陆家堡凹陷西部地区九佛堂组层序 地层格架与分布特征

孙 利¹,李三国²,李中超^{1,3},魏立新³,刘伟伟¹,王文之¹
(1.成都理工大学沉积地质研究院,四川成都 610500; 2.中国石化石油工程技术研究院 测录井研究所,北京 100101;
3.中国石化中原油田分公司 勘探开发科学研究院,河南 濮阳 457001)

摘要:应用层序地层学的原理和方法,综合运用地震、测井与钻井资料,对陆家堡凹陷西部地区九佛堂组层序和体 系域边界进行了研究,并探讨了层序发育与沉积序列关系及其分布特征。结果表明,研究区九佛堂组可划分为1个 三级层序和3个体系域。低位体系域由3个准层序组构成,自下而上沉积水体加深;湖侵体系域可细分为4个准层 序组,总体表现为退积式和加积式叠置样式;高位体系域可划分为4个向上砂地比增大的进积准层序组。研究区在 3个体系域沉积时期的地层厚度变化不同,在低位体系域沉积时期主要沉积中心位于包日温都断裂带北部,之后向 西南迁移至包日温都断裂带中段与五十家子庙洼陷南部交界处。

关键词: 层序地层体系域地层格架九佛堂组陆家堡凹陷西部

中图分类号:TE111.3 文献标识码: A

陆家堡凹陷在构造上隶属于开鲁盆地内的一 个次级负向构造单元,是在海西期褶皱基底上发育 形成的中生代单断凹陷,从西到东分别为小井子、 五十家子庙、交力格和三十方地4个洼陷。经过20 余年的油气勘探,在陆家堡凹陷西部地区九佛堂组 取得了良好的勘探和开发成果,发现了包日温都和 马家铺等油田。特别是近年来随着勘探工作的不 断深入,先后发现了包14和包32等岩性油气藏,展 示了该地区全新的勘探领域和潜力。虽然陆家堡 凹陷西部地区油气勘探取得了明显的成果,但整体 油气勘探程度较低(井网密度小于1口/10 km²),特 别是对九佛堂组的地层分布规律及区域沉积特征 认识不清,制约了勘探开发工作的进一步深入。因 此,对陆家堡凹陷西部地区开展层序地层和沉积储 层研究,对深入认识研究区沉积储层和油气成藏机 理及资源潜力、预测有利储盖组合和勘探目标发育 区具有重要意义。

1 层序和体系域界面的识别

1.1 层序界面

层序是以不整合面及与之可对比的整合面为 界的、具有成因联系的一套地层单元,层序界面(不

文章编号:1009-9603(2013)01-0040-04

整合面)的准确识别是正确划分层序的关键。对于 层序界面,常以地震资料和钻井、测井资料为主,综 合考虑构造运动演化特征、古生物资料以及地球化 学资料等来识别^[1-4]。在陆家堡凹陷西部地区九佛 堂组中识别出2个三级层序界面SB_j¹和SB_j²(分别对 应于九佛堂组的底、顶界),3个四级层序(体系域), 自下而上命名为S_i¹,S_i²和S_i³(图1)。

1.2 体系域界面

根据 Vail 层序地层学的观点,体系域划分的关键是识别初次湖泛面和最大湖泛面^[2-3]。海相层序及体系域划分中陆棚坡折是初次湖泛面的关键参照系,在陆相湖盆中也可以找到一个相似的坡折带——地形突变带或断裂坡折带,作为识别初次湖

收稿日期:2012-11-29。 作者简介:孙利,男,在读博士研究生,从事石油地质方面的研究。联系电话:13511009504,E-mail:sunli_zy@163.com。

泛面的关键参照系,地震剖面上反射同相轴首次越 过陆相湖盆坡折的界面对应于初次湖泛面^[5-7]。最 大湖泛面对应于地震剖面上最远滨岸上超点对应 的反射界面,对应岩性剖面上的凝缩层^[8-15]。

