摘要
鄂尔多斯盆地长6段储层是重要的致密油聚集区。综合利用岩心资料、铸体薄片鉴定、压汞及高精度电镜扫描技术,从岩石学特征、物性特征、孔喉配套发育特征及孔隙结构特征等多个方面,开展研究区储层特征表征研究。在此基础上,辅以高温高压在线核磁共振CO2驱物理模拟实验,通过实时动态监测CO2驱各阶段原油的多相流动和运移行为,定量研究不同级别孔隙的流体饱和度、采收率、剩余油分布和微观动用特征,探讨注入压力对采收率和微观孔隙原油采出程度的影响。结果表明:研究区长6段储层特征差异显著,储层岩性以细粒长石砂岩和岩屑长石砂岩为主,孔隙度平均为10.2%,渗透率平均为0.79 mD,以低孔-超低渗透致密油储层为主,孔隙类型以粒间孔、长石溶蚀孔及沸石溶蚀孔为主;根据储层毛管压力曲线特征,可将长6段储层由好到差依次分为Ⅰ、Ⅱ和Ⅲ类,储层孔喉结构参数与渗透率的相关性较好。研究区储层原油主要赋存于孔喉半径小于0.1 μm 及孔喉半径为0.1~1 和1~10 μm的3类孔隙中,不同级别孔隙的CO2驱微观动用特征存在差异,大孔隙和中孔隙原油的采出程度呈现逐渐增大的趋势,而小孔隙原油的采出程度呈现先降低后增加的趋势。注入压力与CO2驱采收率呈正相关关系,高压CO2驱可增强油气传质,降低界面张力,进而提高总采收率。
近年来,致密油气藏逐渐成为全球非常规油气勘探开发的前景领
目前,常规储层表征技术主要有N2/CO2吸附、高压压汞、恒速压汞和铸体薄片等,非常规储层表征技术包括微纳米CT扫描、场发射扫描电子显微镜(FE-SEM)、聚焦离子束氦离子显微镜(FIB-HIM)和小角中子散射(SANS)
1 实验器材与方法
1.1 实验装置
将高温高压驱替物理模拟装置与核磁共振技术相结合,研发了致密油储层动态气驱在线核磁共振实验系统(

图1 动态气驱在线核磁共振实验系统
Fig.1 Online NMR experimental system of dynamic gas flooding
1.2 实验材料
实验岩样取自鄂尔多斯盆地长6段致密砂岩储层。鄂尔多斯盆地形成于古生代,总面积为25×1
岩样 编号 | 直径/cm | 长度/cm | 孔隙度/% | 渗透率/mD | 埋深/m |
---|---|---|---|---|---|
C1 | 2.498 | 8.976 | 15.6 | 0.214 | 2 118.2~2 135.3 |
C2 | 2.501 | 8.981 | 17.2 | 0.275 | 2 115.8~2 125.9 |
C3 | 2.502 | 8.978 | 16.5 | 0.239 | 2 112.7~2 134.8 |
1.3 实验方法
基于低场核磁共振理论,当含氢质子浸入静态磁场中并暴露于第二振荡磁场时,就会产生核磁共振。相同核磁场参数下核磁共振幅度与氢质子数量成正比,基于该原理可定量评价岩样内部含油饱和度的变
为了验证动态气驱在线核磁共振测试系统,通过设置相同的测试参数获得油体积与其对应的核磁共振信号量的关系。两者的关系曲线(

