摘要
注CO2已经成为致密油藏提高采收率的重要手段之一,相较于纯CO2,部分烃类气体对原油的降黏及混相能力更强。为此,通过高温高压PVT实验研究了CO2及复合气体(CO2-C2H6)-原油的饱和压力及黏度的变化特征,并利用高温高压岩心吞吐实验揭示了不同气体介质、吞吐压力及吞吐轮次下原油动用程度。研究结果表明:复合气体中C2H6增强了气液两相混相能力,提高了CO2降黏及溶解能力,原油流动性显著增加。复合气体中随着C2H6摩尔分数的增加,原油饱和压力由14.24 MPa增至18.02 MPa,提高了26.54%;原油黏度由23.68 mPa·s降至8.76 mPa·s。不同吞吐压力下复合气体(CO2-C2H6)的采收率提高效果均强于纯CO2的,且吞吐压力在最小混相压力附近采收率提高程度高于其他吞吐压力。复合气体(CO2-C2H6)对孔隙半径为0.000 1~0.001 和0.01~1 μm孔隙中的原油动用程度强于纯CO2的。
随着全球经济发展的日益加速以及工业技术的不断发展,油气消耗量逐渐增加,常规油气资源已无法完全满足全社会对能源的需
目前,用于致密油藏提高采收率的气体有CO2,N2、天然气、烟道气、空气等。其中,CO2是目前研究最多、效果最为理想的气体,在油藏条件下更容易达到混相条件。近年中外注气提高采收率研究如
研究人员 | 注入气体 | 压力/MPa | 温度/℃ | 采收率/% |
---|---|---|---|---|
管奕婷 | 烃气 | 15.5 | 45 | 47.95 |
许清 | 烃气 | 49.1~53.08 | 110~128 | 68.08~86.48 |
李德祥 | 空气 | 23.8 | 110 | 55.4~61.3 |
PU | CO2 | 4~26 | 75 | 21.2~40.9 |
刘鹏 | 空气 | 40 | 102 | 18 |
HUANG | CO2 | 15 | 80.15 |
大孔隙:40~80 小孔隙:50~80 |
ZHOU | CO2 | 12.9 | 44 | 38.96 |
LI | CO2 | 4~14 | 80 | 39.48~91.49 |
大量研究结果表明,致密油藏中注CO2及N2一定程度均能提高采收率,其中以CO2效果最好。但是在致密油藏储层中,天然裂缝与人工裂缝发育交错,在注气过程中常出现窜流等问题,很大程度上限制气体波及范围及驱油效率。因此,开始探索复合气体、化学助剂辅助CO2提高采收率机
发挥注入流体间的协同(混相压力、原油膨胀)驱油优势逐渐受到重视,然而由于多流体与原油、岩石间相互作用机理复杂,微观协同提高采收率机理仍不明
1 实验器材及流程
1.1 实验器材
实验用原油为地层原油和油田伴生气复配的模拟油,所用模拟油的流体特征与鄂尔多斯盆地的致密油相似。实验用岩心取自鄂尔多斯盆地现场致密砂岩岩心,岩心基础数据如
岩心编号 | 长度/cm | 直径/cm | 干重/g |
---|---|---|---|
1# | 5.22 | 2.56 | 54.12 |
2# | 5.26 | 2.56 | 52.02 |
3# | 5.35 | 2.56 | 59.21 |
4# | 5.22 | 2.56 | 55.02 |
5# | 6.12 | 2.56 | 53.19 |
6# | 5.42 | 2.56 | 54.36 |
7# | 5.24 | 2.56 | 56.68 |
1.2 实验流程
1.2.1 岩心基础物性实验
选择实际地层岩心开展基础物性实验,首选通过气测渗透率、孔隙度测量仪确定致密砂岩岩心孔渗数据,其次通过铸体薄片及扫描电镜明确岩心孔隙结构及矿物特征。
1.2.2 高温高压PVT实验
按照地层原油气油比在高温高压PVT反应釜中配制原始活油样品,将高温高压PVT反应釜温度升至地层温度,打开反应釜内搅拌装置并稳定6 h。利用注入泵将高温高压PVT反应釜压力升至指定压力,并稳定6 h。以恒定速度退泵,降低高温高压PVT反应釜压力,记录退泵体积与压力(稳定2 h),高温高压PVT实验装置如