在陆家堡凹陷西部地区九佛堂组体系域划分 中,初次湖泛面至马家铺高垒带前缘,是一个缓坡 与深洼区的过渡地带,在地形上有一个比较明显 的、由断裂作用形成的变化带,将其作为初次湖泛 面的参照系,首次越过这个地形变化带(断裂坡折 带)的湖泛面为初次湖泛面(图1)。最大湖泛面在 研究区三维地震资料联络线方向上的识别特征非 常明显,可以见到湖泛面之上明显的向湖盆中的前 积现象(图1)。最大湖泛面在钻井和测井资料上表 现为准层序组由退积向进积的转换面(图2),以及 凝缩层等现象。

图2 陆参3井最大湖泛面岩性、电性特征

1.3 层序地层格架

通过对各级次层序界面的识别,以及对研究区 63口单井、二维和三维地震剖面的研究、相互标定, 将陆家堡凹陷西部地区九佛堂组层序地层格架划 分为1个三级层序和3个体系域(表1)。

表1		陆家堡凹陷西部地区九佛堂组层序地层划分方案						
地	层	层	序	界	面			
组	段	岩性特征	测井	曲线特征	ĨE	地震反射 终止关系 (顶/底)	钻井 层序	体系域
九	上段	厚层细砂岩、砂 砾岩与泥岩互 层,厚度为110~ 1030 m	自然电 箱形、 向电阻 中幅键	已位曲约 钟形,游 且率曲约 告状	 星 一 一 七 七 一 一 七 一 一 一 一 一 一 一 一 一 一 一 一 一	顶界面: 顶超/削蚀	三	HST
佛堂	下	砂砾岩或细砂 岩、粉砂岩与暗 色泥岩互层,厚 度为200~800 m	自然电 钟形22 侧中中 漏斗状	已位曲约 及箱形 已阻率曲 届锯齿状	€ 呈深 线 或	顶界面: 前积/平行 底界面: 平行/上超	级层	TST
组	段	凝灰质泥岩或 泥岩夹凝灰质 粉砂岩或凝灰 质细砂岩,厚度 为160~900 m	自然电 直,深 率曲约 齿状或	已位曲约 例向电 民呈中報 法漏斗状	 王 昭 昭	顶界面: 削蚀 底界面: 上超	序	LST

2 体系域特征及平面展布

在划分九佛堂组三级层序体系域的基础上,进 一步对体系域内部的准层序叠置方式进行分析,共 划分出11个准层序组。

2.1 层序及体系域旋回特征

低位体系域 根据钻穿九佛堂组且发育低位 体系域的探井,如陆参3、包14、包601、好3、好6、庙 9、庙14、庙15、庙21和杏1等井的岩性、电性曲线资 料,结合地震资料反射特征,低位体系域可以划分 为3个准层序组。第1个准层序组和第3个准层序 组表现为向上水体变浅的准层序叠加样式,第2个 准层序组表现为向上水体变深的准层序叠加样 式。总体来看,自下而上,砂泥比变小,沉积水体加 深(图3)。

图3 低位体系域岩性、电性特征和准层序组划分

湖侵体系域 湖侵体系域在全区发育,根据地 震资料和钻井、测井资料综合分析,可以划分为4个 准层序组,总体表现为退积式和加积式准层序组叠 加样式(图4)。

高位体系域 高位体系域沉积范围更广,较湖 侵体系域向东有所扩展,所有探井均钻遇高位体系 域,大部分钻穿。综合地震资料、钻井和测井资料, 将其划分为4个向上砂地比增大的进积准层序组 (图5)。

整体看来,陆家堡凹陷西部地区九佛堂组三级 层序在低位体系域发育时期,由于湖平面较低,马

湖侵体系域岩性、电性特征和准层序组划分 图4

家铺高垒带和包日温都断裂带大部分地区未接受 沉积,使得低位体系域分为小井子洼陷——马北斜坡 带和马家铺高垒带—五十家子庙洼陷—包日温都 断裂带2个大的区域,地层主要沉积特点是凝灰质 成分居多。湖侵体系域发育时期,整个陆家堡凹陷 西部地区都接受了较大范围的湖泊沉积,地层岩性 粒度细,颜色以深灰色为主,许多地区发育油页岩, 具有较强的生烃能力。高位体系域发育时期,沉积 范围向南东方向稍有扩大,地层岩性粒度变粗,沉 积物进积特点明显,且许多地区砂岩与泥岩或粉砂 质泥岩等呈互层状出现,可作为配置良好的储盖组 合。

