en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘建斌(1990—),男,陕西榆林人,讲师,博士,从事致密储层描述与渗吸增产、稠油油藏化学复合驱油机理、孔隙介质多相微观渗流理论等方面研究。E-mail:deleap@163.com。

中图分类号:TE357.46

文献标识码:A

文章编号:1009-9603(2023)06-0112-10

DOI:10.13673/j.pgre.202211016

参考文献 1
LISSANT K J.Emulsification and demulsification:An histori‐ cal overview [J].Colloids & Surfaces,1988,29(1):1-5.
参考文献 2
KILPATRICK PETER K.Water-in-crude oil emulsion stabiliza‐ tion:review and unanswered questions [J].Energy & Fuels,2012,26(7):4 017-4 026.
参考文献 3
PAPIRER E,BOURGEOIS C,SIFFERT B,et al.Chemical na‐ ture and water oil emulsifying properties of asphaltenes [J].Fuel,1982,61(1):732-734.
参考文献 4
杨勇.胜利油田稠油开发技术新进展及发展方向[J].油气地质与采收率,2021,28(6):1-11.YANG Yong.New progress and next development directions of heavy oil development technologies in Shengli Oilfield [J].Pe‐ troleum Geology and Recovery Efficiency,2021,28(6):1-11.
参考文献 5
ZHU Tongyu,KANG Wanli,YANG Hongbin,et al.Advances of microemulsion and its applications for improved oil recovery [J].Advances in Colloid and Interface Science,2022,299:102527.
参考文献 6
郑昕,姚秀田,夏海容,等.稠油化学堵调降黏复合驱油体系构建及驱油机理分析[J].油气地质与采收率,2021,28(6):122-128.ZHENG Xin,YAO Xiutian,XIA Hairong,et al.Establishment of combined viscosity reduction flooding system for chemical water shutoff and profile control in heavy oil reservoirs and analysis of its mechanism [J].Petroleum Geology and Recovery Efficiency,2021,28(6):122-128.
参考文献 7
郑万刚,初伟,崔文富,等.渗透降黏驱油剂提高采收率机理[J].油气地质与采收率,2021,28(6):129-134.ZHENG Wangang,CHU Wei,CUI Wenfu,et al.Enhanced oil recovery mechanism of permeable viscosity-reducing oil dis‐ placement agent [J].Petroleum Geology and Recovery Effi‐ ciency,2021,28(6):129-134.
参考文献 8
陆国琛.改善海上水驱稠油开发效果技术研究[D].青岛:中国石油大学(华东),2016.LU Guochen.Research on technology to improve the develop‐ ment effect of offshore water flooding Heavy oil [D].Qingdao:China University of Petroleum(East China),2016.
参考文献 9
李伟忠.胜利油田稠油未动用储量评价及动用对策[J].特种油气藏,2021,28(2):63-71.LI Weizhong.Evaluation and development countermeasures for nonproducing reserves of heavy oil reservoirs in Shengli oilfield [J].Special Oil & Gas Reservoirs,2021,28(2):63-71.
参考文献 10
PAL R.Shear viscosity behavior of emulsions of two immiscible liquids [J].Colloid Interface Science,2000,255(4):359-366.
参考文献 11
刘慧卿,东晓虎.稠油热复合开发提高采收率技术现状与趋势 [J].石油科学通报,2022,7(2):174-184.LIU Huiqing,DONG Xiaohu.Technology status and trend of enhanced oil recovery from thermal composite development of heavy oil [J].Petroleum Science Bulletin,2022,7(2):174-184.
参考文献 12
杨勇,李小东,孙常伟,等.礁灰岩强底水稠油油藏含水上升主控因素分析[J].非常规油气,2021,8(4):48-54.YANG Yong,LI Xiaodong,SUN Changwei,et al.Analysis of main controlling factors of water cut rise in heavy oil reservoirs with strong bottom water in reef limestone [J].Unconventional Oil and Gas,2021,8(4):48-54.
参考文献 13
PAL R.A novel method to correlate emulsion viscosity data [J].Colloids and Surfaces A Physicochemical and Engineering As‐ pects,1998,137(6):275-286.
参考文献 14
张一民.油包水型含腊原油乳状液流变特性研究[D].大庆:东北石油大学,2013.ZHANG Yimin.Rheological properties of oil-in-water waxbearing crude oil emulsions [D].Daqing:Northeast Petroleum University,2013.
参考文献 15
江延明,李传宪.W/O 乳状液的流变性研究[J].油气储运,2000,19(1):10-12.JIANG Yanming,LI Chuanxian.Study on rheology of W/O emulsions [J].Oil & Gas Storage and Transportation,2000,19(1):10-12.
参考文献 16
江延明,李传宪.油水乳状液的制备[J].油气田地面工程,2004,18(6):21-22.JIANG Yanming,LI Chuanxian.Preparation of oil-water emul‐ sion [J].Oil & Gas Field Surface Engineering,2004,18(6):21-22.
参考文献 17
LIU Chenwei,LI Mingzhong,HAN Rui,et al.Rheology of water-in-oil emulsions with different drop sizes [J].Journal of Dispersion Science and Technology,2016,37(1):333-344.
参考文献 18
黄启玉,王蕾.微观液滴分布对含蜡原油乳状液流变性的影响 [J].石油学报,2013,34(4):765-774.HUANG Qiyu,WANG Lei.Effect of microscopic droplet distri‐ bution on rheology of waxy crude oil emulsions [J].Acta Petro‐ lei Sinica,2013,34(4):765-774.
参考文献 19
刘立伟,向问陶,张健.渤海油田原油乳状液流变性研究[J].西南石油大学学报:自然科学版,2010,32(6):143-146.LIU Liwei,XIANG Wentao,ZHANG Jian.Study on rheologi‐ cal properties of raw oil emulsion in Bohai Oilfield [J].Journal of Southwest Petroleum University:Science & Technology Edi‐ tion,2010,32(6):143-146.
参考文献 20
JOHNSEN E,FORDEDAL H,URDAHL O L.A simplified ex‐ perimental approach for measuring viscosity for water-in-crudeoil emulsions under flowing conditions [J].Journal of Dispersion Science & Technology,2001,22(1):33-39.
参考文献 21
KILPATRICK P K.Water-in-crude oil emulsion stabilization:review and unanswered questions [J].Energy and Fuels,2012,26(7):4 017-4 026.
参考文献 22
FARAH M A,OLIVEIRA R C,CALDAS J N,et al.Viscosity of water-in-oil emulsions:variation with temperature and water volume fraction [J].Journal of Petroleum Science & Engineer‐ ing,2005,48(3/4):169-184.
参考文献 23
钟立国,刘冰岩,李大勇,等.大庆西部斜坡稠油地层流动性影响因素实验研究[J].特种油气藏,2020,27(1):142-147.ZHONG Liguo,LIU Bingyan,LI Dayong,et al.Experimental study on influencing factors of heavy oil formation fluidity in the Western Slope of Daqing [J].Special Oil & Gas Reservoirs,2020,27(1):142-147.
参考文献 24
孙鹏霄,刘英宪.渤海稠油油藏开发现状及热采开发难点与对策[J].中国海上油气,2023,35(2):85-92.SUN Pengxiao,LIU Yingxian.Development status and thermal development difficulties and strategy of Bohai heavy oil reser‐ voirs[J].China Offshore Oil and Gas,2023,35(2):85-92.
参考文献 25
方吉超,李晓琦,计秉玉,等.中国稠油蒸汽吞吐后提高采收率接替技术前景[J].断块油气田,2022,29(3):378-382,389.FANG Jichao,LI Xiaoqi,JI Bingyu,et al.Prospect of replace‐ ment technology for enhanced oil recovery after cyclic steam stimulation of heavy oil in China[J].Fault-Block Oil and Gas Field,2022,29(3):378-382,389.
参考文献 26
YANG Y,GUO J,CHENG Z,et al.A new composite viscosity reducer with both asphaltene dispersion and emulsifying capabil‐ ity for heavy and ultra-heavy crude oils [J].Energy & Fuels,2017,31(2):1 159-1 173.
参考文献 27
WU Zhengbin,LIU Huiqing,WANG Xue,et al.Emulsifica‐ tion and improved oil recovery with viscosity reducer during steam injection process for heavy oil [J].Journal of Industrial & Engineering Chemistry,2018,61(25):348-355.
参考文献 28
ZHENG Cunchuan,FU Haoran,YAN Chaozong,et al.Prepa‐ ration and mechanism of hyperbranched heavy oil viscosity re‐ ducer [J].Journal of Petroleum Science and Engineering,2020,196(32):107941.
参考文献 29
韩玉贵,丁名臣,刘义刚,等.无碱与含碱化学体系驱替稠油特征比较[J].断块油气田,2021,28(1):129-132,138.HAN Yugui,DING Mingchen,LIU Yigang,et al.Comparative study between alkali-free and alkali-containing chemical sys‐ tems for recovering heavy oil [J].Fault-Block Oil and Gas Field,2021,28(1):129-132,138.
参考文献 30
LI Pengcheng,ZHANG Fusheng,GONG Yejing,et al.Synthe‐ sis and properties of functional polymer for heavy oil viscosity reduction [J].Journal of Molecular Liquids,2021,330(15):115635.
参考文献 31
刘哲宇,李宜强,庄永涛,等.多孔介质中二元复合体系乳化前后流动规律研究[J].石油科学通报,2017,2(4):527-535.LIU Zheyu,LI Yiqiang,ZHUANG Yongtao,et al.Flow law of binary composite system before and after emulsification in po‐ rous media [J].Petroleum Science Bulletin,2017,2(4):527-535.
参考文献 32
张健,梁丹,康晓东,等.海上稠油油田热水化学驱油技术研究 [J].中国海上油气,2021,33(5):87-93.ZHANG Jian,LIANG Dan,KANG Xiaodong,et al.Study on hot water chemical flooding technology in offshore heavy oil field [J].China Offshore Oil and Gas,2021,33(5):87-93.
参考文献 33
赵衍彬.强敏感性稠油油藏高温热变定量表征[J].非常规油气,2022,9(5):79-84,102.ZHAO Yanbin.Quantitative characterization of high-temperature thermal changes in highly sensitive heavy oil reservoirs[J].Un‐ conventional Oil & Gas,2022,9(5):79-84,102.
参考文献 34
赵琳,王增林,张星,等.稠油油藏自扩散降黏体系作用机理[J].大庆石油地质与开发,2021,40(1):110-116.ZHAO Lin,WANG Zenglin,ZHANG Xing,et al.Mechanism of the self diffusion viscosity reducing system in heavy oil reservoir [J].Petroleum Geology & Oilfield Development in Daqing,2021,40(1):110-116.
参考文献 35
孙永涛,李兆敏,孙玉豹,等.稠油耐高温乳化降黏剂AESO的合成及其性能[J].大庆石油地质与开发,2021,40(3):103-108.SUN Yongtao,LI Zhaomin,SUN Yubao,et al.Synthesis and properties of high-temperature emulsified viscosity reducer AESO for heavy oil[J].Petroleum Geology & Oilfield Develop‐ ment in Daqing,2021,40(3):103-108.
参考文献 36
郭德明,潘毅,孙扬,等.低渗稠油油藏降黏剂-CO2复合驱提高采收率机理研究[J].油气藏评价与开发,2022,12(5):794-802.GUO Deming,PAN Yi,SUN Yang,et al.EOR mechanism of vis‐ cosity reducer-CO2 combined flooding in heavy oil reservoir with low permeability[J].Reservoir Evaluation and Develop‐ ment,2022,12(5):794-802.
参考文献 37
ARHUOMA M,DONG M,YANG D,et al.Determination of water-in-oil emulsion viscosity in porous media [J].Industrial & Engineering Chemistry Research,2009,48(15):7 092-7 102.
参考文献 38
CHEN Zan,DONG Mingzhe,HUSEIN M,et al.Effects of oil viscosity on the plugging performance of oil-in-water emulsion in porous media [J].Industrial & Engineering Chemistry Re‐ search,2018,57(21):7 301-7 309.
参考文献 39
LIU Jianbin,ZHONG Liguo,REN Lei,et al.Laboratory evalu‐ ation of fluidity of heavy oil emulsions in formation pores me‐ dium [J].ACS Omega,2021,6(1):623-632.
目录contents