图1 高温高压PVT实验装置
Fig.1 High-temperature and high-pressure PVT experimental setup
1.2.3 高温高压黏度实验
按照地层原油气油比在高温高压PVT反应釜中配制原始活油样品,将活油样品导入螺旋管线中。利用水浴加热及升压装置,将螺旋管线温度及压力升至地层条件,并开启搅拌装置使油与气充分接触,最终通过高温高压黏度计算系统自动计算原油黏度。高温高压黏度实验装置如

图2 高温高压黏度实验装置
Fig.2 High-temperature and high-pressure viscosity experimental setup
1.2.4 高温高压岩心吞吐实验
具体步骤包括:①将岩心抽真空饱和地层原油,并通过核磁共振测定原油孔隙分布。②按照摩尔分数比例(7∶3)配制复合气体(CO2-C2H6)。③将岩心置于高温高压岩心吞吐实验装置(

图3 高温高压岩心吞吐实验装置
Fig.3 High-temperature and high-pressure core huff and puff experimental setup
2 结果与讨论
2.1 岩心孔隙特征
结合岩心铸体薄片及扫描电镜实验研究结果(

图4 岩心孔隙特征
Fig.4 Core pore characteristics
2.2 饱和压力变化特征
利用高温高压PVT实验装置,测定不同摩尔分数CO2及复合气体(CO2-C2H6)的混合原油饱和压力变化规律。由

图5 原油注气时饱和压力变化
Fig.5 Saturation pressures of oil during gas injection
对比纯CO2与复合气体(CO2-C2H6)饱和压力变化规律可知,当纯CO2注入到原油中时,CO2溶解于原油中,CO2分子与原油中的烃类分子相互作用,增加原油分子间吸引力,同时改变原油组分的相对含量,进而导致原油饱和压力的增加,且随着注入气体摩尔分数的上升,饱和压力逐渐增大。相同摩尔分数条件下,复合气体(CO2-C2H6)的饱和压力低于纯CO2的。由此可知,C2H6气体能够增加CO2在原油中的溶解能力,增强CO2分子在原油分子间的相互作用能力,提高油气混相能力,从而强化储层原油动用程度。
2.3 黏度变化特征
利用高温高压黏度实验装置,测定不同摩尔分数CO2及复合气体(CO2-C2H6)的混合原油黏度变化规律。由

图6 原油注气时黏度变化
Fig.6 Viscosity of oil during gas injection
对比CO2与复合气体(CO2-C2H6)黏度变化规律可知,当CO2注入原油中时,CO2溶解于原油中,能够使原油间的分子力部分转化为气-液分子间的引力,以降低原油间的内摩擦力从而起到降黏效果。随着气体摩尔分数的增加,溶解于原油中的CO2逐渐增多,进而导致原油黏度不断降低。相同摩尔分数条件下,复合气体(CO2-C2H6)的黏度均低于纯CO2的。由此可知,C2H6气体增强了CO2对原油的降黏能力,增加了原油的流动性,从而提高原油采收率。
2.4 岩心吞吐提高采收率变化特征
由

图7 岩心CO2吞吐实验结果
Fig.7 Results of core experiments under CO2 huff and puff
由

图8 岩心CO2-C2H6吞吐实验结果
Fig.8 Results of core experiments under CO2-C2H6 huff and puff
CO2及复合气体(CO2-C2H6)在不同吞吐压力(分别为4,8,12,16和24 MPa)下经4轮吞吐后采收率如

图9 不同吞吐压力下吞吐提高采收率变化特征
Fig.9 Oil recoveries under different gas huff and puff
岩心吞吐核磁共振实验研究结果如

图10 CO2吞吐核磁共振T2图谱
Fig.10 NMR T2 spectrum under CO2 huff and puff

图11 CO2-C2H6吞吐核磁共振T2图谱
Fig.11 NMR T2 spectrum under CO2-C2H6 huff and puff
不同孔喉中CO2及复合气体(CO2-C2H6)吞吐提高原油采收率效果(

