-
由于在聚合物溶液中加入 SiO2颗粒能够改善其耐温性和耐盐性,SiO2+聚合物分散体系常作为高温、高矿化度油藏的堵剂体系[1]。目前,SiO2颗粒与聚合物分散体系共同使用方式主要分为 2 种:一种是通过化学附着、接枝或官能团的方式将聚合物分子吸附在纳米颗粒表面[2-5];另一种是将SiO2颗粒和聚合物分子通过物理混合的方式搅拌在一起[4,6-7]。显然,第一种方式具有使得聚合物分子与 SiO2颗粒结合得更加牢固、颗粒悬浮体系网状结构更加稳固、增黏效果更加明显等诸多优点,但其制造成本较高,限制了油田的大规模应用。第二种方式尽管不能使得 SiO2颗粒与聚合物分子像第一种那样牢固结合,但经过前人大量的研究发现[8-9],聚合物分子与 SiO2颗粒由于氢键吸附在一起,形成较为牢固的三维网络结构,也可以增强聚合物分散体系的耐盐性、耐温性,提高聚合物分散体系的黏度。因此,该体系在复杂环境的油藏中提高采收率方面具有很大的潜力。
-
目前,大多数稠油油藏都采用复合开采方式来生产原油,即蒸汽-非凝析气(CO2/N2等)复合热采、蒸汽-化合物(表面活性剂/有机溶剂等)复合热采、蒸汽-非凝析气-化合物复合热采[10-15]。孔隙中存留一定量的表面活性剂、有机溶剂或 CO2等,除此之外,地层水矿化度较高,也存在一定的温度梯度,导致油藏环境非常复杂[16-20]。尽管向开发后期的稠油油藏注入 SiO2+聚合物分散体系对提高采收率效果明显,但储层中存留的热复合流体对 SiO2+聚合物分散体系的影响还不明确,此外,热复合流体对 SiO2+聚合物分散体系流变性机理的认识还不清楚,从而限制了 SiO2+聚合物分散体系在该阶段的应用。
-
为此,通过流变性实验、Zeta电位实验和电镜扫描实验,开展了不同因素对 SiO2+聚合物分散体系流变性的影响及机理认识的研究;通过测试颗粒浓度与体系黏度的变化规律,结合已有的多种黏浓方程,优选出一个能够准确描述 SiO2+聚合物分散体系的黏浓关系,为 SiO2+聚合物分散体系在稠油热采开发后期提高采收率的应用提供理论基础。
-
1 理论背景
-
1.1 流变性理论模型
-
SiO2+聚合物分散体系是一种典型的非牛顿溶液[21],在低剪切速率下,一般呈牛顿溶液特征,将该剪切速率区域称为零剪切视黏度区域;随着剪切速率增大,溶液视黏度呈现剪切稀化特征,将该剪切速率区域称为剪切变稀区域;剪切速率增大到一定值后,溶液视黏度达到一个平稳值,将该剪切速率区域称为无穷大剪切视黏度区域。出现这些特征的原因如下:当剪切速率较小时,剪切作用不足以破坏 SiO2+聚合物分散体系原有的结构,很难使得卷曲的分子链伸展开来,也很难使得聚合物分子和 SiO2颗粒之间的链接断裂开,因此,视黏度恒定不变,与剪切速率无关;随着剪切速率增大,剪切作用慢慢使得卷曲的聚合物分子链伸展开,同时切断聚合物分子和 SiO2颗粒之间的链接,溶液视黏度开始下降;当剪切速率增大到一定值时,聚合物分子链已经伸展开,SiO2颗粒与聚合物分子之间的链接也已完全断开,此时溶液视黏度不再随剪切速率发生改变。对于这种流变类型的溶液,有许多相关描述的数学模型[3,22-23],主要分为剪切应力与剪切速率的关系、视黏度与剪切速率的关系2个方面,其中剪切应力与剪切速率的关系模型包括 Power Law, Herschel-Bulkley和Casson模型,视黏度与剪切速率的关系模型包括 Williamson,Sisko,Carreau, Carreau-Yasuda和 Cross模型。但目前最常用、并且更适合描述 SiO2+聚合物分散体系流变性的模型为 Carreau和Cross模型[24],其表达式分别为:
-
1.2 黏浓公式
-