    摘要

    胜利油田金17块稠油油藏采用水驱后采出液乳化严重,地层流动能力降低,导致开发效果变差。通过乳化状态分析、黏度和流变性测试、油水界面张力测试等研究稠油和水的乳化特性,分析乳化稠油的流动特性;通过对油田常用的乳化驱油剂与 W/O型乳状液再乳化形成乳状液的乳化状态、粒径、黏度和黏弹性分析,对乳化稠油再乳化特性进行了研究;分析乳化稠油再乳化机理,并对乳化驱油研究提供了思路。结果表明:乳化严重影响稠油乳状液的黏度,在油藏温度(60 ℃)条件下,含水率为 60% 的 W/O 型乳状液,其黏度、黏性模量和油水界面张力分别是脱水稠油的 11.9 倍、13.49 倍和 2.49 倍。当含水率高于 40% 时,非牛顿特性变强、黏度开始呈指数式增大、黏性模量增大显著、油水界面张力迅速增大,严重制约了其在孔隙介质中的流动性。当乳化稠油与乳化驱油剂再乳化时,形成 W/O/W型多重乳状液。乳状液的粒径、黏度和黏弹性随着 W/O型乳状液中初始含水率的升高而增大。当初始含水率为60%时,乳化驱油剂LPA,HPF和SDS与W/O型乳状液再乳化后形成乳状液的粒径分别为91.3,40.6和27.5 μm。相比于它们与脱水稠油形成的乳状液,粒径分别增大7.9倍、4.0倍和2.2倍。说明地层水/注入水与稠油的乳化对乳化驱油剂提高稠油采收率有很大的影响。因此,强化乳化驱油体系穿透油膜和取代稠油中活性物质在油水界面上吸附的能力是后续乳化驱油体系研发和施工工艺设计的重点。

    Abstract

    The development effects of heavy oil reservoirs after water flooding become poor due to the serious emulsification of pro‐ duced liquid and reduction of formation fluidity in Block Jin17 of Shengli Oilfield. Therefore, the emulsification characteristics of heavy oil and water were studied through emulsification state analysis, viscosity, and rheology testing, oil-water interfacial tension (IFT) testing, etc., and the flow characteristics of emulsified heavy oil were analyzed. Then, the re-emulsification characteristics of emulsified heavy oil were studied by analyzing the emulsification state, droplet size, viscosity, and viscoelasticity of emulsions formed by emulsification oil flooding agent and W/O emulsion. Finally, the re-emulsification mechanisms of emulsified heavy oil were analyzed, and the idea of emulsification oil flooding method was provided. The results show that emulsification has a serious effect on the viscosity of heavy oil emulsions. Under the reservoir temperature of 60 °C, the viscosity, viscosity modulus, and IFT of W/O emulsions with water content of 60% are 11.9,13.49, and 2.49 times that of dehydrated heavy oil, respectively. Moreover, the fluidity of W/O emulsions in the porous media is seriously restricted due to its stronger non-Newtonian characteristics, the vis‐ cosity increased exponentially, the viscous modulus increased significantly, and IFT increased rapidly when the water content is higher than 40%. W/O/W multiple emulsions are formed when emulsified heavy oil and emulsification oil flooding agents are reemulsified. Moreover, the droplet size, viscosity, and viscoelasticity of the emulsions increase with the increment of initial water content in W/O emulsion. When the initial water content of W/O emulsion is 60%, the droplet sizes of emulsions formed by emulsi‐ fication oil flooding agents LPA, HPF, and SDS and W/O emulsion are 91.3,40.6, and 27.5 μm, respectively. Compared with the emulsions formed with dehydrated heavy oil, the droplet sizes are 7.9,4.0, and 2.2 times, respectively. This indicates that the emulsification of formation water/injection water and heavy oil has a great influence on enhanced oil recovery of heavy oil by emul‐ sification oil flooding agents. Therefore, strengthening the ability of emulsification oil flooding systems to penetrate oil film and re‐ place the adsorption of active substances in heavy oil on the oil-water interface is the focus of subsequent research and development of emulsification oil flooding systems and construction method design.

