en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王彪(1982—),男,浙江永嘉人,高级工程师,从事油气田开发及采收率提高技术研究。E-mail:wangbiao.jsyt@sinopec.com。

中图分类号:TE357.1

文献标识码:A

文章编号:1009-9603(2023)06-0092-12

DOI:10.13673/j.pgre.202301015

参考文献 1
于佳尧.页岩油储层人工裂缝导流能力影响因素研究[D].北京:中国石油大学(北京),2020.YU Jiayao.Study on influencing factors of artificial fracture con‐ ductivity in Shale oil reservoir [D].Beijing:China University of Petroleum(Beijing),2020.
参考文献 2
石林,张鲲鹏,慕立俊.页岩油储层压裂改造技术问题的讨论 [J].石油科学通报,2020,5(4):496-511.SHI Lin,ZHANG Kunpeng,MU Lijun.Discussion on fractur‐ ing technology of Shale oil reservoir [J].Petroleum Science Bul‐ letin,2020,5(4):496-511.
参考文献 3
任岚,邸云婷,赵金洲,等.页岩气藏压裂液返排理论与技术研究进展[J].大庆石油地质与开发,2019,38(2):144-152.REN Lan,DI Yunting,ZHAO Jinzhou,et al.Research progress of fracturing fluid flowback theory and technology in Shale gas reservoir [J].Petroleum Geology & Oilfield Development in Daqing,2019,38(2):144-152.
参考文献 4
李春颖,张志全,林飞,等.压裂液在页岩储层中的滞留与吸收初步探索[J].科技通报,2016,32(8):31-35.LI Chunying,ZHANG Zhiquan,LIN Fei,et al.Preliminary ex‐ ploration on the retention and absorption of fracturing fluid in shale reservoirs [J].Science and Technology Bulletin,2016,32(8):31-35.
参考文献 5
WANG X,PENG X,ZHANG S,et al.Characteristics of oil distributions in forced and spontaneous imbibition of tight oil reservoir [J].Fuel,2018,224:280-288.
参考文献 6
姚兰兰.页岩油储层微观孔隙结构特征评价及渗流机理研究 [D].廊坊:中国科学院大学(中国科学院渗流流体力学研究所),2021.YAO Lanlan.Evaluation of microscopic pore structure character‐ istics of Shale oil reservoir and study on seepage mechanism [D].Langfang:University of the Chinese Academy of Sciences(Institute of Seepage Fluid Mechanics,Chinese Academy of Sciences),2021.
参考文献 7
尤雪尘.页岩气藏压后渗吸机理及返排方式式研究[D].北京:中国石油大学(北京),2020.YOU Xuechen.Study on imbibition mechanism and flowback mode of Shale gas reservoir after fracturing [D].Beijing:China University of Petroleum(Beijing),2020.
参考文献 8
SCHECHTER D S,DENQEN Z,ORR F M.Capillary imbibi‐ tion and gravity segregation in low IFT systems [C]//SPE An‐ nual Technical Conference and Exhibition.OnePetro,1991.
参考文献 9
QUERE D.Wetting and roughness [J].Annual Review of Mate‐ rials Research,2008,38:71-99.
参考文献 10
BOSANQUET C H.LV.On the flow of liquids into capillary tubes [J].The London,Edinburgh and Dublin Philosophical Magazine and Journal of Science,1923,45(267):525-531.
参考文献 11
WASHBURN E W.The dynamics of capillary flow [EB/OL].[2022-11-21].https://journals.aps.org/pr/abstract/10.1103/Phys‐ Rev.17.273.
参考文献 12
AL-ARFAJ M,AL-OSAIL M,SULTAN A.Monitoring imbibi‐ tion of water into shale pore system:state of the art [C]//Ja‐ karta,Indonesia:SPE/IATMI Asia Pacific Oil & Gas Confer‐ ence and Exhibition,2017.
参考文献 13
余雄飞.基于数值模拟的致密岩心自发渗吸研究[D].北京:中国石油大学(北京),2020.YU Xiongfei.Research on spontaneous infiltration of dense core based on numerical simulation [D].Beijing:China University of Petroleum(Beijing),2020.
参考文献 14
王敬,刘慧卿,夏静,等.裂缝性油藏渗吸采油机理数值模拟 [J].石油勘探与开发,2017,44(5):761-770.WANG Jing,LIU Huiqing,XIA Jing,et al.Numerical simula‐ tion of the mechanism of percolation and oil recovery in frac‐ tured reservoirs [J].Petroleum Exploration and Development,2017,44(5):761-770.
参考文献 15
ZHOU Z,ABASS H,LI X,et al.Mechanisms of imbibition during hydraulic fracturing in shale formations [J].Journal of Petroleum Science and Engineering,2016,141:125-132.
参考文献 16
石立华,程时清,常毓文,等.致密油藏非等径毛细管微观渗吸影响因素[J].大庆石油地质与开发,2023,42(2):68-76.SHI Lihua,CHENG Shiqing,CHANG Yuwen,et al.Influence factors of non equal diameter capillary micro imbibition in tight reservoirs [J].Petroleum Geology & Oilfield Development in Daqing,2023,42(2):68-76.
参考文献 17
杨婧.多孔介质渗吸机理及其影响因素的分析[J].云南化工,2020,47(11):138-140.YANG Jing.Analysis of porous medium imbibition mechanism and its influencing factors [J].Yunnan Chemical Industry,2020,47(11):138-140.
参考文献 18
蒙冕模,葛洪魁,纪文明,等.基于核磁共振技术研究页岩自发渗吸过程[J].特种油气藏,2015,22(5):137-140.MENG Mianmo,GE Hongkui,JI Wenming,et al.Research on spontaneous infiltration process of shale based on nuclear mag‐ netic resonance technology [J].Special Oil & Gas Reservoirs,2015,22(5):137-140.
参考文献 19
罗强,石国新,聂小斌,等.基于核磁共振技术研究表面活性剂提高吉木萨尔页岩油渗吸效率[J].油田化学,2021,38(4):683-689.LUO Qiang,SHI Guoxin,NIE Xiaobin,et al.Improving the imbibition efficiency of Jimusar Shale oil with surfactants based on NMR technology [J].Oilfield Chemistry,2021,38(4):683-689.
参考文献 20
李侠清,张星,卢占国,等.低渗透油藏渗吸采油主控因素[J].油气地质与采收率,2021,28(5):137-142.LI Xiaqing,ZHANG Xing,LU Zhanguo,et al.The main con‐ trol factors of low permeability reservoir imbibition oil recovery [J].Petroleum Geology and Recovery Efficiency,2021,28(5):137-142.
参考文献 21
GUO J,LI M,CHEN C,et al.Experimental investigation of spontaneous imbibition in tight sandstone reservoirs [J].Journal of Petroleum Science and Engineering,2020,193:107395.
参考文献 22
GE H K,YANG L,SHEN Y H,et al.Experimental investiga‐ tion of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids [J].Petroleum Science,2015,12(4):636-650.
参考文献 23
曾星航,祁尚义,许国庆,等.带压渗吸核磁共振实验研究—— 以江汉盆地潜江凹陷潜江组泥质白云岩为例[J].油气地质与采收率,2023,30(1):122-128.ZENG Xinghang,QI Shangyi,XU Guoqing,et al.Experimen‐ tal study on pressurized infiltration nuclear magnetic resonance:taking the muddy dolomite of the Qianjiang formation in the Qianjiang depression of the Jianghan basin as an example [J].Petroleum Geology and Recovery Efficiency,2023,30(1):122-128.
参考文献 24
王秀宇,巨明霜,杨文胜,等.致密油藏动态渗吸排驱规律与机理[J].油气地质与采收率,2019,26(3):92-98.WANG Xiuyu,JU Mingshuang,YANG Wensheng,et al.Dy‐ namic imbibition principles and mechanism of tight oil reser‐ voirs [J].Petroleum Geology and Recovery Efficiency,2019,26(3):92-98.
参考文献 25
申哲娜,王香增,康宵瑜,等.延长油田典型致密油储层渗吸驱替采油机理定量分析[J].油气地质与采收率,2018,25(5):99-103.SHEN Zhena,WANG Xiangzeng,KANG Xiaoyu,et al.Quan‐ titative analysis of the mechanism of imbibition and displace‐ ment recovery of typical tight oil reservoirs in Yanchang Oilfield [J].Petroleum Geology and Recovery Efficiency,2018,25(5):99-103.
参考文献 26
胡亚斐,李军诗,胡水清,等.动态渗吸对超低渗透油藏开发的影响及应用[J].特种油气藏,2021,28(4):123-128.HU Yafei,LI Junshi,HU Shuiqing,et al.Influence and applica‐ tion of dynamic imbibition on the development of ultra-low per‐ meability reservoirs [J].Special Oil & Gas Reservoirs,2021,28(4):123-128.
参考文献 27
李楚雄,申宝剑,卢龙飞,等.松辽盆地沙河子组页岩孔隙结构表征——基于低场核磁共振技术[J].油气藏评价与开发,2022,12(3):468-476.LI Chuxiong,SHEN Baojian,LU Longfei,et al.Characteriza‐ tion of shale pore structure in the Shahezi formation of the Songliao basin:based on low field nuclear magnetic resonance technology [J].Reservoirs Evaluation and Development,2022,12(3):468-476.
参考文献 28
XU X,WAN Y,LI X,et al.Microscopic imbibition character‐ ization of sandstone reservoirs and theoretical model optimiza‐ tion [J].Scientific Reports,2021,11(1):8509.
参考文献 29
黎明,廖晶,王肃,等.鄂尔多斯盆地超低渗透油藏渗吸特征及其影响因素——以渭北油田三叠系延长组三段储层为例[J].石油实验地质,2022,44(6):971-980.LI Ming,LIAO Jing,WANG Su,et al.Infiltration characteris‐ tics and influencing factors of ultra-low permeability oil reser‐ voirs in the Ordos Basin:a case study of the third member of the Triassic Yanchang Formation in the Weibei Oilfield [J].Petro‐ leum Geology & Experiment,2022,44(6):971-980.
参考文献 30
刘继梓,巩联浩,卜广平,等.致密砂岩油藏高温高压动态渗吸特征及影响因素[J].特种油气藏,2021,28(4):142-149.LIU Jizi,GONG Lianhao,BU Guangping,et al.Characteris‐ tics and influencing factors of dynamic imbibition at high tem‐ perature and high pressure in tight sandstone reservoir [J].Spe‐ cial Oil & Gas Reservoirs,2021,28(4):142-149.
参考文献 31
刘博峰,张庆九,陈鑫,等.致密油储层压裂液渗吸特征及水锁损害评价[J].断块油气田,2021,28(3):318-322.LIU Bofeng,ZHANG Qingjiu,CHEN Xin,et al.Imbibition characteristics of fracturing fluid in the tight oil reservoir and wa‐ ter lock damage evaluation [J].Fault-Block Oil and Gas Field,2021,28(3):318-322.
目录contents