图2 核磁共振信号量与油体积的关系
Fig.2 Relationship between NMR signal intensity and oil volume
1.4 实验步骤
选取研究区长6段储层代表性岩样开展扫描电镜SEM成像、铸体薄片及高压压汞实验,并结合研究区储层物性资料进行分析。通过动态气驱在线核磁共振实验系统对致密岩样CO2驱替过程进行实时监测并获得T2谱。测试采用Carr-Purcell-Meiboom-Gill回波序列,T2谱采用Butler-Reeds-Dawson算法。为了提高核磁共振信号的信噪比,扫描次数和回波次数分别设置为64和4 096,回波时间和等待时间分别选择为0.1 ms和6 s。CO2驱在线核磁共振实验主要分为4个步骤:①将岩样洗油洗盐后烘干24 h,获得岩样的原始T2谱。②将实验温度逐渐升高至85 ℃,并对岩样进行抽真空、原油饱和及老化处理,测试饱和原油状态下岩样的T2谱,采用称重法和核磁共振法计算饱和油体积和孔隙度。③通过恒速恒压驱替泵将CO2注入岩样中,按照设定的注入压力(岩样C1、C2和C3的注入压力分别为21、28和32 MPa)恒压注入气体,围压设定为跟踪模式高于注入端3 MPa,在不同的CO2注入量(0.2、0.6、1.0和1.2 PV)下进行核磁共振实验,当谱线不再变化时结束实验,并根据谱线的变化计算总采收率及不同级别孔隙的采收率。④更换岩样,重复步骤①—③。每次实验前使用标准岩样进行核磁共振信号量校正,确保扫描测试期间的实验结果具有可比性。
2 实验结果与分析
2.1 储层特征
2.1.1 岩石学特征
铸体薄片资料分析结果表明,研究区长6段储层岩性以浅灰色细粒长石砂岩、岩屑长石砂岩为主。碎屑矿物成分长石占比最高,平均含量为47.1%,其次为石英,平均含量为22.1%(

图3 鄂尔多斯盆地长6段储层碎屑矿物成分及填隙物成分分布
Fig.3 Distribution of mineral composition and cementing materials in Chang 6 reservoir of Ordos Basin
2.1.2 物性特征
储层物性特征分析对于评价储层质量具有重要意义。研究区长6段储层物性测试结果表明:孔隙度为5.2%~18.8%,平均为10.2%;渗透率为0.05~15.2 mD,平均为0.79 mD,属于典型低孔-超低渗透致密油储层(

图4 鄂尔多斯盆地长6段储层孔隙度和渗透率分布
Fig.4 Distribution of porosity and permeability in Chang 6 reservoir of Ordos Basin
2.1.3 孔隙类型及孔喉配套发育特征
通过对研究区储层岩样的铸体薄片和扫描电镜观察,可对储层的孔隙类型、形态和矿物分布特征进行分析,结合铸体薄片及扫描电镜实验资料对孔喉特征进行统计分析。研究区长6段储层平均面孔率为4.08%,相对较小。孔隙类型可分为原生孔隙、次生孔隙和微裂缝3类。原生孔隙主要以粒间孔为主(图

图5 鄂尔多斯盆地长6段储层岩石薄片特征
Fig.5 Characteristics of thin sections of rocks in Chang 6 reservoir of Ordos Basin

图6 鄂尔多斯盆地长6段储层孔隙类型及矿物分布特征
Fig.6 Pore types and mineral distribution characteristics of Chang 6 reservoir in Ordos Basin

图7 鄂尔多斯盆地长6段储层孔喉发育特征
Fig.7 Pore-throat development characteristics of Chang 6 reservoir in Ordos Basin
研究区孔喉特征统计结果表明,长6段储层孔喉发育较好,孔隙类型以小孔型和大孔型为主(
2.1.4 微观孔隙结构特征
孔喉尺度分析对于评价储层渗流特性极其重要,高压压汞实验获得的毛管压力曲线是研究储层岩石的孔喉大小、分布和连通关系等孔隙结构特征的重要资料。研究区长6段储层的高压压汞测试资料表明,该区储层毛管压力曲线表现为略粗歪度特性(

图8 鄂尔多斯盆地长6段储层高压压汞毛管压力曲线
Fig.8 High pressure mercury injection capillary pressure curve of Chang 6 reservoir in Ordos Basin
根据毛管压力曲线特征,可将研究区长6段储层的孔隙结构由好到差依次分为Ⅰ、Ⅱ和Ⅲ共3种类型(
岩样类别 | 孔隙度/% | 渗透率/ mD | 排驱压力/MPa | 中值压力/MPa | 孔喉中值半径/μm | 孔喉半径均值/μm | 最大汞 饱和度/% | 退汞效率/% | 分选系数 | 偏态 |
---|---|---|---|---|---|---|---|---|---|---|
Ⅰ类 | 9.60 | 0.63 | 0.50 | 2.01 | 0.36 | 0.47 | 78.94 | 19.77 | 2.48 | 1.85 |
Ⅱ类 | 7.40 | 0.79 | 0.70 | 3.79 | 0.19 | 0.34 | 69.53 | 13.87 | 3.19 | 1.61 |
Ⅲ类 | 5.20 | 0.18 | 0.80 | 31.64 | 0.02 | 0.18 | 65.35 | 19.08 | 3.98 | 1.46 |
分析研究区长6段储层孔喉结构参数与渗透率的关系(