在 1906 年,基于颗粒为球形、刚性、无电荷、没有任何相互吸引力、非常低的颗粒体积分数(ϕ<0.02)的假设,EINSTEIN 首次提出了颗粒溶液视黏度公式[25],其表达式为:
-
在实际环境中,颗粒之间存在着相互作用。因此,在1951年,MOONEY通过考虑颗粒在基液中堆砌时浓度对视黏度的影响,提出了一个颗粒间相互作用的模型[26]:
-
在 1959 年,KRIEGER 等考虑颗粒在基液中堆砌时最大可能浓度对视黏度的影响,提出随机单分散硬球形颗粒剪切视黏度的半经验模型[27]:
-
(5)式能够解释微/毫米级悬浮液在各自体积分数范围内的有效视黏度。由于胶体界面存在电荷,溶液环境的变化会引起胶体界面电性发生改变,导致溶液中颗粒可能发生聚集。SELVAKUMAR等通过考虑颗粒溶液中粒子聚类和界面层形成现象,基于颗粒大小分布,建立了 Krieger-Dougherty 修改模型[28],该模型具备模拟颗粒大小、温度、表面活性剂、pH值、颗粒和基液的物化性质、超声时间等因素对颗粒溶液作用的能力,其表达式为:
-
其中:
-
颗粒簇半径分布主要通过粒度分析测试实验获得,界面层厚度为颗粒或颗粒簇表面的膜层厚度,σ 为 0.2~0.8 nm,前人通过分子链模拟研究发现,界面层厚度一般为几个原子的距离(大约为 1 nm)。
-
2 不同因素对颗粒悬浮体系流变性的影响
-
根据不同条件下 SiO2+聚合物分散体系的黏度和 Zeta电位变化情况,结合絮凝体及其电镜扫描分析,明确了不同条件下 SiO2+聚合物分散体系黏度的变化规律,揭示了不同因素对 SiO2+聚合物分散体系黏度的影响机理。
-
2.1 实验条件及方法
-
实验仪器及材料:安东帕 MCR302 流变仪、实验所需其他仪器及材料与文献[7]中所使用的仪器相同。
-
在不同温度、颗粒浓度、矿化度、pH 值、表面活性剂类型条件下,测试 SiO2+聚合物分散体系的流变性。具体步骤如下:将颗粒直径为5 μm的SiO2颗粒在 NaCl溶液中(矿化度分别为 0,8 000,16 000和 32 000 mg/L)分别配制成质量分数为1%,3%,5%和 10% 的颗粒悬浮溶液,在超声波水浴下振动 60 min 使颗粒完全分散在溶液中,在此基础上,配制 3 000 mg/L 的聚合物分散体系,分别测试 SiO2+聚合物分散体系在不同温度(20,40和 80℃)、不同颗粒质量分数(1%,3%,5% 和 10%)、不同矿化度(0,8 000, 16 000和32 000 mg/L)下的流变性;将SiO2+聚合物分散体系的 pH 值用 HCl 和 NaOH 溶液分别调至 5, 7,9,在矿化度为 16 000 mg/L 的条件下,测试不同 pH 值下 SiO2+聚合物分散体系的流变性;在矿化度为 16 000 mg/L 的条件下,向不同 pH 值(3,5,6,7) 的 SiO2+聚合物分散体系中添加不同类型表面活性剂(阴离子、阳离子和非离子),测试不同pH值和不同类型表面活性剂共同作用下 SiO2+聚合物分散体系的流变性。
-
2.2 实验结果与分析
-
2.2.1 温度的影响
-
由不同温度下 SiO2+聚合物分散体系黏度的变化规律(图1)可知,随着温度的升高,SiO2+聚合物分散体系的黏度逐渐减小,但减小幅度不大,因此,在油藏温度(80℃)条件下,SiO2+聚合物分散体系具有较好的耐温性。这主要是 2 个方面的原因:一方面,随着温度升高,聚合物分子线圈发育,并在颗粒表面为拉伸构象,从而使得聚合物分子在颗粒表面形成较厚的吸附层,颗粒表面的电荷扩散层变大,双电层变厚,颗粒与颗粒、聚合物分子与颗粒之间的斥力增大,导致溶液黏度变小[29],除此之外,随着温度升高,聚合物分子线圈发育成直链,相互缠绕的聚合物分子链条疏松开来,从而使得体系黏度减小;另一方面,聚合物分散体系中 SiO2颗粒的加入可以减少由温度和剪切效应引起的聚合物分子降解,进一步阻碍了体系黏度的降低。