    摘要

    为了研究表面活性剂对页岩储层渗吸驱油效果及影响渗吸效果的主控因素,以苏北某油田页岩储层的岩心为研究对象,利用TOC分析、电镜扫描技术表征了岩心孔隙结构特征,利用核磁共振技术开展了多因素影响下的渗吸实验,评价了润湿性、裂缝、孔隙度、渗透率、表面活性剂浓度及类型等因素对页岩储层渗吸效率的影响,明确了渗吸过程中不同孔隙内原油分布特征及动用情况。结果表明:页岩渗吸分为前期、中期和后期 3个阶段,前期渗吸速度大,渗吸效率迅速上升,中期时间占比最长,后期渗吸速度缓慢,渗吸效率趋于稳定;对比不同因素对渗吸的影响,岩心越水湿、裂缝越多,渗吸速度越大,渗吸效率越高;孔隙度越大、渗透率越小,渗吸效率越高;随表面活性剂浓度降低,渗吸效率呈上升趋势。核磁共振实验结果表明,页岩渗吸过程中,微小孔隙的原油动用情况大于大孔隙,改变渗吸条件可提高各类孔隙动用效率。

    Abstract

    Cores from shale reservoirs in Subei Oilfield were taken as sample to study the effects of surfactants on the oil displace‐ ment efficiency and the main controlling factors of imbibition in shale reservoirs. The TOC analysis and scanning microscope tech‐ nique (SEM) were used to characterize the pore structure of the core samples. Imbibition experiments under the influence of mul‐ tiple factors were conducted using nuclear magnetic resonance (NMR) technology. Then the effects of factors were evaluated such as wettability, fractures, porosities, permeability, surfactant concentrations, and types on the imbibition efficiency of shale oil res‐ ervoirs, and the distribution characteristics and producing conditions of the oil in different pores were clarified during the imbibition process. The results showed that shale imbibition could be divided into three stages: early stage, middle stage, and late stage. The imbibition rate was high in the early stage, and the imbibition efficiency increased rapidly. The middle stage accounted for the lon‐ gest period, and the imbibition rate slowed down in the late stage, with the imbibition efficiency tending to be stable. By comparing the effects of different factors on imbibition, it was found that a wetter core indicated more fractures and higher imbibition rate and efficiency. Moreover, a higher porosity and lower permeability led to higher imbibition efficiency. The imbibition efficiency showed an increasing trend with the concentration of surfactants decreasing. The NMR experimental results demonstrated that in the process of shale imbibition, the produced oil of micro-pores was more than that of macro-pores, and changing the imbibition conditions could improve the producing percentage of oil in various pores.

  • 当前中国石油对外依存度高,石油供应安全面临严峻挑战,能源需求的快速增长使石油工业的重心转向全球非常规油气资源,页岩油资源已成为中国重要的能源来源之一。中国页岩储层组分复杂、黏土矿物含量高、孔缝和层理发育[1],大规模体积压裂储层改造是重要的开发手段[2]。中外的页岩储层压裂改造试验表明,大量压裂液注入地层后,返排率普遍低于30%[3],但却出现了返排率越低,产油量越高的现象[4],其原因是在体积改造与压后焖井开发模式下,渗吸现象明显,压裂液注入后在毛细管力作用下进入储层,有效提高了原油产量。

  • 渗吸包括自发渗吸和加压渗吸[5],自发渗吸是指无加压的情况下,润湿性流体在毛细管力等作用下从岩心基质和裂缝中驱替出非润湿性流体的过程;而当在有压力的作用下,岩心基质和裂缝发生渗吸,则称之为加压渗吸或强制渗吸。在地层压裂后焖井初期对渗吸岩心进行加压室内模拟实验,当体积改造裂缝内流体压力和储层压力达到平衡时,渗吸以自发渗吸为主[6]。渗吸按照方向一般分为正向渗吸和逆向渗吸 2 种,当渗吸液侵入方向与被驱替相流体排出方向一致时为正向渗吸,反之则为逆向渗吸[7]