图9 鄂尔多斯盆地长6段储层孔喉结构参数与渗透率的关系
Fig.9 Relationship between pore-throat structural parameters and permeability of Chang 6 reservoir in Ordos Basin
2.2 CO2驱油效果评价
2.2.1 CO2驱核磁共振T2谱演化特征
基于储层特征分析可知,研究区储层微观孔隙结构错综复杂,孔喉组合具有跨尺度结构特性,这将极大影响储层原油赋存特征及微观流体可动性。核磁共振T2谱对于表征岩样孔喉大小分布、含油饱和度、流体动用特征及多相流方面发挥着重要作用。由研究区长6段储层3块岩样不同注入量下CO2驱替过程中的核磁共振T2谱(

图10 不同注入量下CO2驱替过程中的核磁共振T2谱
Fig.10 NMR T2 spectra of rock samples during CO2 flooding at different injection volumes
整体上看,CO2驱替早期原油采出速率较快,T2谱峰面积迅速减小,后期T2谱变化缓慢,采油速率逐渐降低。在CO2驱替过程中,核磁共振T2谱的0.01~10 μm是主要的原油产出孔隙,6~10 μm孔隙中的原油基本被驱替完,剩余油主要分布在中、小孔隙中。此外,当CO2的注入压力由21 MPa增至28 MPa再增至32 MPa时,相应的原油采收率分别为34.38%、58.27%和71.57%,即采收率随着CO2注入压力的增大而增大,表明高压下CO2与原油间的界面张力更小,CO2对不同级别孔隙原油的动用效果更好,使得采收率明显提高。
2.2.2 CO2驱微观孔隙原油动用特征
根据CO2驱核磁共振T2谱,可计算获得不同级别孔隙原油采出程度随注入量的变化曲线。由

图11 CO2驱替过程中不同级别孔隙采出程度随注入量的变化关系
Fig.11 Variation in recovery of crude oil in pores with different sizes during CO2 flooding process with injection volumes
从本质上讲,不同级别孔隙的CO2驱微观动用特征存在差异性,这主要与CO2在岩样孔隙中的波及位置和流体运移途径有关。大孔隙由于其较小的渗流阻力而有利于气体流动,CO2首先进入大孔隙中动用其中的原油,此时CO2已与原油充分接触,随着气体在大孔隙中积聚和膨胀原油,大孔隙原油的采出程度显著增大。当大孔隙中的气体压力达到能够克服中、小孔隙中的渗流阻力时,气体将进入下一级别孔隙中动用原油,此时,随着压降逐渐向中孔隙和纳米级小孔隙传导,在压差和膨胀降黏作用下,中孔隙中难以动用的原油流向大孔隙,经大孔隙向采出端运移,这使得中孔隙原油的采出程度逐渐增大。而对于小孔隙原油,CO2在驱替初期携带部分原油进入小孔隙,导致小孔隙采出程度为负值,后期当孔隙压力大于最小混相压力时,由于CO2在混相作用下与小孔隙原油接
2.2.3 注入压力对CO2驱微观动用特征的影响
注入压力主要通过影响气驱前缘的稳定性和气体溶解度来影响岩样微观波及孔喉和总采收率。YU等认为,在一定的温度和压力条件下,当注入压力大于临界压力时,气驱前缘将失稳,这将导致不稳定驱替的低采收

图12 不同注入压力下CO2驱采收率和残余油饱和度随注入量的变化
Fig.12 Variation in recoveries and residual oil saturations with injection volumes of CO2 flooding at different injection pressures
分析不同注入压力时CO2驱在不同注入量下的残余油饱和度分布(