  • 稠油和水是不互溶的两相,稠油和水中的活性物质会向油水界面移动,在地层中流动时,在孔隙介质的剪切作用下形成稳定的乳状液[1-2]。根据界面膜吸附理论,原油和水一次形成的乳状液主要有 2种类型:一种是水以微小的液滴分散于原油中,称为 W/O 型乳状液,此时水是内相或称分散相,油是外相或称连续相;另一种是油以微小的液滴分散于水中,称为 O/W 型乳状液,此时油是内相,水是外相[3-7]。稠油中的胶质和沥青质等活性物质吸附于稠油-水界面时趋向于生成 W/O 型乳状液;水中的活性物质或碱与稠油生成的活性物质吸附于稠油水界面时趋向于生成O/W型乳状液[8-9]。因此,无论是水驱/注蒸汽还是化学剂辅助开发稠油油藏时均会有乳状液生成。

  • W/O 型乳状液的形成使其流变特性相较于原油更加复杂。乳状液的黏度与含水率和水相粒径有关[10-13]。当含水率较低时,其表观黏度随含水率的增加缓慢上升;当含水率较高时,其表观黏度随含水率的增加几乎呈指数增长[14-16],其流体状态也会从牛顿流体变为非牛顿流体[17]。通过对渤海油田原油的测试,刘立伟等研究得到当含水率高于 40% 时,W/O 型乳状液为非牛顿流体;当含水率低于 40% 时,W/O 型乳状液为牛顿流体[18-19]。W/O 型乳状液形成后黏度较脱水稠油黏度会有较大幅度的升高,这直接制约了稠油油藏的高效开发[20-22]。大庆西部斜坡稠油在含水率为 70% 时黏度为脱水稠油黏度的30倍左右[23]。渤海油田稠油在经过3轮次蒸汽吞吐开发以后,发生举升困难的问题。采出液中含水率为 40% 以上,脱水后黏度降低了将近 70%[24]

  • 乳化驱油作为一种辅助手段在稠油开发中得到了广泛的应用[25]。由于乳化驱油剂可以吸附于油水界面,将稠油乳化为油滴分散于水中形成O/W型乳状液,从而大幅度降低稠油黏度[26-29]。大多的乳化驱油剂在室内评价时都能够将稠油的黏度降低 90% 以上[30-36]。对于不同的乳化驱油剂其能够形成的乳状液粒径不同,因此在孔隙介质中的流动性也不同[37-39]。目前,对乳化驱油大多是针对脱水稠油的乳化研究。但是在实际开发过程中乳化的对象是W/O型乳状液,其对乳化驱油剂作用的影响还没有太多的研究。为此,笔者以胜利油田金17块稠油为例,研究了稠油和水的乳化特性,分析乳化稠油在地层中的流动特性,进而对乳化稠油再乳化特性进行研究,并且对乳化驱油研究提供了新思路,以期为同类型稠油油田研发乳化驱油体系以及开采方式提供理论依据。

  • 1 实验材料与设备

  • 1.1 实验材料

  • 胜利油田金 17块稠油密度为 0.967 g/cm3,凝点为-2℃,含水率为20%;四组分中饱和分占38.37%,芳香分占 41.56%,胶质占 17.83%,沥青质占 2.24%; 初始含水率约为 20%,脱水前后原油状态如图1 所示。脱水前为W/O型乳状液,且水滴均匀分布于油相中。油藏温度下(60℃)黏度为 765.3 mPa·s,脱水稠油黏度为 505.6 mPa·s。说明在油藏条件下稠油和水发生了乳化现象,影响了其在孔隙介质中的流动性。乳化驱油剂选用油田常用乳化驱油剂 LPA,HRF和SDS。

  • 1.2 实验设备

  • 实验设备包括:石油产品密度测定器,大连北方分析仪器有限公司,测试范围为 700~1 100 kg/m3;凝点测定器,大连北方分析仪器有限公司,测试范围为-35℃至室温;四组分测定器,大连北方分析仪器有限公司;高温电脱水仪,扬州华宝石油仪器有限公司,温度范围为室温至300℃,脱水后原油含水率低于 0.1%;HAAKE MARS Ⅳ模块化高温高压流变仪,德国 Thermo Fisher Scientific 公司,测试范围:15~400℃,0~40 MPa;SVT20视频旋转滴张力仪,德国 dataphysics 公司,测试范围为 1×10-6~2 000 mN/m;奥林巴斯BX53电子显微镜,日本株式会社,放大倍数为 40~1 000 倍;数显乳化机,北京星德精仪实验仪器有限公司,转速为1 000~10 000 r/min;激光粒度仪,英国Malver仪器有限公司,测试范围为0.01~3 500 µm。

  • 图1 胜利油田金17块稠油脱水前后显微镜照片

  • Fig.1 Microscope photos of heavy oil before and after dehydration in Block Jin17 of Shengli Oilfield

  • 2 不同含水率稠油-水乳化特性

  • 稠油和水乳化形成乳状液的类型取决于吸附于油水界面活性物质的性质。对于稠油而言,其活性物质主要为胶质和沥青质。胜利油田金 17 块稠油中胶质+沥青质含量为20.07%,在水驱过程中,稠油中大量的胶质和沥青质会促使乳化形成 W/O 型乳状液。乳状液形成后其性质较脱水稠油会发生变化,相应的开发难度也会不同。为此,有必要对乳化稠油的特性进行研究。

  • 2.1 黏度及乳化状态

  • 稠油的黏度制约了其在孔隙介质中的流动能力,而乳化稠油其黏度较稠油又会发生较大的变化。此外,稠油和水乳化形成W/O型乳状液中水滴的粒径也会影响其在孔隙介质中的流动能力。水滴粒径越大,通过细小孔隙时由于贾敏效应引起的附加阻力就越大。为了明确乳化稠油在孔隙介质中的流动能力,有必要研究不同含水率条件下稠油乳状液的黏温曲线以及微观乳化状态。

  • 由不同含水率W/O型乳状液黏温曲线(图2)和微观乳化状态(图3)可以看出,随着含水率的增大,W/O 型乳状液中水滴数量逐渐增多,粒径增大;含水率高于 40% 后,W/O 型乳状液粒径开始趋于稳定。此外,含水率对原油黏度有很大影响。随着含水率的增加黏度升高,且含水率高于 40% 后,黏度增大显著。在油藏温度条件下,含水率为60%时W/ O 型乳状液的黏度为 6 041.6 mPa·s,是脱水原油黏度的 11.9倍。这主要是由于当含水率较低时,乳状液中水滴之间的油层较厚,在受到剪切作用时油层的内摩擦阻力小。为此,在低含水率条件下,随着含水率的升高,黏度增长缓慢。但是在高含水率条件下,W/O 型乳状液中水滴之间的油层较薄,在受到剪切作用时,油层间的内摩擦阻力显著增大,为此,在高含水率条件下,随着含水率的升高,黏度呈指数式增大。含水率越高,W/O型乳状液在孔隙介质中的流动性越差,水驱开发过程中指进现象越明显,导致开发效果变差。

