驱泄作业时往往同时应用以下技术:①滞留气扩大波及体积。注气提采技术是一种改善油水渗流关系、提高油藏高含水期开发效果的有效方法。一方面,气体分子能够进入水相无法进入的孔隙和喉道,扩大微观波及体积;另一方面,气体能够滞留在油藏孔喉中,降低液相渗透率。②离子匹配调整。基于黏土矿物中的钙离子可被钠离子交换,可以有效降低体系的黏附力,从而促进油膜的有效剥离,提高采油效率。通过注水介质对基质的离子调整实现润湿性改变,调控油水界面、黏土矿物及地层水 Zeta 电位,增加基质/水/油三相之间的界面斥力,促进油膜剥离,提高采油效率。
-
图3 剥离运移原油示意
-
Fig.3 Stripping-induced oil migration
-
3 注-驱-泄协同开发技术的数值模拟
-
注采一体化开展驱泄协同作业的进程中常伴随吸附、扩散、封堵等复杂物化现象,但目前常规数值模拟软件主要针对单一作业过程,难以实现对多线程协同驱油及运移过程的模拟,因此,基于有限元固耦合理论基础,建立新型驱泄协同数学模型及评价手段不可或缺。模型的建立应首先基于渗流方程、吸附方程等物理定律,确定模型边界条件,进而将数值模型线性化处理,反馈优化注入方式和段塞大小,测试及评价开发效果,最终实现对实际应用中增注、渗吸及驱泄等作业参数的调控[34-36]。
-
目前为止,研究非均质岩心中多相流动应用最广的数学模型主要分为 2 类,一类是传统计算流体力学的方法,即 Navier-Stokes 方程求解;另一类是 Lattice Boltzmann Method(LMB)方法,LMB体系包括自由能模型、Shan-Chen 伪势模型及颜色梯度模型。LMB方法因可处理不规则路径、不依赖介质假设等优势受到广泛应用。笔者利用随机四参数法重构了非均质砂岩内部孔隙结构,针对润湿性流体研究了 SC-LBM 模型在多孔介质中的渗吸行为,揭示出单一孔喉的复杂渗流机理。在渗流初始阶段,孔隙骨架的排列方式决定界面动力并形成渗吸界面;渗流过程中压力梯度和流动阻力迅速增加,孔隙半径变小,渗吸速率发生改变;后期优势渗吸通道形成,波及面积减少,渗吸驱油效率降低。该研究成果有助于理解非均质孔隙中的自发渗吸规律,进而指导矿场作业。
-
此外,基于活性剂驱油及驱泄剂驱替构建出对应的数学模型。该模型的应用包括以下步骤:①基于活性剂、驱泄剂在储层中的适用性对井网布控进行评价反馈。②考察不同因素对活性剂、驱泄剂驱替开发的影响。③结合现场数据,数值模拟计算并确定表面活性剂驱的用量界限,反馈优化后续矿场应用中活性剂的用量及方式,形成应用性及效益性最好的开发方案。利用 COMP数值模拟软件,探索减阻、渗吸及驱泄作业过程中渗透率、润湿性等因素对采收率的影响,结果表明基质润湿性及渗透率与泄油速度直接相关,流体注入速度及基质中的裂缝大小则决定渗吸效率。基于先导试验及数值模拟计算,相较于常规水驱开发,减阻-渗吸-驱泄协同开发可提高采收率为 8%,其中注入井减阻可提高采收率为2%,采出井渗吸置换可提高采收率为3%,井间驱泄可提高采收率为3%。
-
4 矿场应用效果分析
-
为探索减阻-渗吸-驱泄协同开发技术的有效性,胜利油区开展了注-驱-泄协同开发作业,同步开展水井降压增注、井间驱泄及油井渗吸吞吐作业,取得一定的提高采收率效果(表2)。
-
胜利油区纯化油田纯62区块和郝家油田史112 区块为典型的低渗透油藏,压力传导慢,水井油压高,多数水井无法建立有效驱替,油井产液量和产油量低,区块整体采出程度低。基于纯62区块低渗透油藏地质特征及渗流影响因素的统计分析,例如孔隙度为 16%、平均孔喉半径为 2.554 μm、平均空气渗透率为10 mD,高效补充能量、高效剥离原油以及调控渗流的水油流度比成为油田开发的关键。通过改变基质的亲水亲油性能,促进油膜剥离,减小边界层厚度,控制水油流度比,增加动用程度,提高采收率。通过对水井采用活性剂降压增注,减少界面边界层阻力,增强注入能力;对油井采用渗吸增能吞吐,注-驱-泄协同增效,提高低渗透油藏的注采能力。选取纯 62 区块注剂井 14 口,注剂后油压下降 0.9 MPa,注水量增至 260 m3 /d,水井见效率为 71.4%,单井日产油量由 0.45 t增至 5.08 t,增产效果明显,整体采收率提高8%以上。另外,对胜利油区史 112区块开展注-驱-泄协同改善水驱开发效果现场试验。试验前,注水启动压力为 27.6 MPa,平均单井日产液量为 1.3 t/d,单井日产油量低至 0.9 t/d。在该区块开展注入井活性降压增注、采油井增能渗吸等注入-井间-采出一体化措施后,注入能力提高 182%,日产油量提高64%,采油速度提高0.45%。
-
5 结论
-