-
图1 不同温度下SiO2+聚合物分散体系黏度的变化规律
-
Fig.1 Variation of viscosity of SiO2 + polymer dispersion system at different temperatures
-
2.2.2 颗粒浓度的影响
-
由不同颗粒质量分数下 SiO2+聚合物分散体系的黏度对比曲线(图2)可知, SiO2+聚合物分散体系黏度随着颗粒质量分数增大而增大,但随着剪切速率增加,体系黏度减小。这主要是由于部分颗粒表面被聚合物分子吸附而覆盖,并且颗粒之间通过桥接相互作用,形成网络空间结构,增加了溶液的黏度。当搅动该溶液体系时,因溶液中相互接连的颗粒网络空间结构受到剪切作用而分散,因此,又表现出剪切变稀行为[30]。
-
图2 不同颗粒质量分数下SiO2+聚合物分散体系的黏度对比
-
Fig.2 Viscosity comparison of SiO2 + polymer dispersion system at different particle concentrations
-
由 SiO2+聚合物分散体系相对黏度与颗粒体积分数之间的经典理论和半经验公式、实验数据的关系(图3)可见,通过实验数据和现有颗粒溶液黏度公式可知,颗粒溶液相对黏度的实验数据与Krieger 和Dougherty黏浓模型拟合度较好。
-
2.2.3 矿化度的影响
-
由SiO2+聚合物分散体系黏度、Zeta电位与盐溶液矿化度之间的关系(图4)可知,体系的黏度和 Zeta电位随着矿化度的增加而减小。当溶液矿化度为 32 000 mg/L 时,体系的黏度为 53 mPa·s,说明 SiO2+聚合物分散体系在油藏环境下具有较好的耐盐性。这主要是2方面原因:一方面,Cl-吸附在带负电荷聚合物分子链上,使得溶液的 Zeta 电位减小,半径较大的 Cl-对带负电的聚合物分子链产生一定程度的压缩作用,随着 Cl-浓度增大,聚合物分子链的有效粒径减小,最终变成不能压缩的刚性结构,因此,颗粒溶液的黏度先减小再趋于稳定;另一方面,SiO2颗粒表面含有醇基(—OH),聚合物分子电离后的 C=O 基与 SiO2颗粒表面的醇基发生氢键缔合作用,减弱了盐水中的Cl-对聚合物分子链的压缩作用,从而抑制了颗粒溶液黏度的进一步减小。
-
2.2.4 pH值的影响
-
由 SiO2+聚合物分散体系黏度、Zeta 电位与 pH 值之间的关系(图5)可知,SiO2+聚合物分散体系的黏度随着溶液 pH 值的减小而减小。随着 pH 值减小,H+ 吸附在 SiO2颗粒表面上并与硅羟基反应生成 ≡Si-OH2 +[31],同时,H+ 与聚合物分子上的羧基结合生成羧酸,使得溶液中的 Zeta 电位增加。因此,聚合物分子链在 SiO2颗粒表面的构象更加卷曲,聚合物分子与 SiO2颗粒形成的网络空间结构变得疏松,颗粒溶液黏度减小。当pH值大于7时,溶液中的部分 OH-吸附在负电性颗粒表面,使得颗粒带负电荷更多,由于溶液显负电性,颗粒表面双电层厚度被压缩,根据DLVO理论,颗粒之间易于凝聚形成大颗粒团,从而导致SiO2+聚合物分散体系的黏度增加。
-
图3 SiO2+聚合物分散体系相对黏度与颗粒体积分数之间的经典理论和半经验公式、实验数据的关系
-
Fig.3 Relationships among classical theoretical equation, semi-empirical equation, and experimental data between relative viscosity of SiO2 + polymer dispersion system and particle volume concentration