  • 针对渗吸驱油问题,中外诸多学者做了广泛的理论及实验研究。渗吸理论模型方面,SCHECHTER 等提出利用邦德数的倒数来判别正向、逆向渗吸对渗吸作用的贡献[8]。考虑界面张力、润湿接触角、毛管半径、油水密度,建立了包括 Quere 渗吸模型[9]、 Bosanquet 模型[10]、Lucas-Washburn(L-W)渗吸模型[11] 等多种自发渗吸模型。Al-ARFAJ等认为渗吸机理分为毛细管力作用、渗透扩散作用以及水吸附作用等 3种,渗吸分为 3个阶段,即归因于毛细管力作用的高速渗吸的早期,开始水吸附的过渡期以及以扩散为主的晚期[12]。余雄飞通过对渗吸机理进行分析,发现孔径越小的多孔介质,毛细管力越大,水从较小的孔隙进入岩石基质,油通过较大的岩石孔隙驱替出来[13]。王敬等基于渗吸采油机理与渗流理论建立了渗吸数学模型,发现渗吸作用的采收率随着原油黏度的增加而降低[14]。ZHOU 等认为毛细管力、低初始含水饱和度和渗透压作用共同导致压裂液在页岩地层中的渗吸[15];石立华等利用泊肃叶定律和分段法,建立渗吸理论模型预测非等径毛细管中的渗吸过程[16];杨婧认为影响渗吸的因素包括岩石自身物理特性、流体特性以及外界条件[17]。目前,室内实验方面主要的方法按照目的可分为动态法和静态法,按照手段可分为质量法、体积法、CT 扫描法和核磁共振法[18]。罗强等通过对页岩储层进行渗吸评价,认为表面活性剂能有效改变岩石的润湿性,从而改善润湿效果,强水湿岩心渗吸程度大于弱水湿性岩心[19]。李侠清等针对低渗透油藏进行自发渗吸实验研究,结果表明渗吸采收率随着岩心渗透率和长度的增大而减小,裂缝越多,渗吸采收率越高[20]。GUO 等指出渗透率越高,自发渗吸采收率越高[21]。GE等对页岩及砂岩进行渗吸实验,结果表明采收率与孔隙度呈正相关[22]。曾星航等基于核磁共振实验,借助建立的带压渗吸方法,研究发现渗吸使高黏土矿物含量岩样表面产生裂缝,提高采收率[23]。王秀宇等利用改进的动态渗吸实验装置,系统研究各因素对采出程度的影响[24]。申哲娜等利用核磁共振技术定量表征驱替法和渗吸法对采出程度和可动流体分布的影响[25]。胡亚斐等通过渗吸实验和相似理论,得到超低渗透油藏动态渗吸特征及主要影响因素[26]

  • 目前,页岩储层表面活性剂渗吸过程中不同因素影响特征尚不明确,渗吸过程中的页岩不同大小微观孔隙内原油动用情况还需研究。为此,笔者对苏北某油田页岩储层进行物性表征、孔隙尺寸划分,开展了表面活性剂自发渗吸实验,分析了核磁T2 谱及渗吸效率变化、孔隙内原油动用情况,明确了页岩储层表面活性剂渗吸过程中不同因素对渗吸效率的影响规律,在此基础上阐明了表面活性剂渗吸页岩储层孔隙内油水置换机理,为页岩储层渗吸提高采收率提供借鉴和参考。

  • 1 基于核磁共振的自发渗吸实验

  • 1.1 岩心参数

  • 针对赋存状态复杂的页岩储层,设计适用于页岩的渗吸方法,实验选取苏北某油田页岩储层 9 块岩心,通过脉冲法及饱和油法测得其孔隙度和渗透率。渗透率较低且差异较大,孔隙度普遍偏低(表1)。

  • 1.2 岩样TOC含量及扫描电镜

  • 将岩样进行洗油处理,通过热解仪选取不同层深的岩样(1,3,5,7,9号岩样)进行TOC测试(表2),岩样的TOC均小于1.2%,属于低有机质含量页岩。

  • 为了研究页岩储层中孔隙和微裂缝的真实分布特征,对岩样进行扫描电镜观测(图1)。该岩样为碳质硅质页岩,图1a和图1b展示了页岩微裂缝发育情况,微裂缝多形成于黏土矿物与石英颗粒之间、黏土矿物之间、有机质内部及矿物边缘,长度一般多达几微米甚至几十微米,呈长条状;图1c 展示了有机质发育情况,有机质呈条带状、团块状、填隙状,分散性较好,孔隙主要发育于有机质与无机质矿物交互处,大小为 50 nm~5 μm;图1d 展示了无机质发育情况,无机质孔隙发育较好,大小为10 nm~10 μm。

  • 表1 页岩储层岩样基本物理参数

  • Table1 Fundamental physical properties of samples from shale reservoir

  • 表2 页岩储层岩样TOC测试结果

  • Table2 TOC of samples from shale reservoir

  • 1.3 流体参数

  • 分别配制质量分数为 0.10%~0.30% 的 6 种纳米乳液表面活性剂(编号为Ⅰ至Ⅵ),使用高压接触角测量仪对岩样进行接触角测量,接触角为26.61°~57.73°(表3)。

  • 页岩储层具有弱亲水、强亲油的特点,为了在页岩渗吸过程中有较强的毛细管力,需接触角较小,从而优选出质量分数为 0.20% 和 0.25% 的Ⅰ号表面活性剂,质量分数为 0.25% 的Ⅳ和Ⅱ号表面活性剂,质量分数为 0.25% 和 0.30% 的Ⅵ号表面活性剂。测量质量分数为 0.25% 的 6 种表面活性剂与 1号岩样的接触角,记录不同时间接触角的变化 (图2)。从图2可以看出,Ⅵ号表面活性剂改变润湿性速度最快。

  • 图1 3号岩样扫描电镜图

  • Fig.1 SEM image of sample No.3

  • 表3 不同质量分数的表面活性剂与1号岩样的接触角

  • Table3 Contact angles of surfactants at different concentrations with sample No.1

  • 1.4 实验方法

  • 实验装置 实验装置主要包括烧杯、鼓风干燥箱、中间容器、X-21 旋片式真空泵、电子天平、玻璃棒、针管、柱塞式计量泵和核磁共振仪器。由于现场原油过于黏稠,按照原油与煤油质量比为 4∶7 的比例配制实验用油,常温下实验用油的黏度约为28 mPa·s。

  • 实验步骤 实验步骤主要包括:①记录岩样孔隙度、渗透率、长度、直径、干重数据。②将岩样置于鼓风干燥箱中干燥24 h,再将岩样放入中间容器,用 X-21 旋片式真空泵抽真空 24 h。③关闭阀门后将 X-21 旋片式真空泵卸下,连接管线后打开阀门,利用负压将实验用油吸入,待实验用油不再进入后关闭阀门。④用柱塞式计量泵将中间容器从底部注水加压至 30 MPa,关闭阀门后保持 5 d。⑤取出岩样,擦干后称量饱和油后的质量,测量 T2谱。⑥ 配制不同质量分数的表面活性剂,并添加8%KCl防止页岩吸水膨胀,以及 18%MnCl2屏蔽实验用油之外的氢离子信号,记录溶液密度。⑦将岩样置于烧杯中,完全浸泡在表面活性剂中。⑧间隔一定的时间测量岩样的 T2谱,直到图谱不再变化为止。核磁共振技术具有无损、快速、准确等特点,能够有效表征页岩孔隙与微裂缝的发育特征与分布状态[27]。计算T2核磁图谱法渗吸效率的公式为:

  • 图2 不同表面活性剂接触角随时间的变化

  • Fig.2 Variation of contact angles of different surfactants with time

  • R1=1-A1A2×100%
    (1)
  • 实验研究润湿性、裂缝、孔隙度、渗透率、表面活性剂浓度等 5 个影响因素对渗吸的影响,实验设计见表4。

  • 2 实验原理

  • 在多孔介质自吸领域,LUCAS 的 L-W 渗吸模型[11] 是经典的理论模型,其考虑了毛细管力、重力、黏性力和与自吸速度相关的惯性力,来描述多孔介质中的垂向渗吸,由重力项、惯性力项、黏性力项和毛细管力项等组成,其表达式为:

  • πr2ρgh+πr2ρthdhdt+8πμhdhdt-2πrσcosθ
    (2)
  • 在实际渗吸过程中,垂直距离较小,可忽略重力,流体流动的惯性也较小,可忽略惯性力, LUCAS[11] 将(2)式简化并求解得到:

  • 8πμhdhdt=2πrσcosθ
    (3)
  • 表4 实验设计

  • Table4 Experimental design

  • 其中:

  • h=σrcosθ2μt
    (4)
  • LUCAS假设渗吸是均匀的活塞运动,则多孔介质的渗吸质量方程式为:

  • WL-w=ρAϕσrcosθ2μt
    (5)
  • 实际油气藏中的孔隙结构较复杂、孔喉大小不一,L-W 渗吸模型中的多孔介质的平均孔径难以精确测量。XU 等根据泊肃叶定律和达西公式,建立了平均孔隙半径与储层渗透率的关系,对L-W渗吸模型进行优化[28],优化后的表达式为:

  • r=τ8Kaϕ
    (6)
  • 将(6)式代入(4)式,整理后得:

  • h=2Kaϕ14τσcosθμt
    (7)
  • 渗吸过程中的渗吸质量可表示为:

  • WL-w=ρA2Kaϕ314τσcosθμt
    (8)
  • 由(8)式可知,渗吸质量与渗吸时间的二分之一次方呈正比,其他参数相同的情况下,储层孔隙度、渗透率和接触角增大,则渗吸质量增大。

  • 3 渗吸效果的影响因素分析

  • 3.1 润湿性

  • 根据饱和油岩样的 T2谱,选择 1 号、2 号和 9 号等3块孔隙分布特征相近的岩样进行润湿性对渗吸效果影响的研究。由图3可知,随着时间的增长,核磁峰值减小,峰面积减小,说明岩样中的油减少。自发渗吸时,左峰下降速度较快,主要是由于小孔隙中的油进入较大孔隙中使得其中的油被采出。小孔隙是渗吸的主要作用区间,相同的实验时间内,与 1号和 2号岩样相比,9号岩样的 T2谱下降的幅度更大,其原因为9号岩样的润湿角最小,水润湿性最好,表面活性剂能更快进入岩样中置换出油。

  • 根据(1)式可计算得到页岩岩样渗吸效率(图4)。从渗吸效率与时间关系(图4a),并结合T2谱可看出,渗吸前期,表面活性剂主要在毛细管力的作用下进入岩样小孔隙,赋存的原油被置换采出,渗吸效率快速上升;渗吸中期,岩样内外压差降低,渗吸效率的增速降低,表面活性剂在毛细管力和润湿性的作用下进入小孔隙;渗吸后期,毛细管力逐渐平衡,渗吸效率趋于平稳。图4b显示出渗吸效率与时间平方根呈正比关系,曲线斜率反映渗吸速率, 0~3 d内即渗吸前期斜率较大,渗吸速率大;3~9 d 即渗吸中期斜率减小,9 d 后的渗吸后期斜率趋于 0,渗吸速率逐渐降低[12],9 号岩样曲线的斜率远大于1号和2号岩样,渗吸速率最大。

  • 图3 不同润湿性的岩样T2谱的变化

  • Fig.3 Variation of T2 spectra of samples with different wettability

  • 由表5 可以看出,当渗吸结束时,润湿角为 54.55°,最终渗吸效率为 11.87%;当润湿角为 39.22°,最终渗吸效率为22.92%,说明渗吸效率随润湿角减小而增大,岩样亲水性越强,渗吸效率越高。其原因为润湿角越小,毛细管力越大,水更容易进入岩样将孔隙中原油置换出来。

  • 图4 不同润湿性页岩岩样渗吸效率与时间的关系

  • Fig.4 Relationship between imbibition efficiency and time of samples with different wettability

  • 表5 不同润湿角岩样最终渗吸效率

  • Table5 Final imbibition efficiency of samples with different wetting angles

  • 根据(1)式及图3中的核磁数据,分别计算不同尺寸孔隙内原油的渗吸动用百分比。从图5可以看出,1号岩样主要动用小孔隙、中孔隙和大孔隙中的油,动用百分比基本上可达到9%以上(微孔隙内原油动用百分比仅为5%);2号和9号岩样可更好地动用微孔隙和小孔隙中的油(微孔隙内原油动用百分比可达25%以上)。结合表5中润湿角可知,润湿角减小,表面活性剂对微孔隙、小孔隙的动用程度大幅增加。说明润湿角减小,微小孔隙的孔径较小,其毛细管力的增加幅度较大,微小孔隙内的原油的动用程度增加更明显。

  • 图5 不同润湿性岩样孔隙内动用状况

  • Fig.5 Producing percentage of oil in pores of samples with different wettability

  • 3.2 孔隙度

  • 选取渗透率相近的4号、5号和7号岩样进行表面活性剂渗吸实验,研究孔隙度对表面活性剂自发渗吸效果的影响。图6为不同孔隙度岩心渗吸过程的核磁T2谱,随着渗吸的进行,3块岩样T2谱核磁信号幅度逐渐下降,表现出左峰下降幅度较大的趋势,证明动用的原油多为微小孔隙内原油。计算不同渗吸时间的岩样内原油的渗吸效率,如图7a 所示。渗吸前期,孔隙度越大,渗吸速度越高,这是因为岩心内的孔隙空间越大,表面活性剂越容易进入到小孔隙内,渗吸作用下小孔隙内的原油可排出到大孔隙和微裂缝,原油置换速率增加;渗吸后期,5 号和 7 号岩心渗吸速率增大,主要原因为孔隙度较大岩样的排油空间增多。根据(1)式计算得到不同孔隙度下最终渗吸效率(表6),孔隙度为 0.14% 时,最终渗吸效率为 10.05%;孔隙度为 0.98% 时,最终渗吸效率为 19.95%,即孔隙度越大,最终渗吸效率越高。

  • 根据核磁图谱计算得到表面活性剂对不同尺寸孔隙中原油的动用程度(图7b)。4号岩样主要动用微孔隙、小孔隙内的原油,7号岩样中各尺寸孔隙内原油的动用程度均增大,5 号岩样主要动用中孔隙、大孔隙内的原油,分别达到 22.86% 和 27.82%。随着孔隙度增大,中孔隙、大孔隙内原油的动用程度增大,说明随着孔隙度的增大,岩样的排油通道增多,中孔隙和大孔隙的原油更易采出。