图13 不同注入压力下CO2驱残余油饱和度随注入量的变化
Fig.13 Variation of residual oil saturation with injection volumes during CO2 flooding at different injection pressures
3 结论
鄂尔多斯盆地长6段储层的孔隙度和渗透率均值分别为10.2%和0.79 mD,为低孔-超低渗透致密油储层,其主要储集空间类型为粒间孔、长石溶蚀孔及沸石溶蚀孔等,孔喉组合类型以小孔中细喉、小孔细喉和大孔中细喉为主,孔喉配套发育特征差异显著。根据储层毛管压力曲线特征,可将长6段储层由好到差依次分为Ⅰ、Ⅱ和Ⅲ共3种类型,Ⅲ类储层孔隙结构的储集能力和渗流能力较Ⅰ和Ⅱ类差。总体上,储层孔喉结构参数与渗透率存在较好的相关性。
研究区储层页岩油的赋存空间以大、中、小3个级别孔隙为主,CO2驱主要动用大孔隙中原油;CO2驱过程中不同级别孔隙的原油微观动用特征存在较大差异,由于渗流阻力相对较小,大孔隙和中孔隙原油采出程度随CO2注入量逐渐增大,而小孔隙原油的采出程度先降低后增加,这是由于初期CO2可在扩散作用下携带部分原油进入小孔隙,后期在抽提萃取作用下使得小孔隙内原油发生膨胀降黏等作用而产出,进而采出程度逐渐提高。
增大注入压力有利于提高CO2驱采收率,降低孔隙的动用下限,随着注入压力从21 MPa增加到32 MPa,采收率从34.38%增加到71.57%,中孔隙和大孔隙的原油采收率分别提高了22.05%和22.50%。这可归因于高压CO2驱增强了油气传质,降低了界面张力,进而大大提高了总采收率,剩余油主要分布在中小孔隙中,该部分孔隙为后期剩余油挖潜的主要方向。注CO2开发有望成为提高原油采收率并兼顾埋存的有效途径。
参考文献
郑文宽,张世明,李宗阳,等.CO2驱不同注采模式提高采收率实验研究[J].油气地质与采收率,2023,30(2):86-93. [百度学术]
ZHENG Wenkuan, ZHANG Shiming, LI Zongyang, et al. Experimental study on enhanced oil recovery by different injection-production modes of CO2 flooding[J]. Petroleum Geology and Recovery Efficiency, 2023, 30 (2): 86-93. [百度学术]
邹才能,朱如凯,白斌,等.致密油与页岩油内涵、特征、潜力及挑战[J].矿物岩石地球化学通报,2015, 34(1):3-17. [百度学术]
ZOU Caineng, ZHU Rukai, BAI Bin, et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 3-17. [百度学术]
赵文智,卞从胜,李永新,等.陆相页岩油可动烃富集因素与古龙页岩油勘探潜力评价[J].石油勘探与开发,2023,50(3):455-467. [百度学术]
ZHAO Wenzhi, BIAN Congsheng, LI Yongxin, et al. Enrichment factors of movable hydrocarbons in lacustrine shale oil and exploration potential of shale oil in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2023, 50(3): 455-467. [百度学术]
安成,柳广弟,孙明亮,等.基于氮气吸附实验与分形FHH模型分析页岩孔隙结构特征——以鄂尔多斯盆地华池地区长7段为例[J].石油实验地质,2023,45(3):576-586. [百度学术]
AN Cheng, LIU Guangdi, SUN Mingliang, et al. Analysis of shale pore structure characteristics based on nitrogen adsorption experiment and fractal FHH model: a case study of 7th member of Triassic Yanchang Formation in Huachi area, Ordos Basin[J]. Petroleum Geology & Experiment, 2023, 45(3): 576-586. [百度学术]
林森虎,邹才能,袁选俊,等.美国致密油开发现状及启示[J].岩性油气藏,2011,23(4):25-30,64. [百度学术]
LIN Senhu, ZOU Caineng, YUAN Xuanjun, et al. Status quo of tight oil exploitation in the United States and its implication [J]. Lithologic Reservoirs, 2011, 23(4): 25-30,64. [百度学术]
肖文联,杨玉斌,黄矗,等.基于核磁共振技术的页岩油润湿性及其对原油动用特征的影响[J].油气地质与采收率,2023,30(1):112-121. [百度学术]
XIAO Wenlian, YANG Yubin, HUANG Chu, et al. Rock wettability and its influence on crude oil producing characteristics based on NMR technology[J]. Petroleum Geology and Recovery Efficiency, 2023, 30 (1): 112-121. [百度学术]
李国欣,雷征东,董伟宏,等.中国石油非常规油气开发进展、挑战与展望[J].中国石油勘探, 2022, 27(1): 1-11. [百度学术]
LI Guoxin, LEI Zhengdong, DONG Weihong, et al. Progress, challenges and prospects of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2022, 27(1): 1-11. [百度学术]
赵文智,胡素云,侯连华,等.中国陆相页岩油类型、资源潜力及与致密油的边界[J].石油勘探与开发, 2020,47(1):1-10. [百度学术]
ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10. [百度学术]
严敏,赵靖舟,黄延昭,等.鄂尔多斯盆地东南部长6段致密砂岩孔喉结构及演化[J].新疆石油地质,2023,44(6):674-682. [百度学术]