2.2 地层平面分布特征

低位体系域 低位体系域沉积时期,陆家堡凹 陷西部地区尚未连成一体,分为西侧的小井子洼 陷一马北斜坡带和东侧的马家铺高垒带一五十家 子庙洼陷一包日温都断裂带2个较小的湖盆,其中 马家铺高垒带和包日温都断裂带大部分地区未接 受低位体系域沉积。这一时期沉积的主物源来自2 个方向,包日温都断裂带和五十家子庙洼陷的沉积 物源主要来自舍伯吐凸起,而小井子洼陷的沉积物 源来自马家铺高垒带。

湖侵体系域 湖侵体系域沉积时期,陆家堡凹 陷西部地区演化成为完整湖盆并接受湖侵体系域 沉积。这一时期有3个主要的沉积中心,分别位于 小井子洼陷南端东陡坡下、包日温都断裂带的包12 井区西南、好5井区以南和包2井区以东。该时期 的物源主要来自舍伯吐凸起和马家铺高垒带西南 方,前者控制了包日温都断裂带和五十家子庙洼陷 的沉积,后者提供小井子洼陷的沉积物。此外,根 据地层厚度分布趋势,可以推断此时期包605井区 附近地势较高,导致来自舍伯吐凸起的物源以此为 分界,分别在包日温都断裂带中一南段和北段进行 沉积。

高位体系域 高位体系域沉积时期,九佛堂组 沉积范围比湖侵体系域向东南侧略有扩大。这一 时期的沉积中心只有1个,位于包日温都断裂带中 部的包4-好3-包6井这个三角形区域内,最大沉 积厚度位于包4井区、包4井区西南侧和包30井区 西南侧,沉积厚度均超过1000m,而包18井区沉积 厚度也超过950 m。

3 结论

陆家堡凹陷西部地区九佛堂组可划分为1个三

级层序和3个体系域,其中低位体系域由3个准层 序组组成,湖侵体系域可细分为4个准层序组,高位 体系域可划分为4个准层序组。构造格局对沉积作 用的控制作用非常明显。马家铺高垒带控制了低 位体系域的沉积边界,使研究区在低位体系域沉积 时期分为2个不连通的小湖盆接受低位体系域沉 积。在湖侵体系域和高位体系域沉积时期,陆西地 区连为一体接受沉积。

研究区在3个体系域沉积时期的地层厚度变化 不同。在低位体系域沉积时期主要沉积中心位于 包日温都断裂带北部,之后向西南迁移至包日温都 断裂带中段与五十家子庙洼陷南部交界处。另外, 在整个九佛堂组沉积时期,小井子洼陷的中心部位 为另一个较次要的沉积中心。

参考文献:

- [1] 朱筱敏.层序地层学[M].北京:石油大学出版社,2000:20-25.
- [2] 邓宏文.高分辨率层序地层学:原理及应用[M].北京:地质出版 社,2002:100-120.
- [3] 尹太举.高分辨率层序地层学在油田开发中的应用——以濮城 油田为例[M].北京:石油工业出版社,2007:96-118.
- [4] 郭了萍,李登伟,彭军,等.高分辨率层序地层学在近海勘探中的应用[J].海洋地质前沿,2005,21(2):26-28.
- [5] 祝贺,刘家铎,田景春,等.塔北一塔中地区三叠系层序地层格

架及生储盖组合特征[J].油气地质与采收率,2011,18(3): 14-19.