图12 不同孔喉吞吐提高采收率变化特征
Fig.12 Oil recoveries of different pores under huff and puff
对比CO2及复合气体在不同孔喉处的原油采收率可知,致密砂岩储层不同孔喉的原油均可通过CO2或复合气体吞吐技术实现有效动用,且随着吞吐压力的不断上升,气体大量溶解于原油中,降低原油分子间的内摩擦力,从而降低原油黏度,提高原油流动能力。同时CO2及复合气体均能够与原油实现混相,大幅度降低油气界面张力,从而提高原油动用程度。相比于CO2吞吐,C2H6气体能够提高复合气体与原油间的溶解、降黏及混相程度,将CO2吞吐无法动用的剩余油携带出储层,且当吞吐压力接近最小混相压力时,原油采收率变化程度最高。
3 结论
随着注入气体摩尔分数的上升,饱和压力逐渐增大。相同摩尔分数条件下,复合气体(CO2-C2H6)的饱和压力低于纯CO2的。C2H6气体能够增加CO2在原油中的溶解能力,从而强化储层原油动用程度。随着气体摩尔分数的增加,溶解于原油中的CO2逐渐增多,进而导致原油黏度不断降低。相同摩尔分数条件下,注入复合气体(CO2-C2H6)的原油黏度均低于纯CO2的。C2H6气体增强了CO2对原油的降黏能力,增加了原油的流动性,从而提高原油采收率。
岩心赋存原油主要在第1,2轮次被大面积动用,且吞吐压力在油气最小混相压力附近,原油采收率明显增加。C2H6能够增强CO2在原油中的溶解度,减小原油分子的内摩擦阻力,从而增强CO2对原油的降黏能力,进而提高岩心原油动用程度。在不同吞吐压力下,复合气体(CO2-C2H6)的采收率提高效果均高于纯CO2的(复合气体的为71.43%;纯CO2的为56.38%),且吞吐压力在最小混相压力附近采收率提高程度高于其他吞吐压力。致密油藏储层孔喉集中分布在0.000 1~0.001和0.01~1 μm中,随着吞吐压力的逐渐升高,不同孔喉原油均得到有效动用。相较于纯CO2,复合气体(CO2-C2H6)吞吐对0.000 1~0.001和0.01~1 μm孔喉中的原油动用程度更强,能够将纯CO2吞吐无法动用的剩余油携带出储层,是未来致密油藏高效开发的一种有效技术。
参考文献
张映红,路保平,陈作,等.中国陆相致密油开采技术发展策略思考[J].石油钻探技术,2015,43(1):1-6. [百度学术]
ZHANG Yinghong, LU Baoping, CHEN Zuo, et al. Technical strategy thinking for developing continental tight oil in China [J]. Petroleum Drilling Techniques, 2015, 43(1): 1-6. [百度学术]
徐祖新,姜文亚,刘海涛.常规与非常规油气关系研究现状与发展趋势[J].油气地质与采收率,2016,23(3):14-19. [百度学术]
XU Zuxin, JIANG Wenya, LIU Haitao. Research status and development tendency of the relationship between conventional and unconventional oil and gas [J]. Petroleum Geology and Recovery Efficiency, 2016, 23(3): 14-19. [百度学术]
康毅力,田键,罗平亚,等.致密油藏提高采收率技术瓶颈与发展策略[J].石油学报,2020,41(4):467-477. [百度学术]
KANG Yili, TIAN Jian, LUO Pingya, et al. Technical bottlenecks and development strategies of enhancing recovery for tight oil reservoirs [J]. Acta Petrolei Sinica, 2020, 41(4): 467-477. [百度学术]
李国欣,雷征东,董伟宏,等.中国石油非常规油气开发进展、挑战与展望[J].中国石油勘探,2022,27(1):1-11. [百度学术]
LI Guoxin, LEI Zhengdong, DONG Weihong, et al. Progress, challenges and prospects of unconventional oil and gas development of CNPC [J]. China Petroleum Exploration, 2022, 27(1): 1-11. [百度学术]
郭鸣黎,陈艳,郑振恒,等.致密油藏可采储量概率快速评估方法——以红河油田长8油藏为例[J].石油实验地质,2021, 43(1): 154-160. [百度学术]
GUO Mingli, CHEN Yan, ZHENG Zhenheng, et al. Rapid evaluation of probable recoverable reserves in tight reservoirs: a case study of Chang 8 reservoir (eighth member of Yanchang Formation) in Honghe oil field [J]. Petroleum Geology & Experiment, 2021, 43(1): 154-160. [百度学术]
田伟,刘慧卿,何顺利,等.吉木萨尔凹陷芦草沟组致密油储层岩石微观孔隙结构表征[J].油气地质与采收率,2019,26(4):24-32. [百度学术]
TIAN Wei, LIU Huiqin, HE Shunli, et al. Characterization of microscopic pore structure of tight oil reservoirs in Lucaogou Formation, Jimusaer Sag [J]. Petroleum Geology and Recovery Efficiency, 2019, 26(4): 24-32. [百度学术]
杨正明,骆雨田,何英,等.致密砂岩油藏流体赋存特征及有效动用研究[J].西南石油大学学报:自然科学版,2015,37(3):85-92. [百度学术]
YANG Zhengming, LUO Yutian, HE Ying, et al. Study on occurrence feature of fluid and effective development in tight sandstone oil reservoir [J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2015, 37(3): 85-92. [百度学术]