  • 2.2 流变性能

  • 稠油油藏在开发过程中,稠油和水在孔隙介质的剪切作用下形成W/O型乳状液,并且在孔隙介质中流动。不同开发阶段、不同油藏部位,其流动速度不同。因此,有必要对不同含水率W/O型乳状液的流变性能进行测试。当 W/O 型乳状液含水率为 0~60%,实验温度为 60℃,剪切速率为 0.01~20 s-1 时,由不同含水率 W/O 型乳状液流变曲线(图4)可以看出,当含水率较低时,流变曲线呈增大—降低—趋于稳定的趋势;含水率较大时流变曲线呈增大—降低趋势。当剪切速率为0~2 s-1 时,随着剪切速率的增大黏度增大;当剪切速率为2~20 s-1 时,随着剪切速率的增大黏度降低。说明在油藏条件下,即使在相同含水率条件下,驱替速度对黏度的影响也较大。随着含水率的增大,W/O型乳状液的非牛顿特性变强,在黏度降低阶段,随着剪切速率的增大,黏度降低幅度增大。

  • 图2 不同含水率W/O型乳状液黏温曲线

  • Fig.2 Viscosity-temperature curves of W/O emulsions with different water contents

  • 图3 不同含水率时W/O型乳状液微观乳化状态

  • Fig.3 Micro-emulsification states of W/O emulsions with different water contents

  • 2.3 黏弹性能

  • 稠油在地层孔隙介质中流动时存在启动压力梯度,主要是由于其黏性模量较大。因此,除了黏度之外,通常还将黏弹性作为其在地层中流动能力判断的一个重要指标。为此,对不同含水率条件下的 W/O 型乳状液黏弹性进行了测试。采用 HAAKE MARS Ⅳ模块化高温高压流变仪的平板模块,间隙为1 mm,频率为1 Hz,剪切速率为5 s-1。当 W/O 型乳状液含水率为 0~60%,实验温度为 60℃ 时,黏弹性随含水率变化曲线(图5)表明,不同含水率原油的储能模量(弹性模量)均小于损耗模量(黏性模量),均表现出以黏性为主。随着含水率的增加,弹性模量增大越显著,流动能力越差。当含水率为 0 时,其黏性模量为 3.08 Pa,弹性模量仅为 0.02 Pa;含水率为 40% 时,其黏性模量为 12.39 Pa,弹性模量仅为 0.07 Pa,黏性模量增大了 4.02 倍;含水率为60%时,其黏性模量为41.56 Pa,弹性模量仅为 4.58 Pa,黏性模量增大了 13.49 倍;此外,当含水率高于 40% 时,其黏性模量增大显著,说明其在油藏条件下流动能力降低显著。

  • 图4 不同含水率W/O型乳状液流变曲线(60℃)

  • Fig.4 Rheological curves of W/O emulsions with different water contents (60 °C)

  • 2.4 油水界面张力

  • 油水界面张力影响形成 W/O 型乳状液的稳定性和 O/W 型乳状液的难易程度。油水界面张力越大,越容易形成 W/O 型乳状液,W/O 型乳状液形成后越稳定。另外,W/O 型乳状液的含水率越高,驱油剂溶液形成O/W型乳状液就越困难。为此,对不同含水率条件下 W/O 型乳状液的油水界面张力进行了测试。W/O 型乳状液含水率为 0~60%,实验温度为 60℃,旋转速度为 6 000 r/min,稳定 30 min 后开始测试,由油水界面张力随含水率变化曲线 (图6)可以看出,脱水原油与去离子水界面张力为 4.721 mN/m。随着含水率的增大,黏度增大,界面膜强度增大。因此,界面张力逐渐增大。并且在含水率高于 30%~40% 时,界面张力增大的幅度进一步增加。含水率为 60% 时界面张力增大到 11.753 mN/m。另外,从油滴形态也可以看出,随着含水率的升高,相同旋转速度对油滴的拉伸能力降低,油滴发生形变的能力变差,说明其界面膜的强度随着含水率的升高而增强。

  • 图5 W/O型乳状液黏弹性随含水率变化曲线(60℃)

  • Fig.5 Viscoelasticity curves of W/O emulsion with water content (60 °C)

  • 3 乳化稠油再乳化特性

  • 乳化发生的3个必要因素是:不相混溶两相、乳化剂和剪切条件。对于稠油油藏而言,乳化非常容易发生。因为:稠油和水是不相混溶的两相;稠油中含有大量的胶质和沥青质等活性物质;孔隙介质的流动为乳化提供了必要的剪切条件。在考虑经济性的前提下,对于黏度较低的稠油油藏通常首先采用水驱进行开发,当水驱无法满足开发要求时采用化学驱提高采收率。水驱过程中稠油和水乳化形成的 W/O 型乳状液会随着开发状态的不同而不同。为此,有必要对乳化稠油的再乳化特性进行研究。采用油田常用的 3 种乳化驱油剂,其水溶液质量分数为0.5%,乳化时油水比为5∶5,W/O型乳状液的初始含水率为0~60%。

  • 图6 油水界面张力随含水率变化曲线(60℃)

  • Fig.6 IFT curve with water content (60 °C)

  • 3.1 乳化状态与平均粒径

  • 不同初始含水率 W/O 型乳状液与乳化驱油剂溶液再乳化形成乳状液的状态(图7)表明,当乳化驱油剂溶液与脱水稠油乳化时,形成的乳状液类型均为 O/W 型,并且乳状液的粒径都较小,平均粒径均为 10 μm 左右。乳状液的乳化状态好,粒径也较为均匀。当乳化稠油与乳化驱油剂溶液再乳化时,形成W/O/W型多重乳状液,并且乳状液的粒径随着 W/O型乳状液中初始含水率的升高而增大,粒径分布不均匀。这主要是由于当稠油和水先乳化形成 W/O型乳状液时,稠油中的活性物质会吸附于油水界面。而乳化驱油剂分子作用于油水界面上的力与稠油中活性物质的作用力相反。为此,对于含水稠油,其与乳化驱油剂溶液再乳化时形成乳状液的类型和状态取决于乳化驱油剂分子取代稠油中活性物质在油水界面上吸附的程度。而不同类型的乳化驱油剂,其取代吸附能力不同。取代吸附能力越强,W/O/W 型乳状液内部的含水率会降低,形成的乳状液粒径也会变小。另外,乳化驱油剂分子要发生取代吸附还需要穿透油膜,到达内部油水界面。因此,对于作用于含水稠油的乳化驱油剂,穿透油膜和取代吸附能力越强,其乳化能力越好。

  • 乳化驱油剂 LPA 和 SDS 与脱水稠油的乳化状态很好,乳状液粒径均匀(图7),但是它们的穿透油膜和取代吸附能力较差。因此,随着W/O型乳状液初始含水率的升高,乳状液粒径迅速增大(图8)。当初始含水率为 60% 时,LPA再乳化形成的乳状液的粒径达到 91.3 μm,是其与脱水稠油形成乳状液粒径的7.9倍。SDS与含水率为60%的W/O型乳状液再乳化形成乳状液的粒径为 40.6 μm,是其与脱水稠油形成乳状液粒径的 4.0 倍。从乳化状态来看, LPA 和 SDS 乳化形成的 W/O/W 型乳状液内部含水率较高,说明其启动初始W/O型乳状液中水的能力差。而对于乳化驱油剂 HRF,尽管其与脱水稠油形成的乳状液粒径较大(12.7 μm),且粒度分布较为不均匀,但是当 W/O 型乳状液中初始含水率为 60% 时,再乳化形成的 W/O/W 型乳状液粒径仅为 27.5 μm,乳状液粒径仅增大了2.2倍,说明其穿透油膜和取代吸附能力最好。为此,对于应用于稠油油藏提高采收率的乳化驱油剂,其评价的重点应当是其对乳化稠油再乳化的能力。