  • 3.3 裂缝

  • 选取 2号和 4号岩样研究裂缝对表面活性剂的自发渗吸效果的影响。由图3b和图6a可以看出,2 号岩样的大孔隙和微裂缝的数量多于 4 号岩样,随着渗吸时间增长,2 块岩样的核磁峰值降低,4 号岩样下降得更均匀,其原因为孔隙分布更均匀,2号岩样左峰下降的速度快于右峰的,且右峰先下降后又稍有上升,是由于大孔隙的油先渗吸出去后,小孔隙渗吸出的油进入大孔隙再渗吸出岩样,过程中会有残余的油滞留于大孔隙。

  • 图6 不同孔隙度的岩样对应的T2谱变化

  • Fig.6 Variation of T2 spectra of samples with different porosity

  • 图7 不同孔隙度的岩样渗吸效率与时间关系及岩样孔隙内原油动用状况

  • Fig.7 Relationship between imbibition efficiency and time and crude oil utilization in pores of samples with different porosity

  • 表6 不同孔隙度岩样最终渗吸效率

  • Table6 Final imbibition efficiency of samples with different porosity

  • 对核磁图谱处理后得到不同裂缝发育程度的岩样渗吸效率与时间关系及岩样孔隙内原油动用状况(图8)。从图8可以看出,2号岩样渗吸效率比 4号高4.69%,2号岩样微孔隙、小孔隙、中孔隙动用程度高,4号岩样的中孔隙为负动用,这是因为 4号岩样大孔隙及裂缝较少,主要动用的小孔隙的油在大孔隙中滞留,无法进一步流出,而2号岩样裂缝孔隙空间大,渗吸接触面积增大[29],为渗吸提供了额外的通道[30],显著提高了渗吸效率。

  • 3.4 渗透率

  • 选取孔隙度相近的 1 号、3 号和 4 号共 3 块岩样研究渗透率对表面活性剂自发渗吸效果的影响。从不同渗透率岩样渗吸过程中的核磁图谱变化(图9)可以看出,随着时间的增长,核磁峰值均匀下降,小孔隙的下降幅度大于大孔隙的,其原因为孔径越小,毛细管力作用越强,自发渗吸越强烈。对核磁图谱处理后得到不同渗透率岩样渗吸效率与时间的关系及岩样孔隙内原油动用状况(图10)和不同岩样的渗吸效率(表7)。当 1 号岩样渗吸效率为 11.87%,大于其他2个岩样的渗吸效率,渗透率和渗吸效率呈负相关,渗透率越小,渗吸前期的斜率越大,渗吸速度越大,是由于岩样的渗透率越小,孔隙喉道越小,毛细管力作用越强,逆向渗吸强度增强[31],渗吸效率则增大。从(8)式中可以看出,渗透率越高越有利于渗吸,是因为高渗透率岩样的饱和油量高,渗吸出的原油体积也较高,折算出的渗吸效率相对来说并不高[20],且页岩储层岩样极小的渗透率会降低孔隙连通性,造成不可忽视的渗吸阻力。

  • 图8 不同裂缝发育程度的岩样渗吸效率与时间关系及岩样孔隙内原油动用状况

  • Fig.8 Relationship between imbibition efficiency and time and crude oil utilization in pores of samples with different fractures

  • 由图10b可知,渗透率越小,各孔隙的动用程度均较小,随着渗透率的增大,各孔隙动用程度逐渐增大,尤其是微孔隙、小孔隙动用程度大幅增大,而大孔隙动用程度降低,其原因为渗透率降低使大孔径孔隙的毛细管力减弱。

  • 3.5 表面活性剂浓度

  • 选取孔隙度及孔径分布相近的 6 号、7 号、8 号和 9号共 4块岩样,分 2组使用 2种不同浓度的表面活性剂进行渗吸,并研究 2 种表面活性剂浓度对表面活性剂自发渗吸效果的影响。由图11可知,核磁峰值均随着时间下降,小孔隙下降幅度大于大孔隙,表面活性剂增强岩样亲水性,渗吸液自发吸入岩样孔隙并驱出油。

  • 由图12 和表8 可知,对Ⅵ号表面活性剂来说,当质量分数降低 0.05% 时,最终采收率增大 6.22%; 对Ⅰ号表面活性剂来说,当质量分数降低0.05%时,最终采收率降低 0.34%。由此可知,表面活性剂浓度对渗吸效率的影响是不一致的。由(8)式可知,界面张力大,接触角较小的表面活性剂对岩样的渗吸置换原油量更高。因此,需要分析加入表面活性剂后,油水界面张力及岩样接触角 2 个方面的变化情况。当质量分数同为 0.25% 时,Ⅵ号表面活性剂的最终渗吸效率高于Ⅰ号表面活性剂,这是因为Ⅵ 号和Ⅰ号表面活性剂相比,界面张力增大,接触角更小。渗吸效果最好的是质量分数为0.30%的Ⅵ号表面活性剂,最终渗吸效率达22.92%。

  • 由图12可知,表面活性剂渗吸主要动用微孔隙和小孔隙内的原油,Ⅰ号表面活性剂质量分数增高,微孔隙的动用程度增加,小孔隙、中孔隙及大孔隙原油动用程度均降低。说明接触角降低对微孔隙的影响更大,界面张力降低对小孔隙、中孔隙及大孔隙内原油影响更大。Ⅵ号表面活性剂质量分数升高,微孔隙、小孔隙、中孔隙及大孔隙原油动用程度均有提高,说明接触角变化对整体渗吸效率的影响比界面张力变化对渗吸效率的影响更大。

  • 4 结论

  • 根据渗吸效率随时间的变化规律,页岩表面活性剂自发渗吸过程可分为前期、中期和后期 3 个阶段:前期渗吸速度大,渗吸效率迅速上升;中期渗吸速度减小,渗吸效率减弱,此阶段时间占比最长;后期渗吸速度趋于零,渗吸效率趋于稳定。

  • 核磁共振实验结果显示,微小孔隙中的原油动用程度高于大孔隙。随着页岩接触角的减小、孔隙度的增大和渗透率的增加,各孔隙中原油的动用程度也增加。在页岩渗吸过程中,原油首先从微小孔隙渗吸出来,然后进入大孔隙并通过岩样排出。部分原油会滞留在大孔隙中,无法完全被排出。

  • 图9 不同渗透率的岩样T2谱变化

  • Fig.9 Variation of T2 spectra of samples with different permeability

  • 图10 不同渗透率的岩样渗吸效率与时间关系及岩样孔隙内原油动用状况

  • Fig.10 Relationship between imbibition efficiency and time and crude oil utilization in pores of samples with different permeability

  • 表7 不同渗透率岩样的最终渗吸效率

  • Table7 Final imbibition efficiency of samples with different permeability

  • 不同因素对页岩表面活性剂自发渗吸有不同的影响,岩样与表面活性剂的接触角越小,渗吸效果越好;裂缝为渗吸提供了额外的通道,裂缝越多,渗吸速度越大,渗吸效率越高;岩样的品质也影响渗吸效果,孔隙度越大、渗透率越小,渗吸效率越高;表面活性剂对渗吸的影响主要体现在界面张力和接触角上,界面张力相对较大,接触角较小,渗吸效率较高,其中接触角的改变对渗吸效果的影响更为显著。

  • 图11 加入不同种类及质量分数表面活性剂的岩样T2谱变化

  • Fig.11 Variation of T2 spectra of samples with different types and concentrations of surfactants

  • 图12 不同种类及质量分数表面活性剂渗吸效率与时间关系及岩样孔隙内原油动用状况

  • Fig.12 Relationship between imbibition efficiency and time and crude oil utilization in pores of samples with different types and concentrations of surfactants

