SEC剩余经济可采储量影响因素分析

张付兴

(中国石化胜利油田分公司 地质科学研究院,山东 东营 257015)

摘要:SEC 剩余经济可采储量直接反映上市油气公司勘探开发、生产经营形势和发展潜力。与中国技术可采储量不同,SEC 剩余经济可采储量受油价、操作成本、开发形势的影响较大。在以往定性分析的基础上,选取胜利油区典型单元,定量分析了初始产油量、递减率、油价和操作成本等参数对SEC 剩余经济可采储量的影响,并制作了相应图版。研究发现,在其他条件不变时,随着油价的升高,SEC 剩余经济可采储量逐渐增大,但对其影响程度逐渐降低,如油价由30美元/bbl上升至40美元/bbl时,对SEC 剩余经济可采储量的影响比例为24.87%;而油价由90美元/bbl上升至100美元/bbl时,对SEC 剩余经济可采储量的影响比例仅为1.37%;当油价不变时,操作成本每上升1美元/bbl,对SEC 剩余经济可采储量影响比例约减少1.4%。通过查询相应图版,能方便快捷地估算SEC剩余经济可采储量。

关键词: SEC剩余经济可采储量 油价 操作成本 初始产油量 递减率 储量评估

中国分类号:TE313.8

文献标识码:A

文件编号:1009-9603(2013)03-0095-03

中国三大石油公司在美国上市以来,每年都按照 SEC 的要求对其上市储量进行评估。由于受国际油价、操作成本和开发形势变化的影响较大,SEC 剩余经济可采储量(简称 SEC 储量)给中国储量管理和生产经营分析带来诸多不便[1]。前人定性分析了 SEC 储量的影响因素,但递减率、油价和操作成本等参数取值范围小,适应性较差[2-3]。笔者选取胜利油区典型单元,扩大递减率、油价和操作成本等参数的取值范围,用现金流法计算并分析初始产油量、递减率、油价和操作成本对 SEC 储量的影响,制作了相应图版,以期为方便快捷地估算 SEC 储量提供参考。

1 SEC储量计算方法

笔者利用现金流法对 SEC 储量进行计算,计算过程需先预测指定评估日之后的年产油量,将其乘以油气价格得到油气产品年收入,再减去勘探开发投资、操作成本和相关税费等,得到年度净现金流,当年度净现金流等于或小于0时,此点之前的预测年产油量之和为剩余经济可采储量[4-11]。通常利用指数递减法、双曲递减法和调和递减法预测产油量,其中指数递减法计算剩余经济可采储量最为简便,且适用性强。其计算式为

$$N = \frac{Q_{i}}{D} - \frac{a}{D} \times \frac{1}{\underbrace{y(1-b)}_{r} - \underbrace{1-a}_{c}} \tag{1}$$

式中: N 为剩余经济可采储量, bbl; Q_i 为预测初始产油量, bbl; D 为递减率,%; a 为固定成本占总成本的比例,%; y 为油价,美元/bbl; b 为税率,%; x 为操作成本,美元; c 为第1年的预测产油量, bbl。

从式(1)可以看出,影响SEC储量的主要因素 有初始产油量、递减率、油价和操作成本等。

2 影响因素分析

2.1 初始产油量

选取 A, B 和 C 3 个评估单元, 其初始产油量比值约为 1:5:10, 当桶油成本(桶油成本为操作成本与产油量的比值) 和递减率相同而油价不同时, 计算 SEC 储量。结果发现 3 个评估单元的 SEC 储量比值保持 1:5:10, 且油价的变化幅度相同时, SEC 储量的变化比例也是相同的(表 1)。

在实际生产中,评估单元的产油量波动是必然的。产油量下降会使 SEC 储量下降,在评估递减率等参数不变时,SEC 储量相对上一年下降的比例等于产油量下降的比例;产油量上升可使 SEC 储量增

表1 不同油价下的 SEC 储量						
油价/ (美元·bbl¹)	评估单元A		评估单元B		评估单元C	
	初始 产油量/ (10³bbl·月⁻¹)		初始 产油量/ (10³ bbl·月⁻¹)	SEC 储量/ 10 ⁶ bbl	初始 产油量/ (10³ bbl·月⁻¹)	SEC 储量/ 10 ⁶ bbl
30		13.2		65.9		131.8
35		15.5		77.5		155.1
40		17.4		87.0		174.1
45		18.6		92.9		186.0
50		19.6		98.0		196.1
55		20.2		101.0		202.1
60		20.5		102.4		204.9
65	51.3	21.0	256.5	104.9	513.5	210.0
70		21.2		106.1		212.4
75		21.4		107.2		214.6
80		21.7		108.3		216.7
85		21.9		109.3		218.8
90		22.1		110.3		220.7
95		22.2		111.2		222.5
100		22.4		112.1		224.3