  • 图7 不同乳化驱油剂溶液与不同初始含水率W/O型乳状液再乳化形成乳状液的状态

  • Fig.7 States of emulsion formed by re-emulsification of W/O emulsion with different emulsification oil flooding agents and initial water contents

  • 3.2 乳状液黏度

  • 由初始含水率对 W/O 型乳状液再乳化形成的乳状液黏度的影响(图9)可以看出,对于特定的剪切环境而言,乳状液的黏度与其粒径呈正相关。乳状液粒径越大,其黏度越大。当乳化驱油剂溶液与脱水稠油乳化时,其形成乳状液的粒径均较小,黏度也较小。随着初始含水率的升高,粒径逐步增大,其黏度也相应增大。当W/O型乳状液中初始含水率为 60% 时,LPA,HRF 和 SDS 再乳化形成乳状液的黏度分别增大了4.3倍、2.3倍和7.6倍。不同粒径的乳状液在孔隙介质中流动的过程中,流经细小喉道时会发生贾敏效应。粒径越大,贾敏效应越强,其在孔隙介质中的流动性就越差。

  • 3.3 乳状液黏弹性

  • 对不同初始含水率的 W/O 型乳状液再乳化形成乳状液的黏弹性进行了测试,结果(图10)表明,随着初始含水率的增加,LPA和 SDS的黏性模量迅速升高,但弹性模量基本稳定,说明随着初始含水率的增加,LPA和 SDS形成的乳状液表现出以黏性为主的特性,其弹性变形能力差,因此在孔隙空间中的流动能力弱。虽然 HRF 的弹性模量和黏性模量随着初始含水率的增大基本稳定,但是其弹性模量始终小于黏性模量,也表现出以黏性为主的特性,在孔隙空间中的流动能力也较差。

  • 图8 W/O型乳状液初始含水率对再乳化乳状液粒径的影响

  • Fig.8 Influence of initial water contents of W/O emulsion on droplet sizes of emulsions formed by re-emulsification

  • 图9 初始含水率对W/O型乳状液再乳化形成的乳状液黏度的影响

  • Fig.9 Influence of initial water contents of W/O emulsion on viscosity of emulsions formed by re-emulsification

  • 4 乳化稠油再乳化机理及展望

  • 4.1 乳化稠油再乳化机理

  • 目前对于乳化驱油剂的评价和机理主要针对脱水稠油,对于已经形成 W/O 型乳状液的稠油油藏,乳化驱油剂再乳化机理的明确显得尤为重要。 W/O型乳状液再乳化机理示意(图11)表明,在理想条件下,所有油水界面都有乳化驱油剂分子作用。此时,所有的W/O型乳状液都经过相变形成O/W型乳状液。然而,当将乳化驱油剂加入到W/O型乳状液时,乳化驱油剂分子首先需要通过稠油薄层到达油水界面,取代胶质和沥青质在稠油-水界面上的吸附,使 W/O发生部分相转化。但是,并非所有的 W/ O 型乳状液都能够转相。因此,W/O 型乳状液再乳化形成的乳状液实际上为W/O/W型乳状液。

  • 图10 初始含水率对W/O型乳状液再乳化形成乳状液的黏弹性的影响

  • Fig.10 Influence of initial water contents of W/O emulsion on viscoelasticity of emulsions formed by re-emulsification

  • 图11 W/O型乳状液再乳化机理示意

  • Fig.11 Re-emulsification mechanism of W/O emulsion

  • W/O 型乳状液的含水率对其再乳化形成乳状液的粒径和性能都有很大的影响。初始含水率越高,形成的W/O/W型乳状液的粒径越大。乳状液的粒径直接影响其在孔隙介质中的流动能力。当乳状液液滴的直径远大于喉道的直径时(图12a),其在地层孔隙介质中流动时,由贾敏效应引起的附加阻力非常大,流动能力差且稳定流动时的压力也大。随着乳状液液滴直径的减小(图12b),贾敏效应逐渐减弱,附加阻力减小,流动能力增强,稳定流动时的压力也降低。当乳状液液滴的直径小于喉道直径时(图12c),贾敏效应几乎不存在,此时流动能力最强,稳定流动时的压力也最小。

  • 4.2 乳化驱油研究展望

  • 基于上述研究分析,对乳化驱油体系的研发提出 2 条思路,对高效乳化采油方法研究提出 2 点建议。乳化驱油体系的研发思路包括:①可以将稠油或W/O型乳状液乳化为超小粒径乳状液(小于孔隙直径)的乳化体系。小粒径的乳状液在孔隙介质中流动时受到较小的附加阻力或者几乎没有附加阻力的影响。此时,乳化驱油体系的提高采收率能力将得到大幅度提升。②具有穿透能力的乳化体系。由于 W/O 型乳状液中的水会制约乳化驱油体系的效果,因此,若乳化体系能够穿透油膜,连通W/O型乳状液与乳化驱油剂溶液中的水,同样也能够大幅度提高开发效果。

  • 图12 不同粒径乳状液经过喉道时贾敏效应示意

  • Fig.12 Jamin effects of emulsions with different droplet sizes when passing through pore throat

  • 高效乳化采油方法研究包括:①增大乳化驱油剂溶液的波及体积。当使用乳化驱油体系接替水驱/注蒸汽开发稠油油藏时,由于注入乳化驱油体系时水流通道已经形成,乳化驱油体系大多会随着主流通道流出,而无法起到乳化驱油的目的。因此,采用封堵和乳化驱油结合的方式,利用封堵体系封堵主流通道,增大乳化驱油剂的波及体积,同时也会增强乳化驱油剂的乳化效果。②延长乳化驱油剂溶液与稠油/稠油乳状液的作用时间。乳化驱油剂乳化稠油/稠油乳状液需要一定的时间和乳化能量。在满足经济性前提下,适当调整乳化驱油剂的注入方式,可能会增强其提高采收率效果。

  • 5 结论

  • 胜利油田金 17 块稠油中胶质和沥青质等活性物质的含量高达20.07%,地层水和注入水与稠油发生了较为严重的乳化现象。采出液中含水率约为 20%,在油藏温度下(60℃)黏度为 765.3 mPa·s,而脱水稠油黏度仅为505.6 mPa·s。

  • 含水率对乳化稠油黏度有很大影响。随着含水率的增加稠油黏度升高,且当含水率高于 40% 后,稠油黏度增大显著。在油藏温度条件下,含水率为60%时W/O型乳状液的黏度为6 041.6 mPa·s,是脱水稠油黏度的 11.9倍。此外,乳化稠油含水率升高,其流变性能变差,弹性模量和油水界面张力显著增大,这都严重制约了其在孔隙介质中的流动能力。

  • 对于稠油油藏,由于其会与地层水和注入水乳化形成 W/O 型乳状液。当利用乳化驱油剂提高稠油采收率时,形成的乳状液类型为W/O/W型多重乳状液,并且随着 W/O 型乳状液中初始含水率的增大,W/O/W 型多重乳状液的乳化状态变差、粒径增大、黏度增大、黏性模量增大。

  • 不同类型的乳化驱油剂乳化 W/O 型乳状液的能力不同,动用内相水的能力也不同。为此,对于应用于稠油油藏提高采收率的乳化驱油剂,评价的重点应当是其对乳化稠油再乳化的能力以及再乳化形成乳状液的性能。

  • 参考文献

    • [1] LISSANT K J.Emulsification and demulsification:An histori‐ cal overview [J].Colloids & Surfaces,1988,29(1):1-5.

    • [2] KILPATRICK PETER K.Water-in-crude oil emulsion stabiliza‐ tion:review and unanswered questions [J].Energy & Fuels,2012,26(7):4 017-4 026.