YAN Min, ZHAO Jingzhou, HUANG Yanzhao, et al. Pore throat structure and evolution in Chang 6 tight sandstone reservoirs in southeastern Ordos basin[J]. Xinjiang Petroleum Geology, 2023, 44(6): 674-682. [百度学术]
杨雪,廖锐全,袁旭,等. 基于核磁共振技术的致密岩心高温高压自发渗吸实验[J]. 大庆石油地质与开发,2023,42(3):58-65. [百度学术]
YANG Xue, LIAO Ruiquan, YUAN Xu, et al. Spontaneous imbibition experiment in high-temperature and high-pressure for tight cores based on NMR technology[J]. Petroleum Geology &Oilfield Development in Daqing, 2023, 42(3): 58-65. [百度学术]
DAI C L, CHENG R, SUN X, et al. Oil migration in nanometer to micrometer sized pores of tight oil sandstone during dynamic surfactant imbibition with online NMR[J]. Fuel, 2019, 245: 544-553. [百度学术]
邹才能,杨智,董大忠,等.非常规源岩层系油气形成分布与前景展望[J].地球科学,2022,47(5):1 517-1 533. [百度学术]
ZOU Caineng, YANG Zhi, DONG Dazhong, et al. Formation, distribution and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science, 2022, 47(5): 1 517-1 533. [百度学术]
黄建波,张奎,谢斌,等.准噶尔盆地玛湖凹陷百口泉组低渗透率砾岩储层分类[J].测井技术,2020, 44(3): 305-311. [百度学术]
HUANG Jianbo, ZHANG Kui, XIE Bin, et al. Classification and Log evaluation to low permeability conglomerate reservior of Baikouquan Formation in Mahu Depression Junggar Basin[J]. Well Logging Technology, 2020, 44(3): 305-311. [百度学术]
刘向君,熊健,梁利喜,等.基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响[J].地球物理学进展,2017,32(3):1 019-1 028. [百度学术]
LIU Xiangjun, XIONG Jian, LIANG Lixi, et al. Study on the characteristics of pore structure of tight sand based on micro-CT scanning and its influence on fluid flow[J]. Progress in Geophysics, 2017, 32(3): 1 019-1 028. [百度学术]
陈怡婷,刘洛夫,王梦尧,等.鄂尔多斯盆地西南部长6、长7储集层特征及其控制因素[J].岩性油气藏, 2020,32(1):51-65. [百度学术]
CHEN Yiting, LIU Luofu, WANG Mengyao, et al. Characteristics and controlling factors of Chang 6 and Chang 7 reservoirs in southwestern Ordos Basin[J]. Lithologic Reservoirs, 2020, 32(1): 51-65. [百度学术]
CLARKSON C R, FREEMAN M, HE L, et al. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis[J]. Fuel, 2012, 95(2): 371-385. [百度学术]
金之钧,朱如凯,梁新平,等.当前陆相页岩油勘探开发值得关注的几个问题[J].石油勘探与开发,2021, 48(6):1 276-1 287. [百度学术]
JIN Zhijun, ZHU Rukai, LIANG Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(6): 1 276-1 287. [百度学术]
卢双舫,李俊乾,张鹏飞,等.页岩油储集层微观孔喉分类与分级评价[J].石油勘探与开发,2018,45 (3): 436-444. [百度学术]
LU Shuangfang, LI Junqian, ZHANG Pengfei, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436-444. [百度学术]
GOLAB A, WARD C R, PERMANA A, et al. High-resolution three-dimensional imaging of coal using microfocus X-ray computed tomography, with special reference to modes of mineral occurrence[J]. International Journal of Coal Geology, 2013, 113: 97-108. [百度学术]
BERA B, MITRA S K, VICK D. Understanding the micro structure of Berea Sandstone by the simultaneous use of micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM)[J]. Micron, 2011, 42(5): 412-418. [百度学术]
贾宁洪,吕伟峰,常天全,等.高效无损岩心孔隙度精确测量新方法[J].石油学报,2018,39(7):824-828,844. [百度学术]