- [6] 袁红旗,柳成志,赵利华,等.海拉尔盆地查干诺尔凹陷下白垩 统层序地层学研究[J].沉积学报,2008,26(2):241-248.
- [7] 王刚,赵霖,王丽静,等.他拉哈西地区层序地层格架与沉积相 分析[J].大庆石油学院学报,2011,35(4):17-23.
- [8] 田美荣.东营凹陷新近系馆陶组层序地层格架[J].油气地质与 采收率,2010,17(2):1-4.
- [9] 郭彦如,刘化清,李相博,等.大型坳陷湖盆层序地层格架的研 究方法体系——以鄂尔多斯盆地中生界延长组为例[J].沉积 学报,2008,26(3):384-390.
- [10] 吕大炜,李增学,刘海燕,等.大型克拉通盆地海侵类型及特征 [J].油气地质与采收率,2011,18(2):7-11,29.
- [11] 梅冥相,张海,孟晓庆,等.上扬子区下寒武统的层序地层划分 和层序地层格架的建立[J].中国地质,2006,33(6):1 292-1 304.
- [12] 程克明,王世谦,董大忠,等.上扬子区下寒武统筇竹寺组页岩 气成藏条件[J].天然气工业,2009,29(5):40-44.
- [13] 梅冥相.上扬子区寒武系娄山关群白云岩层序地层格架及其古 地理背景[J].古地理学报,2007,9(2):117-132.
- [14] 韩会平,侯云东,武春英.鄂尔多斯盆地靖边气田山西组2'段 沉积相与砂体展布[J].油气地质与采收率,2007,14(6): 50-52.
- [15] 邢宝荣.辽河盆地二界沟洼陷沙三段层序地层划分及沉积相研 究[J].内蒙古石油化工,2010,(22):121-123.

编辑 经雅丽

(上接第39页)

- [10] 石德佩,李相方,方洋,等.运用气一液一液三相相平衡理论研究濮67气藏产水来源[J].石油钻采工艺,2007,29(2): 100-102.
- [11] 樊建明,郭平,邓垒,等.气中水含量对气藏流体相态与渗流的 影响[J].西南石油大学学报:自然科学版,2008,30(1): 100-102.
- [12] Zuluaga E, Lake L W.Semi-analytical model for water vaporization in gas producers[C].SPE 93862,2005.
- [13] 贾京坤,万丛礼.沾化凹陷罗家地区岩浆活动对油气形成的影响[J].油气地质与采收率,2012,19(6):50-52.
- [14] 邱楠生, 胡圣标, 何丽娟.沉积盆地热体制研究的理论与应用 [M]. 北京: 石油工业出版社, 2004:56.
- [15] 郝石生,张振英.天然气在地层水中的溶解度变化特征及其地 质意义[J].石油学报,1993,14(2):12-22.
- [16] 傅雪海,秦勇,杨永国,等.甲烷在煤层水中溶解度的实验研究 [J].天然气地球科学,2004,15(4):345-348.
- [17] 范泓澈,黄志龙,袁剑,等.富甲烷天然气溶解实验及水溶气析 离成藏特征[J].吉林大学学报:地球科学版,2011,41(4): 1033-1039.

- [18] Pedersen K S, Michelsen M L, Fredheim A O.Phase equilibrium calculations for unprocessed well streams containing hydrate inhibitors[J].Fluid Phase Equilibria, 1996, 126(1):13–28.
- [19] 姜福杰,庞雄奇,武丽.致密砂岩气藏成藏过程中的地质门限及 其控制机理[J].石油学报,2010,31(1):49-54.
- [20] 邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及 其科学价值[J].岩石学报,2011,27(6):1857-1863.
- [21] 向阳,向丹,羊裔常,等.致密砂岩气藏水驱动态采收率及水膜 厚度研究[J].成都理工学院院报,1999,26(4):389-391.
- [22] 高阳,蒋裕强,杨长城,等.最小流动孔喉半径法确定低渗储层物性下限[J].科技导报,2011,29(4):34-38.
- [23] 胡学军,杨胜来,蒋利平,等.温度对于亲水岩心束缚水饱和度 的影响[J].油气地质与采收率,2004,11(5):46-48.
- [24] Hunt J M.石油地球化学与地质学[M].胡伯良,译.北京:石油 工业出版社,1986:119.
- [25] 赵琳,李爱芬,李会会,等.三季铵盐表面活性剂界面性能及驱 油效果评价[J].油气地质与采收率,2012,19(1):72-74.

编辑 经雅丽