    • [3] PAPIRER E,BOURGEOIS C,SIFFERT B,et al.Chemical na‐ ture and water oil emulsifying properties of asphaltenes [J].Fuel,1982,61(1):732-734.

    • [4] 杨勇.胜利油田稠油开发技术新进展及发展方向[J].油气地质与采收率,2021,28(6):1-11.YANG Yong.New progress and next development directions of heavy oil development technologies in Shengli Oilfield [J].Pe‐ troleum Geology and Recovery Efficiency,2021,28(6):1-11.

    • [5] ZHU Tongyu,KANG Wanli,YANG Hongbin,et al.Advances of microemulsion and its applications for improved oil recovery [J].Advances in Colloid and Interface Science,2022,299:102527.

    • [6] 郑昕,姚秀田,夏海容,等.稠油化学堵调降黏复合驱油体系构建及驱油机理分析[J].油气地质与采收率,2021,28(6):122-128.ZHENG Xin,YAO Xiutian,XIA Hairong,et al.Establishment of combined viscosity reduction flooding system for chemical water shutoff and profile control in heavy oil reservoirs and analysis of its mechanism [J].Petroleum Geology and Recovery Efficiency,2021,28(6):122-128.

    • [7] 郑万刚,初伟,崔文富,等.渗透降黏驱油剂提高采收率机理[J].油气地质与采收率,2021,28(6):129-134.ZHENG Wangang,CHU Wei,CUI Wenfu,et al.Enhanced oil recovery mechanism of permeable viscosity-reducing oil dis‐ placement agent [J].Petroleum Geology and Recovery Effi‐ ciency,2021,28(6):129-134.

    • [8] 陆国琛.改善海上水驱稠油开发效果技术研究[D].青岛:中国石油大学(华东),2016.LU Guochen.Research on technology to improve the develop‐ ment effect of offshore water flooding Heavy oil [D].Qingdao:China University of Petroleum(East China),2016.

    • [9] 李伟忠.胜利油田稠油未动用储量评价及动用对策[J].特种油气藏,2021,28(2):63-71.LI Weizhong.Evaluation and development countermeasures for nonproducing reserves of heavy oil reservoirs in Shengli oilfield [J].Special Oil & Gas Reservoirs,2021,28(2):63-71.

    • [10] PAL R.Shear viscosity behavior of emulsions of two immiscible liquids [J].Colloid Interface Science,2000,255(4):359-366.

    • [11] 刘慧卿,东晓虎.稠油热复合开发提高采收率技术现状与趋势 [J].石油科学通报,2022,7(2):174-184.LIU Huiqing,DONG Xiaohu.Technology status and trend of enhanced oil recovery from thermal composite development of heavy oil [J].Petroleum Science Bulletin,2022,7(2):174-184.

    • [12] 杨勇,李小东,孙常伟,等.礁灰岩强底水稠油油藏含水上升主控因素分析[J].非常规油气,2021,8(4):48-54.YANG Yong,LI Xiaodong,SUN Changwei,et al.Analysis of main controlling factors of water cut rise in heavy oil reservoirs with strong bottom water in reef limestone [J].Unconventional Oil and Gas,2021,8(4):48-54.

    • [13] PAL R.A novel method to correlate emulsion viscosity data [J].Colloids and Surfaces A Physicochemical and Engineering As‐ pects,1998,137(6):275-286.

    • [14] 张一民.油包水型含腊原油乳状液流变特性研究[D].大庆:东北石油大学,2013.ZHANG Yimin.Rheological properties of oil-in-water waxbearing crude oil emulsions [D].Daqing:Northeast Petroleum University,2013.

    • [15] 江延明,李传宪.W/O 乳状液的流变性研究[J].油气储运,2000,19(1):10-12.JIANG Yanming,LI Chuanxian.Study on rheology of W/O emulsions [J].Oil & Gas Storage and Transportation,2000,19(1):10-12.

    • [16] 江延明,李传宪.油水乳状液的制备[J].油气田地面工程,2004,18(6):21-22.JIANG Yanming,LI Chuanxian.Preparation of oil-water emul‐ sion [J].Oil & Gas Field Surface Engineering,2004,18(6):21-22.

    • [17] LIU Chenwei,LI Mingzhong,HAN Rui,et al.Rheology of water-in-oil emulsions with different drop sizes [J].Journal of Dispersion Science and Technology,2016,37(1):333-344.

    • [18] 黄启玉,王蕾.微观液滴分布对含蜡原油乳状液流变性的影响 [J].石油学报,2013,34(4):765-774.HUANG Qiyu,WANG Lei.Effect of microscopic droplet distri‐ bution on rheology of waxy crude oil emulsions [J].Acta Petro‐ lei Sinica,2013,34(4):765-774.

    • [19] 刘立伟,向问陶,张健.渤海油田原油乳状液流变性研究[J].西南石油大学学报:自然科学版,2010,32(6):143-146.LIU Liwei,XIANG Wentao,ZHANG Jian.Study on rheologi‐ cal properties of raw oil emulsion in Bohai Oilfield [J].Journal of Southwest Petroleum University:Science & Technology Edi‐ tion,2010,32(6):143-146.

    • [20] JOHNSEN E,FORDEDAL H,URDAHL O L.A simplified ex‐ perimental approach for measuring viscosity for water-in-crudeoil emulsions under flowing conditions [J].Journal of Dispersion Science & Technology,2001,22(1):33-39.

    • [21] KILPATRICK P K.Water-in-crude oil emulsion stabilization:review and unanswered questions [J].Energy and Fuels,2012,26(7):4 017-4 026.

    • [22] FARAH M A,OLIVEIRA R C,CALDAS J N,et al.Viscosity of water-in-oil emulsions:variation with temperature and water volume fraction [J].Journal of Petroleum Science & Engineer‐ ing,2005,48(3/4):169-184.

    • [23] 钟立国,刘冰岩,李大勇,等.大庆西部斜坡稠油地层流动性影响因素实验研究[J].特种油气藏,2020,27(1):142-147.ZHONG Liguo,LIU Bingyan,LI Dayong,et al.Experimental study on influencing factors of heavy oil formation fluidity in the Western Slope of Daqing [J].Special Oil & Gas Reservoirs,2020,27(1):142-147.

    • [24] 孙鹏霄,刘英宪.渤海稠油油藏开发现状及热采开发难点与对策[J].中国海上油气,2023,35(2):85-92.SUN Pengxiao,LIU Yingxian.Development status and thermal development difficulties and strategy of Bohai heavy oil reser‐ voirs[J].China Offshore Oil and Gas,2023,35(2):85-92.

    • [25] 方吉超,李晓琦,计秉玉,等.中国稠油蒸汽吞吐后提高采收率接替技术前景[J].断块油气田,2022,29(3):378-382,389.FANG Jichao,LI Xiaoqi,JI Bingyu,et al.Prospect of replace‐ ment technology for enhanced oil recovery after cyclic steam stimulation of heavy oil in China[J].Fault-Block Oil and Gas Field,2022,29(3):378-382,389.

    • [26] YANG Y,GUO J,CHENG Z,et al.A new composite viscosity reducer with both asphaltene dispersion and emulsifying capabil‐ ity for heavy and ultra-heavy crude oils [J].Energy & Fuels,2017,31(2):1 159-1 173.

    • [27] WU Zhengbin,LIU Huiqing,WANG Xue,et al.Emulsifica‐ tion and improved oil recovery with viscosity reducer during steam injection process for heavy oil [J].Journal of Industrial & Engineering Chemistry,2018,61(25):348-355.

    • [28] ZHENG Cunchuan,FU Haoran,YAN Chaozong,et al.Prepa‐ ration and mechanism of hyperbranched heavy oil viscosity re‐ ducer [J].Journal of Petroleum Science and Engineering,2020,196(32):107941.