  • 表8 加入不同种类及质量分数表面活性剂的岩样最终渗吸效率

  • Table8 Final imbibition efficiency of samples with different types and concentrations of surfactants

  • 符号解释

  • A——多孔介质与流体接触面积,m2

  • A1—— 剩余油核磁弛豫曲线,与 XT2 谱所围面积,表征渗吸过程中孔隙内原油的体积;

  • A2——原始饱和油核磁弛豫曲线与XT2谱所围面积,表征渗吸开始前孔隙内原油的体积;

  • g——重力加速度,m/s2 ,取值为9.8;

  • h——渗吸面高度,m;

  • Ka——渗透率,mD;

  • r——平均孔隙半径,m;

  • R1——渗吸采收率,%;

  • t——渗吸时间,h;

  • WL-w——渗吸质量,g;

  • θ——接触角,(°);

  • μ——渗吸液体的黏度,Pa·s;

  • ρ——流体密度,kg/m3

  • σ——界面张力,N/m;

  • τ——多孔介质孔隙的弯曲度,无量纲;

  • ϕ——孔隙率,分数。

  • 参考文献

    • [1] 于佳尧.页岩油储层人工裂缝导流能力影响因素研究[D].北京:中国石油大学(北京),2020.YU Jiayao.Study on influencing factors of artificial fracture con‐ ductivity in Shale oil reservoir [D].Beijing:China University of Petroleum(Beijing),2020.

    • [2] 石林,张鲲鹏,慕立俊.页岩油储层压裂改造技术问题的讨论 [J].石油科学通报,2020,5(4):496-511.SHI Lin,ZHANG Kunpeng,MU Lijun.Discussion on fractur‐ ing technology of Shale oil reservoir [J].Petroleum Science Bul‐ letin,2020,5(4):496-511.

    • [3] 任岚,邸云婷,赵金洲,等.页岩气藏压裂液返排理论与技术研究进展[J].大庆石油地质与开发,2019,38(2):144-152.REN Lan,DI Yunting,ZHAO Jinzhou,et al.Research progress of fracturing fluid flowback theory and technology in Shale gas reservoir [J].Petroleum Geology & Oilfield Development in Daqing,2019,38(2):144-152.

    • [4] 李春颖,张志全,林飞,等.压裂液在页岩储层中的滞留与吸收初步探索[J].科技通报,2016,32(8):31-35.LI Chunying,ZHANG Zhiquan,LIN Fei,et al.Preliminary ex‐ ploration on the retention and absorption of fracturing fluid in shale reservoirs [J].Science and Technology Bulletin,2016,32(8):31-35.

    • [5] WANG X,PENG X,ZHANG S,et al.Characteristics of oil distributions in forced and spontaneous imbibition of tight oil reservoir [J].Fuel,2018,224:280-288.

    • [6] 姚兰兰.页岩油储层微观孔隙结构特征评价及渗流机理研究 [D].廊坊:中国科学院大学(中国科学院渗流流体力学研究所),2021.YAO Lanlan.Evaluation of microscopic pore structure character‐ istics of Shale oil reservoir and study on seepage mechanism [D].Langfang:University of the Chinese Academy of Sciences(Institute of Seepage Fluid Mechanics,Chinese Academy of Sciences),2021.

    • [7] 尤雪尘.页岩气藏压后渗吸机理及返排方式式研究[D].北京:中国石油大学(北京),2020.YOU Xuechen.Study on imbibition mechanism and flowback mode of Shale gas reservoir after fracturing [D].Beijing:China University of Petroleum(Beijing),2020.

    • [8] SCHECHTER D S,DENQEN Z,ORR F M.Capillary imbibi‐ tion and gravity segregation in low IFT systems [C]//SPE An‐ nual Technical Conference and Exhibition.OnePetro,1991.

    • [9] QUERE D.Wetting and roughness [J].Annual Review of Mate‐ rials Research,2008,38:71-99.

    • [10] BOSANQUET C H.LV.On the flow of liquids into capillary tubes [J].The London,Edinburgh and Dublin Philosophical Magazine and Journal of Science,1923,45(267):525-531.

    • [11] WASHBURN E W.The dynamics of capillary flow [EB/OL].[2022-11-21].https://journals.aps.org/pr/abstract/10.1103/Phys‐ Rev.17.273.

    • [12] AL-ARFAJ M,AL-OSAIL M,SULTAN A.Monitoring imbibi‐ tion of water into shale pore system:state of the art [C]//Ja‐ karta,Indonesia:SPE/IATMI Asia Pacific Oil & Gas Confer‐ ence and Exhibition,2017.

    • [13] 余雄飞.基于数值模拟的致密岩心自发渗吸研究[D].北京:中国石油大学(北京),2020.YU Xiongfei.Research on spontaneous infiltration of dense core based on numerical simulation [D].Beijing:China University of Petroleum(Beijing),2020.

    • [14] 王敬,刘慧卿,夏静,等.裂缝性油藏渗吸采油机理数值模拟 [J].石油勘探与开发,2017,44(5):761-770.WANG Jing,LIU Huiqing,XIA Jing,et al.Numerical simula‐ tion of the mechanism of percolation and oil recovery in frac‐ tured reservoirs [J].Petroleum Exploration and Development,2017,44(5):761-770.

    • [15] ZHOU Z,ABASS H,LI X,et al.Mechanisms of imbibition during hydraulic fracturing in shale formations [J].Journal of Petroleum Science and Engineering,2016,141:125-132.

    • [16] 石立华,程时清,常毓文,等.致密油藏非等径毛细管微观渗吸影响因素[J].大庆石油地质与开发,2023,42(2):68-76.SHI Lihua,CHENG Shiqing,CHANG Yuwen,et al.Influence factors of non equal diameter capillary micro imbibition in tight reservoirs [J].Petroleum Geology & Oilfield Development in Daqing,2023,42(2):68-76.

    • [17] 杨婧.多孔介质渗吸机理及其影响因素的分析[J].云南化工,2020,47(11):138-140.YANG Jing.Analysis of porous medium imbibition mechanism and its influencing factors [J].Yunnan Chemical Industry,2020,47(11):138-140.

    • [18] 蒙冕模,葛洪魁,纪文明,等.基于核磁共振技术研究页岩自发渗吸过程[J].特种油气藏,2015,22(5):137-140.MENG Mianmo,GE Hongkui,JI Wenming,et al.Research on spontaneous infiltration process of shale based on nuclear mag‐ netic resonance technology [J].Special Oil & Gas Reservoirs,2015,22(5):137-140.

    • [19] 罗强,石国新,聂小斌,等.基于核磁共振技术研究表面活性剂提高吉木萨尔页岩油渗吸效率[J].油田化学,2021,38(4):683-689.LUO Qiang,SHI Guoxin,NIE Xiaobin,et al.Improving the imbibition efficiency of Jimusar Shale oil with surfactants based on NMR technology [J].Oilfield Chemistry,2021,38(4):683-689.

    • [20] 李侠清,张星,卢占国,等.低渗透油藏渗吸采油主控因素[J].油气地质与采收率,2021,28(5):137-142.LI Xiaqing,ZHANG Xing,LU Zhanguo,et al.The main con‐ trol factors of low permeability reservoir imbibition oil recovery [J].Petroleum Geology and Recovery Efficiency,2021,28(5):137-142.