曹喆,柳广弟,柳庄小雪,等.致密油地质研究现状及展望[J].天然气地球科学,2014,25(10):1 499-1 508. [百度学术]
CAO Zhe, LIU Guangdi, LIU-ZHUANG Xiaoxue, et al. Research status on tight oil and its prospects [J]. Natural Gas Geoscience, 2014, 25(10): 1 499-1 508. [百度学术]
马世忠,张宇鹏.应用压汞实验方法研究致密储层孔隙结构——以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J].油气地质与采收率,2017,24(1):26-33. [百度学术]
MA Shizhong, ZHANG Yupeng. Study on the pore structure of tight reservoir by using method of mercury injection-A case study of the Lucaogou Formation in Jimsar sag, Junggar Basin [J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 26-33. [百度学术]
闫健,秦大鹏,王平平,等.鄂尔多斯盆地致密砂岩储层可动流体赋存特征及其影响因素[J].油气地质与采收率,2020,27(6):47-56. [百度学术]
YAN Jian, QIN Dapeng, WANG Pingping, et al. Occurrence characteristics and main controlling factors of movable fluid in tight sandstone reservoirs in Ordos Basin [J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6): 47-56. [百度学术]
惠威,薛宇泽,白晓路,等.致密砂岩储层微观孔隙结构对可动流体赋存特征的影响[J].特种油气藏,2020,27(2):87-92. [百度学术]
HUI Wei, XUE Yuze, BAI Xiaolu, et al. Influence of micro-pore structure on the movable fluid occurrence in tight sandstone reservoir [J]. Special Oil & Gas Reservoirs, 2020, 27(2): 87-92. [百度学术]
李忠兴,屈雪峰,刘万涛,等.鄂尔多斯盆地长7段致密油合理开发方式探讨[J].石油勘探与开发,2015,42(2):217-221. [百度学术]
LI Zhongxing, QU Xuefeng, LIU Wantao, et al. Development modes of Triassic Yanchang Formation Chang 7 Member tight oil in Ordos Basin, NW China [J]. Petroleum Exploration and Development, 2015, 42(2): 217-221. [百度学术]
徐黎明,阎逸群,曹仁义,等.致密油准自然能量开发及产能影响因素研究[J].石化技术,2016,23(1):114-116. [百度学术]
XU Liming, YAN Yiqun, CAO Renyi, et al. A study on division of development stages and productivity-influencing factors for tight oil developed by pseudo-natural energy [J]. Petrochemical Industry Technology, 2016, 23(1): 114-116. [百度学术]
许洋,杨胜来,张占东,等.致密储层衰竭开采规律研究[J].辽宁石油化工大学学报,2017,37(2):37-41,53. [百度学术]
XU Yang, YANG Shenglai, ZHANG Zhandong, et al. Study on ming failure law of tight reservoir [J]. Journal of Liaoning Shihua University, 2017, 37(2): 37-41, 53. [百度学术]
向勇,侯力,杜猛,等.中国CCUS-EOR技术研究进展及发展前景[J].油气地质与采收率,2023,30(2):1-17. [百度学术]
XIANG Yong, HOU Li, DU Meng, et al. Research progress and development prospect of CCUS-EOR technologies in China [J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 1-17. [百度学术]
蒲春生,康少飞,蒲景阳,等.中国致密油藏水平井注水吞吐技术进展与发展趋势[J].石油学报,2023,44(1):188-206. [百度学术]
PU Chunsheng, KANG Shaofei, PU Jingyang, et al. Progress and development trend of water huff-n-puff technology for horizontal wells in tight oil reservoirs in China [J]. Acta Petrolei Sinica, 2023, 44(1): 188-206. [百度学术]
吉敏.不同驱替模式下致密油水平井注水开发经济效益评价——以J油田M区为例[J].石油地质与工程,2020,34(4):69-73. [百度学术]
JI Min. Economic benefit evaluation of waterflooding development of tight oil horizontal wells under different displacement modes by taking M area in J oilfield as an example [J]. Petroleum Geology and Engineering, 2020, 34(4): 69-73. [百度学术]
樊建明,王冲,屈雪峰,等.鄂尔多斯盆地致密油水平井注水吞吐开发实践——以延长组长7油层组为例[J].石油学报,2019,40(6):706-715. [百度学术]