-
图4 SiO2+聚合物分散体系黏度、Zeta电位与盐溶液矿化度之间的关系
-
Fig.4 Relationships among viscosity, Zeta potential, and salt solution mineralization of SiO2 + polymer dispersion system
-
图5 SiO2+聚合物分散体系黏度、Zeta电位与 pH值之间的关系
-
Fig.5 Relationships among viscosity, Zeta potential, and pH of SiO2 + polymer dispersion system
-
2.2.5 表面活性剂类型的影响
-
由不同类型表面活性剂对 SiO2+聚合物分散体系黏度的影响(图6)可知,添加阴离子表面活性剂和非离子表面活性剂的 SiO2+聚合物分散体系的黏度相差不明显,而添加阳离子表面活性剂的 SiO2+ 聚合物分散体系的黏度明显大于其余2种溶液的黏度。说明储层孔隙中存有的阴离子表面活性剂或非离子表面活性剂对该溶液黏度影响不大。这主要是由于阳离子表面活性剂易吸附在带负电荷的 SiO2颗粒上,使得颗粒相互聚集,形成絮凝体(图7),从而导致体系黏度增加;而阴离子表面活性剂电离出来的负电荷主体离子使得悬浮溶液 Zeta 电位减小,阴离子表面活性剂、聚合物分子线团和颗粒之间的斥力作用增大,从而导致体系黏度变化不大。
-
图6 不同类型表面活性剂对SiO2+聚合物分散体系黏度的影响
-
Fig.6 Effect of different types of surfactant on viscosity of SiO2 + polymer dispersion system
-
2.2.6 复合作用的影响
-
由 pH 值与表面活性剂共同作用对 SiO2+聚合物分散体系黏度和 Zeta 电位的影响(图8)可知,在酸性环境下,添加阳离子表面活性剂的 SiO2+聚合物分散体系黏度比添加阴离子表面活性剂的 SiO2+ 聚合物分散体系黏度大,说明 SiO2+聚合物分散体系在地层孔隙中同时存有阳离子表面活性剂和少量 CO2的弱酸性环境中仍可产生絮凝现象。随着 pH 值减小,无论 SiO2+聚合物分散体系中含有阳离子表面活性剂或阴离子表面活性剂,颗粒溶液的黏度均随 pH 值的减小而减小,甚至当 pH 值减小至 3 左右时,SiO2+聚合物分散体系的黏度有一个很大幅度的下降。说明酸性环境不利于 SiO2+聚合物分散体系黏度的稳定,同时在较强的酸性环境下,可以抑制絮凝的发生。这主要是以下2种协同作用的结果:一部分氢离子与颗粒发生电中和,甚至使颗粒表面带正电荷,增加颗粒间的斥力作用;一部分氢离子与阳离子表面活性剂吸附到阴离子聚合物分子线团上,并使聚合物分子线团带正电荷,溶液中的氢离子正电荷对带正电荷的聚合物分子线团产生排斥作用,使得聚合物分子线团的有效粒径减小,从而抑制了聚合物分子线团对颗粒的絮凝作用,使得SiO2+聚合物分散体系黏度减小。
-
图7 SiO2+聚合物分散体系絮凝体及电镜扫描
-
Fig.7 Flocculation and electron microscope scanning of SiO2 + polymer dispersion system
-
图8 pH值与表面活性剂共同作用对颗粒溶液黏度和Zeta电位的影响
-
Fig.8 Effect of pH and surfactant on viscosity and Zeta potential of particle solutions
-
3 结论
-