作为重要的储油阵地,低渗透油藏的有效开发是提产稳产的重要保障。与单一作业的增注或渗吸不同,减阻-渗吸-驱泄协同开发技术可同步开展注入端增注、井间驱泄、采出端渗吸吐油,有效结合协同优势,避免基质吸附及色谱分离作用,整体上提高作业有效期及有效距离,提高动用程度。该协同开发技术需要化学剂与开发工艺的优化配合。作为低渗透油藏储量丰富的老油田,胜利油区开展的注-驱-泄协同开发先导试验效果突出,具有进一步推广的价值,并得出以下结论:①注入-井间-采出端开展的减阻-渗吸-驱泄协同开发工艺,可有效提采增效,是提高采收率的关键技术。但该技术仍处于发展初期,作业井数较少且成本较高,具有较大的研究和优化空间。②对于如何促进降压增注-渗吸-驱泄协同开发技术的发展,需在优选活性剂、降低活性剂合成成本、多技术融合方面深化对活性剂降压增注、渗吸增能、扩波及驱泄技术的研究。③ 为进一步加大功能表面活性剂在低渗透油藏开发中的作用,应着重研发绿色环保的功能减阻剂、功能渗吸剂及功能驱泄剂;加强新技术、新方法在注驱-泄协同开发研究中的应用,从而更好地指导现场作业;着重开发同时具有降压增注、渗吸及驱泄功能的化学药剂,真正实现一剂多能,提采增效。
-
参考文献
-
[1] 李荣强.胜利油田低渗砂岩油藏水驱规律研究[D].青岛:中国石油大学(华东),2016.LI Rongqiang.Studies for water flooding characteristic of lowpermeability sandstone reservoirs in Shengli oilfield [D].Qing‐ dao:China University of Petroleum(East China),2016.
-
[2] 张志强,郑军卫.低渗透油气资源勘探开发技术进展[J].地球科学进展,2009,24(8):854-864.ZHANG Zhiqiang,ZHENG Junwei.Advances in exploration and exploitation technologies of low-permeability oil and gas [J].Advances in Earth Science,2009,24(8):854-864.
-
[3] 束青林,郭迎春,孙志刚,等.特低渗透油藏渗流机理研究及应用[J].油气地质与采收率,2016,23(5):58-64.SHU Qinglin,GUO Yingchun,SUN Zhigang,et al.Research and application of percolation mechanism in extra-low perme‐ ability oil reservoir [J].Petroleum Geology and Recovery Effi‐ ciency,2016,23(5):58-64.
-
[4] 寇显明.低渗透油藏合理开发技术政策研究[D].北京:中国地质大学(北京),2011.KOU Xianming.Research on reasonable development technol‐ogy policies of low permeability reservoir [D].Beijing:China University of Geosciences(Beijing),2011.
-
[5] 李艳.鄂尔多斯盆地特低渗透油藏降压增注复合表面活性剂体系研制及性能评价[J].大庆石油地质与开发,2022,41(1):104-110.LI Yan.System development and performance evaluation of de‐ pressurizing and injection enhancing complex surfactant in ultralow permeability oil reservoirs of Ordos Basin [J].Petroleum Geology & Oilfield Development in Daqing,2022,41(1):104-110.
-
[6] 汪海阁,黄洪春,纪国栋,等.中国石油深井、超深井和水平井钻完井技术进展与挑战[J].中国石油勘探,2023,28(3):1-11.WANG Haige,HUANG Hongchun,JI Guodong,et al.Prog‐ ress and challenges of drilling and completion technologies for deep,ultra-deep and horizontal wells of CNPC [J].China Petro‐ leum Exploration,2023,28(3):1-11.