    • [29] 韩玉贵,丁名臣,刘义刚,等.无碱与含碱化学体系驱替稠油特征比较[J].断块油气田,2021,28(1):129-132,138.HAN Yugui,DING Mingchen,LIU Yigang,et al.Comparative study between alkali-free and alkali-containing chemical sys‐ tems for recovering heavy oil [J].Fault-Block Oil and Gas Field,2021,28(1):129-132,138.

    • [30] LI Pengcheng,ZHANG Fusheng,GONG Yejing,et al.Synthe‐ sis and properties of functional polymer for heavy oil viscosity reduction [J].Journal of Molecular Liquids,2021,330(15):115635.

    • [31] 刘哲宇,李宜强,庄永涛,等.多孔介质中二元复合体系乳化前后流动规律研究[J].石油科学通报,2017,2(4):527-535.LIU Zheyu,LI Yiqiang,ZHUANG Yongtao,et al.Flow law of binary composite system before and after emulsification in po‐ rous media [J].Petroleum Science Bulletin,2017,2(4):527-535.

    • [32] 张健,梁丹,康晓东,等.海上稠油油田热水化学驱油技术研究 [J].中国海上油气,2021,33(5):87-93.ZHANG Jian,LIANG Dan,KANG Xiaodong,et al.Study on hot water chemical flooding technology in offshore heavy oil field [J].China Offshore Oil and Gas,2021,33(5):87-93.

    • [33] 赵衍彬.强敏感性稠油油藏高温热变定量表征[J].非常规油气,2022,9(5):79-84,102.ZHAO Yanbin.Quantitative characterization of high-temperature thermal changes in highly sensitive heavy oil reservoirs[J].Un‐ conventional Oil & Gas,2022,9(5):79-84,102.

    • [34] 赵琳,王增林,张星,等.稠油油藏自扩散降黏体系作用机理[J].大庆石油地质与开发,2021,40(1):110-116.ZHAO Lin,WANG Zenglin,ZHANG Xing,et al.Mechanism of the self diffusion viscosity reducing system in heavy oil reservoir [J].Petroleum Geology & Oilfield Development in Daqing,2021,40(1):110-116.

    • [35] 孙永涛,李兆敏,孙玉豹,等.稠油耐高温乳化降黏剂AESO的合成及其性能[J].大庆石油地质与开发,2021,40(3):103-108.SUN Yongtao,LI Zhaomin,SUN Yubao,et al.Synthesis and properties of high-temperature emulsified viscosity reducer AESO for heavy oil[J].Petroleum Geology & Oilfield Develop‐ ment in Daqing,2021,40(3):103-108.

    • [36] 郭德明,潘毅,孙扬,等.低渗稠油油藏降黏剂-CO2复合驱提高采收率机理研究[J].油气藏评价与开发,2022,12(5):794-802.GUO Deming,PAN Yi,SUN Yang,et al.EOR mechanism of vis‐ cosity reducer-CO2 combined flooding in heavy oil reservoir with low permeability[J].Reservoir Evaluation and Develop‐ ment,2022,12(5):794-802.

    • [37] ARHUOMA M,DONG M,YANG D,et al.Determination of water-in-oil emulsion viscosity in porous media [J].Industrial & Engineering Chemistry Research,2009,48(15):7 092-7 102.

    • [38] CHEN Zan,DONG Mingzhe,HUSEIN M,et al.Effects of oil viscosity on the plugging performance of oil-in-water emulsion in porous media [J].Industrial & Engineering Chemistry Re‐ search,2018,57(21):7 301-7 309.

    • [39] LIU Jianbin,ZHONG Liguo,REN Lei,et al.Laboratory evalu‐ ation of fluidity of heavy oil emulsions in formation pores me‐ dium [J].ACS Omega,2021,6(1):623-632.

  • 参考文献

    • [1] LISSANT K J.Emulsification and demulsification:An histori‐ cal overview [J].Colloids & Surfaces,1988,29(1):1-5.

    • [2] KILPATRICK PETER K.Water-in-crude oil emulsion stabiliza‐ tion:review and unanswered questions [J].Energy & Fuels,2012,26(7):4 017-4 026.

    • [3] PAPIRER E,BOURGEOIS C,SIFFERT B,et al.Chemical na‐ ture and water oil emulsifying properties of asphaltenes [J].Fuel,1982,61(1):732-734.

    • [4] 杨勇.胜利油田稠油开发技术新进展及发展方向[J].油气地质与采收率,2021,28(6):1-11.YANG Yong.New progress and next development directions of heavy oil development technologies in Shengli Oilfield [J].Pe‐ troleum Geology and Recovery Efficiency,2021,28(6):1-11.

    • [5] ZHU Tongyu,KANG Wanli,YANG Hongbin,et al.Advances of microemulsion and its applications for improved oil recovery [J].Advances in Colloid and Interface Science,2022,299:102527.

    • [6] 郑昕,姚秀田,夏海容,等.稠油化学堵调降黏复合驱油体系构建及驱油机理分析[J].油气地质与采收率,2021,28(6):122-128.ZHENG Xin,YAO Xiutian,XIA Hairong,et al.Establishment of combined viscosity reduction flooding system for chemical water shutoff and profile control in heavy oil reservoirs and analysis of its mechanism [J].Petroleum Geology and Recovery Efficiency,2021,28(6):122-128.

    • [7] 郑万刚,初伟,崔文富,等.渗透降黏驱油剂提高采收率机理[J].油气地质与采收率,2021,28(6):129-134.ZHENG Wangang,CHU Wei,CUI Wenfu,et al.Enhanced oil recovery mechanism of permeable viscosity-reducing oil dis‐ placement agent [J].Petroleum Geology and Recovery Effi‐ ciency,2021,28(6):129-134.

    • [8] 陆国琛.改善海上水驱稠油开发效果技术研究[D].青岛:中国石油大学(华东),2016.LU Guochen.Research on technology to improve the develop‐ ment effect of offshore water flooding Heavy oil [D].Qingdao:China University of Petroleum(East China),2016.

    • [9] 李伟忠.胜利油田稠油未动用储量评价及动用对策[J].特种油气藏,2021,28(2):63-71.LI Weizhong.Evaluation and development countermeasures for nonproducing reserves of heavy oil reservoirs in Shengli oilfield [J].Special Oil & Gas Reservoirs,2021,28(2):63-71.

    • [10] PAL R.Shear viscosity behavior of emulsions of two immiscible liquids [J].Colloid Interface Science,2000,255(4):359-366.

    • [11] 刘慧卿,东晓虎.稠油热复合开发提高采收率技术现状与趋势 [J].石油科学通报,2022,7(2):174-184.LIU Huiqing,DONG Xiaohu.Technology status and trend of enhanced oil recovery from thermal composite development of heavy oil [J].Petroleum Science Bulletin,2022,7(2):174-184.

    • [12] 杨勇,李小东,孙常伟,等.礁灰岩强底水稠油油藏含水上升主控因素分析[J].非常规油气,2021,8(4):48-54.YANG Yong,LI Xiaodong,SUN Changwei,et al.Analysis of main controlling factors of water cut rise in heavy oil reservoirs with strong bottom water in reef limestone [J].Unconventional Oil and Gas,2021,8(4):48-54.

    • [13] PAL R.A novel method to correlate emulsion viscosity data [J].Colloids and Surfaces A Physicochemical and Engineering As‐ pects,1998,137(6):275-286.

    • [14] 张一民.油包水型含腊原油乳状液流变特性研究[D].大庆:东北石油大学,2013.ZHANG Yimin.Rheological properties of oil-in-water waxbearing crude oil emulsions [D].Daqing:Northeast Petroleum University,2013.

    • [15] 江延明,李传宪.W/O 乳状液的流变性研究[J].油气储运,2000,19(1):10-12.JIANG Yanming,LI Chuanxian.Study on rheology of W/O emulsions [J].Oil & Gas Storage and Transportation,2000,19(1):10-12.