温度从20℃升高至80℃的过程中,SiO2+聚合物分散体系的黏度逐渐减小,但减小幅度不大,因此,SiO2+聚合物分散体系在油藏环境下具有较好的耐温性。
-
SiO2+聚合物分散体系的黏度随着矿化度的增加而减小,当溶液矿化度为32 000 mg/L时,SiO2+聚合物分散体系的黏度为 53 mPa·s,说明 SiO2+聚合物分散体系在油藏环境下具有较好的耐盐性。 SiO2+聚合物分散体系的黏度随着颗粒浓度增大而增大,说明适当地增加颗粒浓度有助于抑制由于高温和高矿化度引起的 SiO2+聚合物分散体系降黏效应;SiO2+聚合物分散体系相对黏度实验数据与 Krieger和Dougherty的黏浓模型拟合度较好。
-
添加阴离子表面活性剂和非离子表面活性剂的 SiO2+聚合物分散体系的黏度相差不明显,而添加阳离子表面活性剂的 SiO2+聚合物分散体系的黏度明显大于其余2种溶液的黏度。说明储层孔隙中存有的阴离子表面活性剂或非离子表面活性剂对该溶液黏度影响不大。
-
随着 pH 值减小,添加不同类型表面活性剂的 SiO2+聚合物分散体系黏度均减小,甚至当 pH 值减小至3左右时,SiO2+聚合物分散体系的黏度有一个很大幅度的下降。说明酸性环境不利于 SiO2+聚合物分散体系黏度的稳定,同时在较强的酸性环境下,可以抑制颗粒溶液絮凝的发生。
-
符号解释
-
dc——平均颗粒簇半径,nm;
-
e——欧拉数;
-
k—— 拥挤因子,其值为 1/ϕm(0.52<ϕm<0.74),1.35<k<1.91;
-
n——Carreau/Cross指数,常数;
-
β——界面层厚度与平均颗粒簇半径之比;
-
——剪切速率,s-1;
-
δ——界面层厚度,nm;
-
ζ——拟合参数,取值为2.5;
-
[η]——特征黏度,在(5)式中通常取值为2.5;
-
λCa——Carreau/Cross松弛时间,s;
-
μeff ——颗粒分散体系有效黏度,mPa·s;
-
μf ——溶剂黏度,mPa·s;
-
μnf ——颗粒溶液视黏度,mPa·s;
-
μnf0——零剪切视黏度,mPa·s;
-
μnf∞——无穷大剪切视黏度,mPa·s;
-
σ——界面层扩散参数,nm;
-
ϕ——颗粒体积分数;
-
ϕecs——颗粒簇的有效体积分数;
-
ϕcs——没有界面层形成的颗粒簇体积分数;
-
ϕm——最大颗粒体积分数,在(5)式中通常取值为0.605。
-
参考文献
-
[1] 韩培慧,张东,潘峰,等.大庆油田抗盐聚合物驱矿场试验[J].大庆石油地质与开发,2021,40(6):96-105.HAN Peihui,ZHANG Dong,PAN Feng,et al.Field test of the salt-resistant polymer in Daqing Oilfield [J].Petroleum Geol‐ ogy & Oilfield Development in Daqing,2021,40(6):96-105.
-
[2] CORREDOR-ROJAS L M,HEMMATI-SARAPARDEH A,HUSEIN M M,et al.Rheological behavior of surface modified silica nanoparticles dispersed in partially hydrolyzed polyacryl‐ amide and xanthan gum solutions:Experimental measurements,mechanistic understanding,and model development [J].Energy & Fuels,2018,32(10):10 628-10 638.