-
[7] 赵德银,郭靖,樊敏,等.油田采出液输送中降黏减阻剂研究进展[J].材料保护,2020,53(11):122-128.ZHAO Deyin,GUO Jing,FAN Min,et al.Progress of viscosity-reducing and drag-reducing agents in the transportation of the oil produced fluid [J].Materials Protection,2020,53(11):122-128.
-
[8] 陈文斌,罗跃,付美龙,等.表面活性剂/缩膨剂降压增注体系的研究[J].精细石油化工进展,2006,7(8):18-20.CHEN Wenbin,LUO Yue,FU Meilong,et al.Study on depres‐ surization injection-augmenting surfactant/swelled clay shrink‐ ing agent system [J].Advances in Fine Petrochemicals,2006,7(8):18-20.
-
[9] 李晓东,张国萍,刘明霞,等.高胶质稠油掺稀降黏技术[J].油田化学,2015,32(4):584-587.LI Xiaodong,ZHANG Guoping,LIU Mingxia,et al.Viscosity reducing recovery technology of heavy oil by mixing light oil [J].Oilfield Chemistry,2015,32(4):584-587.
-
[10] 马锐.注水井降压增注用杂双子表面活性剂的研制及性能评价[J].当代化工,2017,46(9):1 799-1 802.MA Rui.Development and performance evaluation of hetero‐ gemini surfactant for decompression and augmented injection of water injection well [J].Contemporary Chemical Industry,2017,46(9):1 799-1 802.
-
[11] 李瑞冬,白成来,齐春民,等.表面活性剂驱在薛岔低渗油区的效果分析[J].石油化工应用,2014,33(2):55-58,62.LI Ruidong,BAI Chenglai,QI Chunmin,et al.Effect analysis of surfactant flooding in Xuecha low permeability oilfield [J].Petrochemical Industry Application,2014,33(2):55-58,62.
-
[12] 翟怀建.新型烷基苄基甜菜碱驱油剂的制备与性能评价[J].油田化学,2019,36(3):513-517.ZHAI Huaijian.Preparation and performance evaluation of a new alkyl benzyl betaine oil displacement agent [J].Oilfield Chemistry,2019,36(3):513-517.
-
[13] 范华波,薛小佳,刘锦,等.可提高渗吸效率的阴非离子型表面活性剂制备与性能评价[J].油田化学,2018,35(3):433-439.FAN Huabo,XUE Xiaojia,LIU Jin,et al.Preparation and per‐ formance evaluation of an anionic-nonionic surfactant with high imbibition efficiency [J].Oilfield Chemistry,2018,35(3):433-439.
-
[14] HU Chenhui,ZHANG Yan,YANG Zhe,et al.Experimental study on functional characteristics of pH-sensitive nanoparticles for pressure reduction and augmented injection in tight oil reser‐ voir [J].Sensors and Actuators,B:Chemical,2020,26(5):311.
-
[15] 张刚,成城,张卫平.基于纳米活性降压增注技术在低渗油田应用[J].合成材料老化与应用,2021,50(2):89-91.ZHANG Gang,CHENG Cheng,ZHANG Weiping.Application of nano-active depressurization and injection enhancement tech‐ nology in low-permeability oilfields [J].Synthetic Materials Ag‐ ing and Application,2021,50(2):89-91.
-
[16] 彭凌刚,黄国强,杨谨敏,等.复合表面活性剂降压增注体系研究及性能评价[J].当代化工,2021,50(12):2 853-2 856.PENG Linggang,HUANG Guoqiang,YANG Jinmin,et al.Study on depressurization and injection enhancement system of composite surfactant and its performance evaluation [J].Con‐ temporary Chemical Industry,2021,50(12):2 853-2 856.
-
[17] 宋文,许飞.低渗透油藏注水井表面活性剂降压增注体系研究 [J].化学与生物工程,2021,38(4):48-51.SONG Wen,XU Fei.Depressurizing and increasing injection system of surfactant for water injection wells in low permeabil‐ ity reservoir [J].Chemistry & Bioengineering,2021,38(4):48-51.
-
[18] 杨蕾,甘飞.低渗油藏降压增注活性剂室内研究[J].全面腐蚀控制,2016,30(8):36-40.YANG Lei,GAN Fei.Research on depressurization and improv‐ ing injection with Gemini surfactant in low permeability oilfield [J].Total Corrosion Control,2016,30(8):36-40.