    • [21] GUO J,LI M,CHEN C,et al.Experimental investigation of spontaneous imbibition in tight sandstone reservoirs [J].Journal of Petroleum Science and Engineering,2020,193:107395.

    • [22] GE H K,YANG L,SHEN Y H,et al.Experimental investiga‐ tion of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids [J].Petroleum Science,2015,12(4):636-650.

    • [23] 曾星航,祁尚义,许国庆,等.带压渗吸核磁共振实验研究—— 以江汉盆地潜江凹陷潜江组泥质白云岩为例[J].油气地质与采收率,2023,30(1):122-128.ZENG Xinghang,QI Shangyi,XU Guoqing,et al.Experimen‐ tal study on pressurized infiltration nuclear magnetic resonance:taking the muddy dolomite of the Qianjiang formation in the Qianjiang depression of the Jianghan basin as an example [J].Petroleum Geology and Recovery Efficiency,2023,30(1):122-128.

    • [24] 王秀宇,巨明霜,杨文胜,等.致密油藏动态渗吸排驱规律与机理[J].油气地质与采收率,2019,26(3):92-98.WANG Xiuyu,JU Mingshuang,YANG Wensheng,et al.Dy‐ namic imbibition principles and mechanism of tight oil reser‐ voirs [J].Petroleum Geology and Recovery Efficiency,2019,26(3):92-98.

    • [25] 申哲娜,王香增,康宵瑜,等.延长油田典型致密油储层渗吸驱替采油机理定量分析[J].油气地质与采收率,2018,25(5):99-103.SHEN Zhena,WANG Xiangzeng,KANG Xiaoyu,et al.Quan‐ titative analysis of the mechanism of imbibition and displace‐ ment recovery of typical tight oil reservoirs in Yanchang Oilfield [J].Petroleum Geology and Recovery Efficiency,2018,25(5):99-103.

    • [26] 胡亚斐,李军诗,胡水清,等.动态渗吸对超低渗透油藏开发的影响及应用[J].特种油气藏,2021,28(4):123-128.HU Yafei,LI Junshi,HU Shuiqing,et al.Influence and applica‐ tion of dynamic imbibition on the development of ultra-low per‐ meability reservoirs [J].Special Oil & Gas Reservoirs,2021,28(4):123-128.

    • [27] 李楚雄,申宝剑,卢龙飞,等.松辽盆地沙河子组页岩孔隙结构表征——基于低场核磁共振技术[J].油气藏评价与开发,2022,12(3):468-476.LI Chuxiong,SHEN Baojian,LU Longfei,et al.Characteriza‐ tion of shale pore structure in the Shahezi formation of the Songliao basin:based on low field nuclear magnetic resonance technology [J].Reservoirs Evaluation and Development,2022,12(3):468-476.

    • [28] XU X,WAN Y,LI X,et al.Microscopic imbibition character‐ ization of sandstone reservoirs and theoretical model optimiza‐ tion [J].Scientific Reports,2021,11(1):8509.

    • [29] 黎明,廖晶,王肃,等.鄂尔多斯盆地超低渗透油藏渗吸特征及其影响因素——以渭北油田三叠系延长组三段储层为例[J].石油实验地质,2022,44(6):971-980.LI Ming,LIAO Jing,WANG Su,et al.Infiltration characteris‐ tics and influencing factors of ultra-low permeability oil reser‐ voirs in the Ordos Basin:a case study of the third member of the Triassic Yanchang Formation in the Weibei Oilfield [J].Petro‐ leum Geology & Experiment,2022,44(6):971-980.

    • [30] 刘继梓,巩联浩,卜广平,等.致密砂岩油藏高温高压动态渗吸特征及影响因素[J].特种油气藏,2021,28(4):142-149.LIU Jizi,GONG Lianhao,BU Guangping,et al.Characteris‐ tics and influencing factors of dynamic imbibition at high tem‐ perature and high pressure in tight sandstone reservoir [J].Spe‐ cial Oil & Gas Reservoirs,2021,28(4):142-149.

    • [31] 刘博峰,张庆九,陈鑫,等.致密油储层压裂液渗吸特征及水锁损害评价[J].断块油气田,2021,28(3):318-322.LIU Bofeng,ZHANG Qingjiu,CHEN Xin,et al.Imbibition characteristics of fracturing fluid in the tight oil reservoir and wa‐ ter lock damage evaluation [J].Fault-Block Oil and Gas Field,2021,28(3):318-322.

  • 参考文献

    • [1] 于佳尧.页岩油储层人工裂缝导流能力影响因素研究[D].北京:中国石油大学(北京),2020.YU Jiayao.Study on influencing factors of artificial fracture con‐ ductivity in Shale oil reservoir [D].Beijing:China University of Petroleum(Beijing),2020.

    • [2] 石林,张鲲鹏,慕立俊.页岩油储层压裂改造技术问题的讨论 [J].石油科学通报,2020,5(4):496-511.SHI Lin,ZHANG Kunpeng,MU Lijun.Discussion on fractur‐ ing technology of Shale oil reservoir [J].Petroleum Science Bul‐ letin,2020,5(4):496-511.

    • [3] 任岚,邸云婷,赵金洲,等.页岩气藏压裂液返排理论与技术研究进展[J].大庆石油地质与开发,2019,38(2):144-152.REN Lan,DI Yunting,ZHAO Jinzhou,et al.Research progress of fracturing fluid flowback theory and technology in Shale gas reservoir [J].Petroleum Geology & Oilfield Development in Daqing,2019,38(2):144-152.

    • [4] 李春颖,张志全,林飞,等.压裂液在页岩储层中的滞留与吸收初步探索[J].科技通报,2016,32(8):31-35.LI Chunying,ZHANG Zhiquan,LIN Fei,et al.Preliminary ex‐ ploration on the retention and absorption of fracturing fluid in shale reservoirs [J].Science and Technology Bulletin,2016,32(8):31-35.

    • [5] WANG X,PENG X,ZHANG S,et al.Characteristics of oil distributions in forced and spontaneous imbibition of tight oil reservoir [J].Fuel,2018,224:280-288.

    • [6] 姚兰兰.页岩油储层微观孔隙结构特征评价及渗流机理研究 [D].廊坊:中国科学院大学(中国科学院渗流流体力学研究所),2021.YAO Lanlan.Evaluation of microscopic pore structure character‐ istics of Shale oil reservoir and study on seepage mechanism [D].Langfang:University of the Chinese Academy of Sciences(Institute of Seepage Fluid Mechanics,Chinese Academy of Sciences),2021.

    • [7] 尤雪尘.页岩气藏压后渗吸机理及返排方式式研究[D].北京:中国石油大学(北京),2020.YOU Xuechen.Study on imbibition mechanism and flowback mode of Shale gas reservoir after fracturing [D].Beijing:China University of Petroleum(Beijing),2020.

    • [8] SCHECHTER D S,DENQEN Z,ORR F M.Capillary imbibi‐ tion and gravity segregation in low IFT systems [C]//SPE An‐ nual Technical Conference and Exhibition.OnePetro,1991.

    • [9] QUERE D.Wetting and roughness [J].Annual Review of Mate‐ rials Research,2008,38:71-99.

    • [10] BOSANQUET C H.LV.On the flow of liquids into capillary tubes [J].The London,Edinburgh and Dublin Philosophical Magazine and Journal of Science,1923,45(267):525-531.

    • [11] WASHBURN E W.The dynamics of capillary flow [EB/OL].[2022-11-21].https://journals.aps.org/pr/abstract/10.1103/Phys‐ Rev.17.273.