-
[3] 朱诗杰,叶仲斌,施雷庭,等.驱油用聚合物溶液的流变模型应用优化研究[J].油气藏评价与开发,2022,12(4):677-683.ZHU Shijie,YE Zhongbin,SHI Leiting,et al.Application and optimization of rheological model of polymer solution for oil dis‐ placement [J].Petroleum Reservoir Evaluation and Develop‐ ment,2022,12(4):677-683.
-
[4] 陈五花,王业飞,何臻培,等.盐、温度和pH值对纳米 SiO2/HPAM分散体系稳定性和流变性的影响[J].石油学报:石油加工,2021,37(2):352-361.CHEN Wuhua,WANG Yefei,HE Zhenpei,et al.Effects of salt environments,temperatures and pH values on the stability and rheology of nano SiO2/HPAM dispersed system [J].Acta Petro‐ lei Sinica:Petroleum Processing Section,2021,37(2):352-361.
-
[5] 覃孝平.改性纳米SiO2/AA/AM共聚物提高波及效率的可行性研究[D].成都:西南石油大学,2014.QIN Xiaoping.The feasible research of improving sweep effi‐ ciency using the modified nano-SiO2/AA/AM copolymer [D].Chengdu:Southwest Petroleum University,2014.
-
[6] ABDULLAHI M,RAJAEI K,JUNIN R,et al.Appraising the impact of metal-oxide nanoparticles on rheological properties of HPAM in different electrolyte solutions for enhanced oil recov‐ ery [J].Journal of Petroleum Science and Engineering,2019,172:1 057-1 068.
-
[7] WANG Wuchao,PENG Yan,CHEN Zhangxin,et al.Synergis‐ tic effects of weak alkaline-surfactant-polymer and SiO2 nanopar‐ ticles flooding on enhanced heavy oil recovery [J].Energy & Fuels,2022,36(14):7 402-7 413.
-
[8] MAURYA N K,MANDAL A.Studies on behavior of suspen‐ sion of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery [J].Petroleum Science and Technology,2016,34:429-436.
-
[9] KHALILINEZHAD S S,CHERAGHIAN G,ROAYAEI E,et al.Improving heavy oil recovery in the polymer flooding process by utilizing hydrophilic silica nanoparticles [J].Energy Sources Part A-Recovery Utilization and Environmental Effects,2017,45(1):1-10.
-
[10] 刘慧卿,东晓虎.稠油热复合开发提高采收率技术现状与趋势 [J].石油科学通报,2022,7(2):174-184.LIU Huiqing,DONG Xiaohu.Current status and future trends of hybrid thermal EOR processes in heavy oil reservoirs [J].Pe‐ troleum Science Bulletin,2022,7(2):174-184.
-
[11] 孙焕泉.薄储层超稠油热化学复合采油方法与技术[J].石油与天然气地质,2020,41(5):1 100-1 106.SUN Huanquan.Hybrid thermal chemical recovery of thin extraheavy oil reservoirs [J].Oil & Gas Geology,2020,41(5):1 100-1 106.
-
[12] YADALI JAMALOEI B D M,MAHINPEY N.Experimental and numerical study of strategies for improvement of cyclic sol‐ vent injection in thin heavy-oil reservoirs [J].SPE Reservoir Evaluation Engineering,2021,24(1):127-158.
-
[13] 孙焕泉,刘慧卿,王海涛,等.中国稠油热采开发技术与发展方向[J].石油学报,2022,43(11):1 664-1 674.SUN Huanquan,LIU Huiqing,WANG Haitao,et al.Develop‐ ment technology and direction of thermal recovery of heavy oil in China [J].Acta Petrolei Sinica,2022,43(11):1 664-1 674.