FAN Jianming, WANG Chong, QU Xuefeng, et al. Development and practice of water flooding huff-puff in tight oil horizontal well, Ordos Basin: a case study of Yanchang Formation Chang 7 oil layer [J]. Acta Petrolei Sinica, 2019, 40(6): 706-715. [百度学术]
苏玉亮,陈征,唐梅荣,等.致密储层不同驱替方式下超临界CO2蓄能返排效果实验研究[J].油气地质与采收率,2020,27(5):79-85. [百度学术]
SU Yuliang, CHEN Zheng, TANG Meirong, et al. Experimental study of supercritical CO2 storage and flowback under different displacement methods in tight reservoirs [J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 79-85. [百度学术]
王香增,杨红,王伟,等.低渗透致密油藏CO2驱油与封存技术及实践[J].油气地质与采收率,2023,30(2):27-35. [百度学术]
WANG Xiangzeng, YANG Hong, WANG Wei, et al. Technology and practice of CO2 flooding and storage in low-permeability tight reservoirs [J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 27-35. [百度学术]
管奕婷,郭平,汪周华,等.英东油田注气驱室内实验研究[J].重庆科技学院学报:自然科学版,2014,16(4):46-50. [百度学术]
GUAN Yiting, GUO Ping, WANG Zhouhua, et al. Laboratory experimental study of gas injection in Yingdong Oilfield [J]. Journal of Chongqing University of Science and Technology: Natural Sciences Edition, 2014, 16(4): 46-50. [百度学术]
许清华. 东河塘油藏烃气混相驱机理及混相特征研究[D].成都:西南石油大学,2017. [百度学术]
XU Qinghua. The mechanism and characteristic study of the gas miscible flooding in Donghetang oil reservoir [D]. Chengdu: Southwest Petroleum University, 2017. [百度学术]
李德祥,张亮,崔国栋,等.新疆油田低渗透区块空气驱实验研究[J].科学技术与工程,2015,15(9):180-184. [百度学术]
LI Dexiang, ZHANG Liang, CUI Guodong, et al. Experimental study of air injection for IOR in low permeability reservoir of Xinjiang Oilfield [J]. Science Technology and Engineering, 2015, 15(9): 180-184. [百度学术]
PU W, WEI B, JIN F, et al. Experimental investigation of CO2 huff-n-puff process for enhancing oil recovery in tight reservoirs [J]. Chemical Engineering Research and Design, 2016, 111: 269-276. [百度学术]
刘鹏刚.轻质油藏注空气氧化机理及驱油实验研究[D].成都:西南石油大学,2018. [百度学术]
LIU Penggang. Experimental study on oil oxidation mechanism and displacement efficiency during air injection process in light oil reservoir [D]. Chengdu: Southwest Petroleum University, 2018. [百度学术]
HUANG Xing, LI Ang, LI Xiang, et al. Influence of typical core minerals on tight oil recovery during CO2 flooding using the nuclear magnetic resonance technique [J]. Energy & Fuels, 2019, 33(8): 7 147-7 154. [百度学术]
ZHOU Xiang, YUAN Qingwang, ZHANG Yizhong, et al. Performance evaluation of CO2 flooding process in tight oil reservoir via experimental and numerical simulation studies [J]. Fuel, 2019, 236: 730-746. [百度学术]
LI Xiang, XUE Junjie, WANG Yanqing, et al. Experimental study of oil recovery from pore of different sizes in tight sandstone reservoirs during CO2 flooding [J]. Journal of Petroleum Science and Engineering, 2022, 208: 109740. [百度学术]
LIU Yueliang, RUI Zhenghua, YANG Tao, et al. Using propanol as an additive to CO2 for improving CO2 utilization and storage in oil reservoirs [J]. Applied Energy, 2022, 311: 118640. [百度学术]