JIA Ninghong, LÜ Weifeng, CHANG Tianquan, et al. A new method for precisely measuring core porosity with high efficiency and no destruction[J]. Acta Petrolei Sinica, 2018, 39(7): 824-828,844. [百度学术]
肖玲,魏钦廉,吕玉娟.鄂尔多斯盆地南梁地区长6油层组储层致密化及优质储层主控因素研究[J].延安大学学报:自然科学版,2017,36(4):12-16. [百度学术]
XIAO Ling, WEI Qinlian, LÜ Yujun. The reservoir densification and main controlling factors of high quality reservoirs of Chang 6 reservoir in Nanliang Area, Ordos Basin[J]. Journal of Yan'an University: Natural Science Edition, 2017, 36(4): 12-16. [百度学术]
曹斌风,孙卫.吴旗地区薛岔区块延长组长6砂岩储层成岩作用研究[J].天然气地球科学,2011,22(6): 951-960. [百度学术]
CAO Binfeng, SUN Wei. Diagenesis of Chang 6 reservoirs in Xuecha block of Wuqi area[J]. Natural Gas Geoscience, 2011, 22(6): 951-960. [百度学术]
栾茂兴.致密油藏CO2驱微观孔隙结构变化规律研究[J].科技与创新,2020, 24(12):28-29. [百度学术]
LUAN Maoxing. Study on the change law of microscopic pore structure of CO2 flooding in tight reservoirs[J]. Technology and Innovation, 2020, 24(12): 28-29. [百度学术]
黄兴,李响,张益,等.页岩油储集层二氧化碳吞吐纳米孔隙原油微观动用特征[J].石油勘探与开发, 2022,49(3):557-564. [百度学术]
HUANG Xing, LI Xiang, ZHANG Yi, et al. Microscopic production characteristics of crude oil in nano-pores of shale oil reservoirs during CO2 huff and puff[J]. Petroleum Exploration and Development, 2022, 49(3): 557-564. [百度学术]
蒲万芬,王崇阳,李一波,等.致密油储层CO2驱核磁共振实验研究[J].科学技术与工程,2017,17(7): 30-34. [百度学术]
PU Wanfen, WANG Chongyang, LI Yibo, et al. Nuclear magnetic resonance (NMR) experimental study of CO2 flooding in tight reservoir[J]. Science Technology and Engineering, 2017, 17(7): 30-34. [百度学术]
周小航,陈冬霞,夏宇轩,等.鄂尔多斯盆地陇东地区长7段页岩油储层自发渗吸特征及影响因素[J]. 地球科学,2022,47(8):3 045-3 055. [百度学术]
ZHOU Xiaohang, CHEN Dongxia, XIA Yuxuan, et al. Spontaneous imbibition characteristics and influencing factors of Chang 7 shale oil reservoirs in Longdong Area, Ordos Basin[J]. Earth Science, 2022, 47(8): 3 045-3 055. [百度学术]
ZHANG B, MAO Z, ZHANG Z, et al. Black shale formation environment and its control on shale oil enrichment in Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1 304-1 314. [百度学术]
杨正明,刘学伟,李海波,等.致密储集层渗吸影响因素分析与渗吸作用效果评价[J].石油勘探与开发, 2019,46(4):739-745. [百度学术]
YANG Zhengming, LIU Xuewei, LI Haibo, et al. Analysis on the influencing factors of imbibition and the effect evaluation of imbibition in tight reservoirs[J]. Petroleum Exploration and Development, 2019, 46(4): 739-745. [百度学术]
曹小朋,冯其红,杨勇,等.CO2-原油混相带运移规律及其对开发效果的影响[J].油气地质与采收率,2021,28(1):137-143. [百度学术]
CAO Xiaopeng, FENG Qihong, YANG Yong, et al. Migration law of CO2-crude oil miscible zone and its influence on development effect[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1): 137-143. [百度学术]
郎东江,伦增珉,吕成远,等.页岩油注二氧化碳提高采收率影响因素核磁共振实验[J].石油勘探与开发,2021,48(3):603-612. [百度学术]
LANG Dongjiang, LUN Zengmin, LÜ Chengyuan, et al. Nuclear magnetic resonance experimental study of CO2 injection to enhance shale oil recovery[J]. Petroleum Exploration and Development, 2021, 48(3): 603-612. [百度学术]
YU H Y, XU H, FU W R, et al. Extraction of shale oil with supercritical CO2: Effects of number of fractures and injection pressure[J]. Fuel, 2021, 27(9): 285-294. [百度学术]