-
[14] 张启龙,韩耀图,陈毅,等.海上多元热流体参数优化及选井原则研究[J].天然气与石油,2020,38(4):71-77.ZHANG Qilong,HAN Yaotu,CHEN Yi,et al.Study on param‐ eter optimisation and well selection for offshore multi-thermal fluid stimulation [J].Natural Gas and Oil,2020,38(4):71-77.
-
[15] 刘奇鹿.薄互层超稠油油藏蒸汽驱技术研究与试验[J].特种油气藏,2022,29(6):98-103.LIU Qilu.Study and test on steam flooding technology for thin interbedded ultra-heavy oil reservoirs [J].Special Oil & Gas Reservoirs,2022,29(6):98-103.
-
[16] 王步娥,郑惠光.改善稠油渗流流变性的试验[J].石油与天然气地质,2005,26(3):370-373.WANG Bue,ZHENG Huiguang.Experimental study of improv‐ ing rheological characteristics of heavy oil’s percolation flow [J].Oil & Gas Geology,2005,26(3):370-373.
-
[17] 孙焕泉.高温高盐油藏化学驱提高采收率技术发展与思考[J].石油科技论坛,2021,40(2):1-7.SUN Huanquan.Development and opinions of chemical EOR technology for high-temperature and high-salinity reservoirs [J].Petroleum Science and Technology Forum,2021,40(2):1-7.
-
[18] 郭德明,潘毅,孙扬,等.低渗稠油油藏降黏剂-CO2复合驱提高采收率机理研究[J].油气藏评价与开发,2022,12(5):794-802.GUO Deming,PAN Yi,SUN Yang,et al.EOR mechanism of viscosity reducer-CO2 combined flooding in heavy oil reservoir with low permeability [J].Reservoir Evaluation and Develop‐ ment,2022,12(5):794-802.
-
[19] 王欣然,杨丽娜,王艳霞,等.海上双重介质油藏三次采油提高采收率实验研究[J].断块油气田,2022,29(5):705-708.WANG Xinran,YANG Lina,WANG Yanxia,et al.Experimen‐ tal study on tertiary oil recovery EOR of offshore dual media res‐ ervoir [J].Fault-Block Oil & Gas Field,2022,29(5):705-708.
-
[20] 李天宇,靳军,田英,等.准噶尔盆地西北缘地层水化学特征及与油气保存关系[J].石油实验地质,2020,42(6):973-980.LI Tianyu,JIN Jun,TIAN Ying,et al.Chemical characteristics of formation water and the relationship with oil and gas preserva‐ tion on northwestern margin of Junggar Basin [J].Petroleum Geology & Experiment,2020,42(6):973-980.
-
[21] 胡航.稠油油藏 SiO2纳米流体增强梳形聚合物交替 CO2驱实验研究[D].青岛:中国石油大学(华东),2020.HU Hang.Comprehensive experimental study of enhanced comb polymer alternating CO2 injection with SiO2 nanofluid in heavy oil reservoirs [D].Qingdao:China University of Petroleum(East China),2020.
-
[22] 娄钰.纳微米聚合物颗粒分散体系非匀相渗流理论研究[D].北京:北京科技大学,2015.LOU Yu.Heterogeneous flow of nano/micron polymer-particle dispersion system in porous media [D].Beijing:University of Science and Technology Beijing,2015.
-
[23] 孙玉学.粘弹性聚合物溶液提高驱油效率的机理研究[D].大庆:东北石油大学,2009.SUN Yuxue.The research on the mechanism of oil displacement efficiency by polymer flooding with viscoelasticity [D].Daq‐ ing:Northeast Petroleum University,2009.
-
[24] CROSS M M.Rheology of non-Newtonian fluids:A new flow equation for pseudoplastic systems [J].Journal of Colloid Sci‐ ence,1965,20:417-437.
-
[25] EINSTEIN A.Eine neue bestimmung der moleküldimensionen [J].Annalen Der Physik,324(2):289-306.