夏金娜. 致密油藏泡沫辅助空气驱技术研究[D].青岛:中国石油大学(华东),2013. [百度学术]
XIA Jinna. Study on technique of foam-assisted air flooding for compact reservoir [D]. Qingdao: China University of Petroleum(East China), 2013. [百度学术]
郭德明,潘毅,孙扬,等.低渗稠油油藏降黏剂-CO2复合驱提高采收率机理研究[J].油气藏评价与开发,2022,12(5):794-802. [百度学术]
GUO Deming, PAN Yi, SUN Yang, et al. EOR mechanism of viscosity reducer-CO2 combined flooding in heavy oil reservoir with low permeability [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 794-802. [百度学术]
钱川川,骆飞飞,蒋志斌,等.注空气提高低渗透油藏采收率实验及低温氧化反应特征[J].大庆石油地质与开发,2022,41(1):97-103. [百度学术]
QIAN Chuanchuan, LUO Feifei, JIANG Zhibin, et al. EOR experiment of air injection and low‐temperature oxidation reaction characteristics in low-permeability reservoirs [J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(1): 97-103. [百度学术]
GAJBHIYE R. Effect of CO2/N2 mixture composition on interfacial tension of crude oil [J]. ACS Omega, 2020, 5(43): 27 944-27 952. [百度学术]
ZHANG Shiyang, SHE Yuehui, GU Yongan. Evaluation of polymers as direct thickeners for CO2 enhanced oil recovery [J]. Journal of Chemical & Engineering Data, 2011, 56(4): 1 069-1 079. [百度学术]
毕佳琪. 低渗特低渗油层富气-氮气复合驱研究[D].大庆:东北石油大学,2020. [百度学术]
BI Jiaqi. Research on rich gas nitrogen composite flooding in low permeability and extra low permeability reservoir [D]. Daqing: Journal of Northeast Petroleum University, 2020. [百度学术]
陈涛平,毕佳琪,孙文.混相和非混相富气-N2复合驱试验研究[J].长江大学学报:自然科学版,2021,18(4):57-65. [百度学术]
CHEN Taoping, BI Jiaqi, SUN Wen. The experimental study on miscible and immiscible rich gas-N2 compound flooding [J]. Journal of Yangtze University: Natural Science Edition, 2021, 18(4): 57-65. [百度学术]
HAWTHORNE S B, MILLER D J, GRABANSKI C B, et al. Measured crude oil MMPs with pure and mixed CO2, methane, and ethane, and their relevance to enhanced oil recovery from middle Bakken and Bakken shales [C]. Calgary: SPE Unconventional Resources Conference, 2017. [百度学术]
黄兴,李响,张益,等.页岩油储集层二氧化碳吞吐纳米孔隙原油微观动用特征[J].石油勘探与开发,2022,49(3):557-564. [百度学术]
HUANG Xing, LI Xiang, ZHANG Yi, et al. Microscopic production characteristics of crude oil in nano-pores of shale oil reservoirs during CO2 huff and puff [J]. Petroleum Exploration and Development, 2022, 49(3): 557-564. [百度学术]
肖佃师,卢双舫,陆正元,等.联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构[J].石油勘探与开发,2016,43(6):961-970. [百度学术]
XIAO Dianshi, LU Shuangfang, LU Zhengyuan, et al. Combining nuclear magnetic resonance and rate-controlled porosimetry to probe the pore-throat structure of tight sandstones [J]. Petroleum Exploration and Development, 2016, 43(6): 961-970. [百度学术]
李楚雄,申宝剑,卢龙飞,等. 松辽盆地沙河子组页岩孔隙结构表征——基于低场核磁共振技术[J]. 油气藏评价与开发, 2022, 12(3): 468-476. [百度学术]
LI Chuxiong, SHEN Baojian, LU Longfei, et al. Pore structure characterization of Shahezi Formation shale in Songliao Basin: Based on low-field nuclear magnetic resonance technology [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 468-476. [百度学术]