    • [12] AL-ARFAJ M,AL-OSAIL M,SULTAN A.Monitoring imbibi‐ tion of water into shale pore system:state of the art [C]//Ja‐ karta,Indonesia:SPE/IATMI Asia Pacific Oil & Gas Confer‐ ence and Exhibition,2017.

    • [13] 余雄飞.基于数值模拟的致密岩心自发渗吸研究[D].北京:中国石油大学(北京),2020.YU Xiongfei.Research on spontaneous infiltration of dense core based on numerical simulation [D].Beijing:China University of Petroleum(Beijing),2020.

    • [14] 王敬,刘慧卿,夏静,等.裂缝性油藏渗吸采油机理数值模拟 [J].石油勘探与开发,2017,44(5):761-770.WANG Jing,LIU Huiqing,XIA Jing,et al.Numerical simula‐ tion of the mechanism of percolation and oil recovery in frac‐ tured reservoirs [J].Petroleum Exploration and Development,2017,44(5):761-770.

    • [15] ZHOU Z,ABASS H,LI X,et al.Mechanisms of imbibition during hydraulic fracturing in shale formations [J].Journal of Petroleum Science and Engineering,2016,141:125-132.

    • [16] 石立华,程时清,常毓文,等.致密油藏非等径毛细管微观渗吸影响因素[J].大庆石油地质与开发,2023,42(2):68-76.SHI Lihua,CHENG Shiqing,CHANG Yuwen,et al.Influence factors of non equal diameter capillary micro imbibition in tight reservoirs [J].Petroleum Geology & Oilfield Development in Daqing,2023,42(2):68-76.

    • [17] 杨婧.多孔介质渗吸机理及其影响因素的分析[J].云南化工,2020,47(11):138-140.YANG Jing.Analysis of porous medium imbibition mechanism and its influencing factors [J].Yunnan Chemical Industry,2020,47(11):138-140.

    • [18] 蒙冕模,葛洪魁,纪文明,等.基于核磁共振技术研究页岩自发渗吸过程[J].特种油气藏,2015,22(5):137-140.MENG Mianmo,GE Hongkui,JI Wenming,et al.Research on spontaneous infiltration process of shale based on nuclear mag‐ netic resonance technology [J].Special Oil & Gas Reservoirs,2015,22(5):137-140.

    • [19] 罗强,石国新,聂小斌,等.基于核磁共振技术研究表面活性剂提高吉木萨尔页岩油渗吸效率[J].油田化学,2021,38(4):683-689.LUO Qiang,SHI Guoxin,NIE Xiaobin,et al.Improving the imbibition efficiency of Jimusar Shale oil with surfactants based on NMR technology [J].Oilfield Chemistry,2021,38(4):683-689.

    • [20] 李侠清,张星,卢占国,等.低渗透油藏渗吸采油主控因素[J].油气地质与采收率,2021,28(5):137-142.LI Xiaqing,ZHANG Xing,LU Zhanguo,et al.The main con‐ trol factors of low permeability reservoir imbibition oil recovery [J].Petroleum Geology and Recovery Efficiency,2021,28(5):137-142.

    • [21] GUO J,LI M,CHEN C,et al.Experimental investigation of spontaneous imbibition in tight sandstone reservoirs [J].Journal of Petroleum Science and Engineering,2020,193:107395.

    • [22] GE H K,YANG L,SHEN Y H,et al.Experimental investiga‐ tion of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids [J].Petroleum Science,2015,12(4):636-650.

    • [23] 曾星航,祁尚义,许国庆,等.带压渗吸核磁共振实验研究—— 以江汉盆地潜江凹陷潜江组泥质白云岩为例[J].油气地质与采收率,2023,30(1):122-128.ZENG Xinghang,QI Shangyi,XU Guoqing,et al.Experimen‐ tal study on pressurized infiltration nuclear magnetic resonance:taking the muddy dolomite of the Qianjiang formation in the Qianjiang depression of the Jianghan basin as an example [J].Petroleum Geology and Recovery Efficiency,2023,30(1):122-128.

    • [24] 王秀宇,巨明霜,杨文胜,等.致密油藏动态渗吸排驱规律与机理[J].油气地质与采收率,2019,26(3):92-98.WANG Xiuyu,JU Mingshuang,YANG Wensheng,et al.Dy‐ namic imbibition principles and mechanism of tight oil reser‐ voirs [J].Petroleum Geology and Recovery Efficiency,2019,26(3):92-98.

    • [25] 申哲娜,王香增,康宵瑜,等.延长油田典型致密油储层渗吸驱替采油机理定量分析[J].油气地质与采收率,2018,25(5):99-103.SHEN Zhena,WANG Xiangzeng,KANG Xiaoyu,et al.Quan‐ titative analysis of the mechanism of imbibition and displace‐ ment recovery of typical tight oil reservoirs in Yanchang Oilfield [J].Petroleum Geology and Recovery Efficiency,2018,25(5):99-103.

    • [26] 胡亚斐,李军诗,胡水清,等.动态渗吸对超低渗透油藏开发的影响及应用[J].特种油气藏,2021,28(4):123-128.HU Yafei,LI Junshi,HU Shuiqing,et al.Influence and applica‐ tion of dynamic imbibition on the development of ultra-low per‐ meability reservoirs [J].Special Oil & Gas Reservoirs,2021,28(4):123-128.

    • [27] 李楚雄,申宝剑,卢龙飞,等.松辽盆地沙河子组页岩孔隙结构表征——基于低场核磁共振技术[J].油气藏评价与开发,2022,12(3):468-476.LI Chuxiong,SHEN Baojian,LU Longfei,et al.Characteriza‐ tion of shale pore structure in the Shahezi formation of the Songliao basin:based on low field nuclear magnetic resonance technology [J].Reservoirs Evaluation and Development,2022,12(3):468-476.

    • [28] XU X,WAN Y,LI X,et al.Microscopic imbibition character‐ ization of sandstone reservoirs and theoretical model optimiza‐ tion [J].Scientific Reports,2021,11(1):8509.

    • [29] 黎明,廖晶,王肃,等.鄂尔多斯盆地超低渗透油藏渗吸特征及其影响因素——以渭北油田三叠系延长组三段储层为例[J].石油实验地质,2022,44(6):971-980.LI Ming,LIAO Jing,WANG Su,et al.Infiltration characteris‐ tics and influencing factors of ultra-low permeability oil reser‐ voirs in the Ordos Basin:a case study of the third member of the Triassic Yanchang Formation in the Weibei Oilfield [J].Petro‐ leum Geology & Experiment,2022,44(6):971-980.

    • [30] 刘继梓,巩联浩,卜广平,等.致密砂岩油藏高温高压动态渗吸特征及影响因素[J].特种油气藏,2021,28(4):142-149.LIU Jizi,GONG Lianhao,BU Guangping,et al.Characteris‐ tics and influencing factors of dynamic imbibition at high tem‐ perature and high pressure in tight sandstone reservoir [J].Spe‐ cial Oil & Gas Reservoirs,2021,28(4):142-149.

    • [31] 刘博峰,张庆九,陈鑫,等.致密油储层压裂液渗吸特征及水锁损害评价[J].断块油气田,2021,28(3):318-322.LIU Bofeng,ZHANG Qingjiu,CHEN Xin,et al.Imbibition characteristics of fracturing fluid in the tight oil reservoir and wa‐ ter lock damage evaluation [J].Fault-Block Oil and Gas Field,2021,28(3):318-322.