    • [16] 江延明,李传宪.油水乳状液的制备[J].油气田地面工程,2004,18(6):21-22.JIANG Yanming,LI Chuanxian.Preparation of oil-water emul‐ sion [J].Oil & Gas Field Surface Engineering,2004,18(6):21-22.

    • [17] LIU Chenwei,LI Mingzhong,HAN Rui,et al.Rheology of water-in-oil emulsions with different drop sizes [J].Journal of Dispersion Science and Technology,2016,37(1):333-344.

    • [18] 黄启玉,王蕾.微观液滴分布对含蜡原油乳状液流变性的影响 [J].石油学报,2013,34(4):765-774.HUANG Qiyu,WANG Lei.Effect of microscopic droplet distri‐ bution on rheology of waxy crude oil emulsions [J].Acta Petro‐ lei Sinica,2013,34(4):765-774.

    • [19] 刘立伟,向问陶,张健.渤海油田原油乳状液流变性研究[J].西南石油大学学报:自然科学版,2010,32(6):143-146.LIU Liwei,XIANG Wentao,ZHANG Jian.Study on rheologi‐ cal properties of raw oil emulsion in Bohai Oilfield [J].Journal of Southwest Petroleum University:Science & Technology Edi‐ tion,2010,32(6):143-146.

    • [20] JOHNSEN E,FORDEDAL H,URDAHL O L.A simplified ex‐ perimental approach for measuring viscosity for water-in-crudeoil emulsions under flowing conditions [J].Journal of Dispersion Science & Technology,2001,22(1):33-39.

    • [21] KILPATRICK P K.Water-in-crude oil emulsion stabilization:review and unanswered questions [J].Energy and Fuels,2012,26(7):4 017-4 026.

    • [22] FARAH M A,OLIVEIRA R C,CALDAS J N,et al.Viscosity of water-in-oil emulsions:variation with temperature and water volume fraction [J].Journal of Petroleum Science & Engineer‐ ing,2005,48(3/4):169-184.

    • [23] 钟立国,刘冰岩,李大勇,等.大庆西部斜坡稠油地层流动性影响因素实验研究[J].特种油气藏,2020,27(1):142-147.ZHONG Liguo,LIU Bingyan,LI Dayong,et al.Experimental study on influencing factors of heavy oil formation fluidity in the Western Slope of Daqing [J].Special Oil & Gas Reservoirs,2020,27(1):142-147.

    • [24] 孙鹏霄,刘英宪.渤海稠油油藏开发现状及热采开发难点与对策[J].中国海上油气,2023,35(2):85-92.SUN Pengxiao,LIU Yingxian.Development status and thermal development difficulties and strategy of Bohai heavy oil reser‐ voirs[J].China Offshore Oil and Gas,2023,35(2):85-92.

    • [25] 方吉超,李晓琦,计秉玉,等.中国稠油蒸汽吞吐后提高采收率接替技术前景[J].断块油气田,2022,29(3):378-382,389.FANG Jichao,LI Xiaoqi,JI Bingyu,et al.Prospect of replace‐ ment technology for enhanced oil recovery after cyclic steam stimulation of heavy oil in China[J].Fault-Block Oil and Gas Field,2022,29(3):378-382,389.

    • [26] YANG Y,GUO J,CHENG Z,et al.A new composite viscosity reducer with both asphaltene dispersion and emulsifying capabil‐ ity for heavy and ultra-heavy crude oils [J].Energy & Fuels,2017,31(2):1 159-1 173.

    • [27] WU Zhengbin,LIU Huiqing,WANG Xue,et al.Emulsifica‐ tion and improved oil recovery with viscosity reducer during steam injection process for heavy oil [J].Journal of Industrial & Engineering Chemistry,2018,61(25):348-355.

    • [28] ZHENG Cunchuan,FU Haoran,YAN Chaozong,et al.Prepa‐ ration and mechanism of hyperbranched heavy oil viscosity re‐ ducer [J].Journal of Petroleum Science and Engineering,2020,196(32):107941.

    • [29] 韩玉贵,丁名臣,刘义刚,等.无碱与含碱化学体系驱替稠油特征比较[J].断块油气田,2021,28(1):129-132,138.HAN Yugui,DING Mingchen,LIU Yigang,et al.Comparative study between alkali-free and alkali-containing chemical sys‐ tems for recovering heavy oil [J].Fault-Block Oil and Gas Field,2021,28(1):129-132,138.

    • [30] LI Pengcheng,ZHANG Fusheng,GONG Yejing,et al.Synthe‐ sis and properties of functional polymer for heavy oil viscosity reduction [J].Journal of Molecular Liquids,2021,330(15):115635.

    • [31] 刘哲宇,李宜强,庄永涛,等.多孔介质中二元复合体系乳化前后流动规律研究[J].石油科学通报,2017,2(4):527-535.LIU Zheyu,LI Yiqiang,ZHUANG Yongtao,et al.Flow law of binary composite system before and after emulsification in po‐ rous media [J].Petroleum Science Bulletin,2017,2(4):527-535.

    • [32] 张健,梁丹,康晓东,等.海上稠油油田热水化学驱油技术研究 [J].中国海上油气,2021,33(5):87-93.ZHANG Jian,LIANG Dan,KANG Xiaodong,et al.Study on hot water chemical flooding technology in offshore heavy oil field [J].China Offshore Oil and Gas,2021,33(5):87-93.

    • [33] 赵衍彬.强敏感性稠油油藏高温热变定量表征[J].非常规油气,2022,9(5):79-84,102.ZHAO Yanbin.Quantitative characterization of high-temperature thermal changes in highly sensitive heavy oil reservoirs[J].Un‐ conventional Oil & Gas,2022,9(5):79-84,102.

    • [34] 赵琳,王增林,张星,等.稠油油藏自扩散降黏体系作用机理[J].大庆石油地质与开发,2021,40(1):110-116.ZHAO Lin,WANG Zenglin,ZHANG Xing,et al.Mechanism of the self diffusion viscosity reducing system in heavy oil reservoir [J].Petroleum Geology & Oilfield Development in Daqing,2021,40(1):110-116.

    • [35] 孙永涛,李兆敏,孙玉豹,等.稠油耐高温乳化降黏剂AESO的合成及其性能[J].大庆石油地质与开发,2021,40(3):103-108.SUN Yongtao,LI Zhaomin,SUN Yubao,et al.Synthesis and properties of high-temperature emulsified viscosity reducer AESO for heavy oil[J].Petroleum Geology & Oilfield Develop‐ ment in Daqing,2021,40(3):103-108.

    • [36] 郭德明,潘毅,孙扬,等.低渗稠油油藏降黏剂-CO2复合驱提高采收率机理研究[J].油气藏评价与开发,2022,12(5):794-802.GUO Deming,PAN Yi,SUN Yang,et al.EOR mechanism of vis‐ cosity reducer-CO2 combined flooding in heavy oil reservoir with low permeability[J].Reservoir Evaluation and Develop‐ ment,2022,12(5):794-802.

    • [37] ARHUOMA M,DONG M,YANG D,et al.Determination of water-in-oil emulsion viscosity in porous media [J].Industrial & Engineering Chemistry Research,2009,48(15):7 092-7 102.

    • [38] CHEN Zan,DONG Mingzhe,HUSEIN M,et al.Effects of oil viscosity on the plugging performance of oil-in-water emulsion in porous media [J].Industrial & Engineering Chemistry Re‐ search,2018,57(21):7 301-7 309.

    • [39] LIU Jianbin,ZHONG Liguo,REN Lei,et al.Laboratory evalu‐ ation of fluidity of heavy oil emulsions in formation pores me‐ dium [J].ACS Omega,2021,6(1):623-632.