-
[19] 李超,陈祖华,胡世莱,等.新疆油田JL区块特低渗透油藏 CO2-化学剂复合吞吐技术应用研究[J].油气地质与采收率,2021,28(3):134-141.LI Chao,CHEN Zuhua,HU Shilai,et al.Application of CO2-chemical agent composite huff and puff in extra-low permeabil‐ ity reservoir of Block JL in Xinjiang Oilfield [J].Petroleum Ge‐ ology and Recovery Efficiency,2021,28(3):134-141.
-
[20] 王锐,吕成远,伦增珉,等.低渗油藏 CO2/原油及 N2/原油间油气相渗实验[J].大庆石油地质与开发,2015,34(6):114-117.WANG Rui,LÜ Chengyuan,LUN Zengmin,et al.Experi‐ ments on CO2/oil and N2/oil relative permeability curves for low permeability reservoirs [J].Petroleum Geology & Oilfield De‐ velopment in Daqing,2015,34(6):114-117.
-
[21] 李士奎,刘卫东,张海琴,等.低渗透油藏自发渗吸驱油实验研究[J].石油学报,2007,28(2):109-112.LI Shikui,LIU Weidong,ZHANG Haiqin,et al.Experimental study of spontaneous imbibition in low-permeability reservoir [J].Acta Petrolei Sinica,2007,28(2):109-112.
-
[22] 王佳.大庆致密油藏渗吸采油剂筛选及性能评价[J].大庆石油地质与开发,2017,36(3):156-162.WANG Jia.Screening and performance evaluation of the imbibi‐ tion oil-producing agent for Daqing tight oil reservoirs [J].Pe‐ troleum Geology & Oilfield Development in Daqing,2017,36(3):156-162.
-
[23] 刘柯,范洪富,闫飚,等.低渗透油藏渗吸采油机理及技术进展 [J].油田化学,2023,40(1):182-190.LIU Ke,FAN Hongfu,YAN Biao,et al.Progress in mecha‐ nism and technology of imbibition recovery in low permeability reservoirs [J].Oilfield Chemistry,2023,40(1):182-190.
-
[24] 闫强伟,韩创辉,李文娟.一种新型低伤害有机碱三元复合驱油体系[J].大庆石油地质与开发,2023,42(1):115-122.YAN Qiangwei,HAN Chuanghui,LI Wenjuan.New low⁃dam‐ age organic alkali ASP flooding system [J].Petroleum Geology & Oilfield Development in Daqing,2023,42(1):115-122.
-
[25] 葛际江,王东方,张贵才,等.稠油驱油体系乳化能力和界面张力对驱油效果的影响[J].石油学报:石油加工,2009,25(5):690-696.GE Jijiang,WANG Dongfang,ZHAN Guicai,et al.The effect of emulsifying power and interfacial tension on displacement characteristics for displacement systems of heavy crude oil [J].Acta Petrolei Sinica:Petroleum Processing Section,2009,25(5):690-696.
-
[26] PU Wanfen,WEI Peng,SUN Lin,et al.Investigation on stabili‐ zation of foam in the presence of crude oil for improved oil re‐ covery [J].Journal of Dispersion Science and Technology,2019,40(5):90-93.
-
[27] 张星,严小波,巨颖娇,等.CO2压裂技术在深层稠油油藏中提高单井产量的效果评价[J].石化技术,2019,26(4):78.ZHANG Xing,YAN Xiaobo,JU Yingjiao,et al.Effectiveness evaluation of CO2 fracturing technology in improving single well production in deep heavy oil reservoirs [J].Petrochemical Industry Technology,2019,26(4):78.
-
[28] 李海涛.表面活性剂对超高分子缔合聚合物流变性能的影响 [J].精细石油化工进展,2019,20(2):1-3,7.LI Haitao.Effect of various surfactants on rheological property of ultra-high molecular weight associating polymer [J].Ad‐ vances in Fine Petrochemicals,2019,20(2):1-3,7.
-
[29] 孙琳,蒲万芬,辛军,等.表面活性剂对低渗岩心高温渗吸的影响[J].中国石油大学学报:自然科学版,2012,36(6):103-107.SUN Lin,PU Wanfen,XIN Jun,et al.Influence of surfactant on high temperature imbibition of low permeability cores [J].Journal of China University of Petroleum:Edition of Natural Science,2012,36(6):103-107.
-
[30] 元福卿.自乳化表面活性剂体系的制备和驱油效果研究[J].应用化工,2022,51(9):2 570-2 574.YUAN Fuqing.Preparation and oil displacement efficiency of self-emulsifying surfactant flooding system [J].Applied Chemi‐ cal Industry,2022,51(9):2 570-2 574.