-
[26] MOONEY M.The viscosity of a concentrated suspension of spherical particles [J].Journal of Colloid Science,1951,6(2):162-170.
-
[27] KRIEGER I M D,THOMAS J.A Mechanism for nonNewtonian flow in suspensions of rigid spheres [J].Journal of Rheology,1959,3(1):137-152.
-
[28] SELVAKUMAR R D,DHINAKARAN S.Effective viscosity of nanofluids-A modified Krieger-Dougherty model based on par‐ ticle size distribution(PSD)analysis [J].Journal of Molecular Liquids,2017,225:20-27.
-
[29] WIŚNIEWSKA M.The temperature effect on the adsorption mechanism of polyacrylamide on the silica surface and its stabil‐ ity [J].Applied Surface Science,2012,258:3 094-3 101.
-
[30] SAITO Y,OGURA H,OTSUBO Y.Rheological behavior of silica suspensions in aqueous solutions of associating polymer [J].Colloid and Polymer Science,2008,286:1 537-1 544.
-
[31] MITTAL B L.Study of surface charge properties of minerals and surface-modified substrates by wettability measurement [M].1st ed.Philadelphia:CRC Press,2006.
-
摘要
稠油热复合开采后期,储层中存留的热复合流体对堵剂颗粒溶液流变性的影响还不明确,从而限制了颗粒溶液在该阶段的应用。为此,依据流变性理论和黏浓公式,结合颗粒溶液黏浓变化规律,优选出一个能够准确描述SiO2+聚合物分散体系的黏浓关系;利用流变仪、Zeta电位分析仪和扫描电镜仪,开展了不同因素对SiO2+聚合物分散体系流变性的影响及机理认识的研究。结果表明,SiO2+聚合物分散体系的黏浓关系符合Krieger和Dougherty黏浓模型;随着温度或矿化度的增加,体系黏度减小;随着颗粒浓度或 pH值的增大,体系黏度增大;添加阴离子和非离子表面活性剂的 SiO2+聚合物分散体系黏度相差不明显,而添加阳离子表面活性剂的SiO2+聚合物分散体系黏度明显大于其余2种溶液的黏度;随着pH值减小,添加不同类型表面活性剂的颗粒溶液黏度均减小。因此,选择合适的颗粒溶液,为SiO2+聚合物分散体系在稠油热采开发后期提高采收率的应用提供了理论基础。
Abstract
The effect of the thermal composite fluid remaining in the reservoirs on the rheological properties of the plugging agent particle solution is still unclear at the late thermal composite development stage of the heavy oil reservoirs. Therefore, it limits the application of particle solutions in this stage. For this, based on the rheological theoretical model and viscosity-concentration for‐ mula, a viscosity-concentration relationship that can accurately describe the SiO2 + polymer dispersion system was preferably se‐ lected by combining the viscosity-concentration change of particle solutions. The effects of different factors on the rheological prop‐ erties of the SiO2 + polymer dispersion system and the mechanism were investigated by using a rheometer, a Zeta potential ana‐ lyzer, and a scanning electron microscope. The results show that the viscosity-concentration relationship of the SiO2 + polymer dis‐ persion system is in accordance with the Krieger and Dougherty viscosity-concentration models. The viscosity of the SiO2 + polymer dispersion system decreases with increasing temperature or mineralization. The viscosity of the SiO2 + polymer dispersion system in-creases with increasing particle concentration or pH. The difference in viscosity between SiO2 + polymer dispersion systems with an‐ ionic and nonionic surfactants is not significant, while the viscosity of SiO2 + polymer dispersion system with cationic surfactants is significantly greater than that of the remaining two solutions. The viscosity of the particle solutions with different types of surfac‐ tants decreases as the pH decreases. Therefore, it is important to select a suitable particle solution to provide a theoretical basis for the application of SiO2 + polymer dispersion system in the late thermal composite development stage of thick oil reservoirs.
Keywords
composite fluid ; particles ; polymers ; flocculation ; rheological property