-
[31] 赵薇,倪云峰,孙庆国,等.D 相法微乳胶的研究与应用[J].弹性体,2005,15(6):43-45.ZHAO Wei,NI Yunfeng,SUN Qingguo,et al.Research and application of micro latex made through D-phase method [J].China Elastomerics,2005,15(6):43-45.
-
[32] 彭科翔,李亭,彭安钰.超低渗深井新型射孔液研究[J].当代化工,2016,45(10):2 343-2 346.PENG Kexiang,LI Ting,PENG Anyu.Research on new perfo‐ rating fluid of ultra-low permeability reservoirs [J].Contempo‐ rary Chemical Industry,2016,45(10):2 343-2 346.
-
[33] 岳湘安,侯吉瑞,吕鑫,等.驱油剂界面特性和流变性对石油采收率的综合影响[J].应用化学,2008,25(8):904-908.YUE Xiang’an,HOU Jirui,LÜ Xin,et al.Synergistic effect of interfacial and rheological properties of displacing fluid in chemical flooding [J].Chinese Journal of Applied Chemistry,2008,25(8):904-908.
-
[34] 程远方,杨柳,吴百烈,等.定向井压裂裂缝三维扩展形态的可视化仿真[J].计算机仿真,2012,29(12):325-328.CHENG Yuanfang,YANG Liu,WU Bailie,et al.Visual simu‐ lation of 3D geometric fracture propagation of deviated well [J].Computer Simulation,2012,29(12):325-328.
-
[35] 赵伟,黄雪琪,王秀军,等.基于阳离子型除油剂处理含聚采油污水的性能研究[J].应用化工,2021,50(2):380-382,387.ZHAO Wei,HUANG Xueqi,WANG Xiujun,et al.Study on the performance of treating poly-oil-contained wastewater based on cationic oil removal agent [J].Applied Chemical Industry,2021,50(2):380-382,387.
-
[36] 傅秀娟,阎存章.润湿程度、渗透率对吸渗排油作用的影响[J].新疆石油地质,1998,24(14):79-81,91.FU Xiujuan,YAN Cunzhang.Influence of wetting degree and permeability on oil absorption and drainage [J].Xinjiang Petro‐ leum Geology,1998,24(14):79-81,91.
-
摘要
低渗透油藏是胜利油区重要的产油阵地之一,其储量占油田总储量的 20%以上。低渗透储层具有孔喉半径细小、非均质性强的特点,导致水驱过程出现注入压力高、难注入等问题。目前主要采取活性剂降压增注、高压注水、缩小注采井距等措施来提高开发效果,但仍存在有效时间短、单井注入量低、单井采出液量低、波及体积小等生产问题,因此,开展新型高效的开发方式刻不容缓。“十三五”以来,开展了水井增注补能、采油井渗吸增油、注采井间驱泄扩波及协同开发方式,可以实现提高驱替压力梯度、增强水驱、提高采收率的目的。该协同开发模式在纯化油田开展了矿场应用,纯化油田62区块水井的注入压力降低20%,注水量提高25%,对应的采油井单井日产油量由0.45 t/d增至5.08 t/d,增产效益明显,整体采收率提高 8%以上。
Abstract
The low-permeability reservoir is one of the important oil production positions in Shengli Oilfield, and its reserves ac‐ counts for more than 20% of the total oilfield reserves. The low-permeability reservoir always presents characteristics such as a nar‐ row pore throat and strong heterogeneity, which results in high injection pressure and difficult injection during water flooding. At present, the main measures to improve the development effect include active agents for reducing pressure and increasing injection, water injection under high pressure, and narrowing the distance of drainage wells. However, there are still some production prob‐ lems, such as short effective time, low well injection per well, low liquid production per well, and small swept volume. Therefore, it is urgent to develop new and efficient development methods. Since the “13th Five-Year Plan in 2016-2020”, the synergistic devel‐ opment modes have been implemented, such as replenishing energy injection enhancement in injectors, increasing production by imbibition in producers, and increasing swept volume by displacement between injectors and producers, which can enhance dis‐ placement pressure gradient, water displacement, and recovery. The synergistic development mode has been applied in Chunhua Oilfield. The injection pressure of the well in 62 Block of Chunhua Oilfield has been reduced by 20%; the water injection has been increased by 25%, and the daily oil production of the single production well has increased from 0.45 t/d to 5.08 t/d, with obvious yield increase benefit. The overall recovery has increased by more than 8%.
Keywords
drag reduction ; imbibition ; displacement ; synergy ; low-permeability reservoir ; mechanism and application