加,在评估递减率等参数不变时,SEC储量相对于上一年增加的比例等于产油量上升的比例。

SEC储量评估结果与初始产油量成正比,初始产油量取值的准确性直接影响SEC储量评估结果的准确性。当评估单元产油量波动幅度较大时,一定要分析产油量波动的原因,充分考虑油藏产能的变化和开发政策的影响,确保SEC储量评估结果的合理性。

2.2 递减率

计算评估单元D递减率从5%增至50%,油价由50美元/bbl上升至100美元/bbl的SEC储量的变化比例。结果(图1)表明:在同一油价下,随着递减率的增大,SEC储量呈下降趋势,且下降比例逐渐减小。递减率从5%增至10%,SEC储量减小比例约为0.5,递减率从20%增至25%,SEC储量减小比例约为0.05。若以递减率为5%时的评估结果为基准,不同油价下的SEC储量减小趋势基本一致。

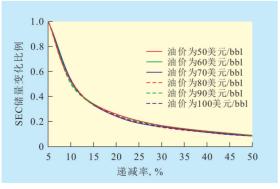


图1 不同油价下递减率与SEC储量变化比例的关系

在 SEC 储量评估中,许多评估单元年递减率小于15%,甚至小于10%,此时 SEC 储量对递减率的变化较为敏感。取值时须在深入分析评估单元开发阶段、老井自然递减规律的基础上,确定一个基础递减率。若评估单元产量递减趋势因新井和措施等因素影响发生短期波动,不能随意改变基础递减率,须根据新、老井递减规律的叠加效果确定一个短期递减率,用两段式递减预测产油量,以确保评估结果的合理性[12-15]。

2.3 油价

当初始产油量、递减率、操作成本等参数不变时,计算评估单元E在油价为30~100美元/bbl时的SEC储量,分析SEC储量变化幅度与油价变化幅度的关系,并绘制油价对SEC储量的影响比例图版。结果表明,随着油价的升高,SEC储量逐渐增大,但油价对其影响程度逐渐降低,如油价由30美元/bbl上升至40美元/bbl时,对SEC储量的影响比例为24.87%;而油价由90美元/bbl上升至100美元/bbl时,对SEC储量的影响比例仅为1.37%。

2.4 操作成本

操作成本直接影响上市评估单元经济极限产油量和开采年限,对SEC储量的影响比例较大。在初始产油量、递减率、油价(50美元/bbl)及增值税率等条件不变时,计算评估单元F在桶油成本为0~16美元/bbl时的SEC储量。结果表明,随着桶油成本的不断上升,SEC储量呈近似直线下降(图2),桶油成本每上升1美元/bbl,SEC储量约减少1.3×10°bbl,减少比例约为1.4%。

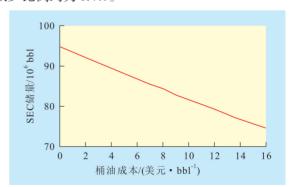


图2 桶油成本对SEC储量的影响

若油价发生变化,操作成本对SEC储量的影响幅度是不同的。计算评估单元G在油价为30~100美元/bbl,操作成本由减小4%至操作成本增加16%时的SEC储量。结果表明,油价越高,操作成本上

升对SEC储量的影响幅度越小(图3)。

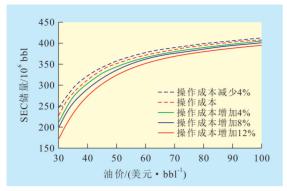


图 3 油价和操作成本对 SEC 储量的影响

3 实例分析

2011年油价为99美元/bbl,桶油成本为21.38美 元/bbl,评估单元H年末月产油量为130.6×103 bbl/ 月,预测初始产油量为130.0×10³ bbl/月,年递减率 为5%, SEC储量评估结果为25.87×106 bbl。2012年 与2011年相比,油价基本持平,桶油成本为23.48美 元/bbl,该单元年末月产油量为123.3×103 bbl/月,预 测初始产油量为 122.8×10^3 bbl/月,年递减率保持5%不变。按照SEC储量与初始产油量、递减率、油价 和操作成本等影响因素的关系,当递减率等条件不 变时,SEC储量与初始产油量成正比,即初始产油量 减小比例与SEC储量的减小比例相同;当油价等条 件不变时,桶油成本每上升1美元/bbl,SEC储量下 降比例约为1.4%,2012年桶油成本比2011年上升 2.1 美元/bbl,则 SEC 储量下降比例为 2.94%。综合 考虑各因素,2012年SEC储量下降比例约为8.48%, 估算SEC储量为23.68×106bbl。用OGRE软件评估 单元H的SEC储量为23.58×10°bbl,与估算结果误 差仅为0.4%。

4 结束语

SEC剩余经济可采储量受初始产油量、递减率、

油价和操作成本等因素的综合影响。定量分析了各影响因素对SEC储量的影响程度,并绘制相应图版,可使储量评估人员方便快捷地估算某一评估单元参数发生变化后的SEC储量,评估结果准确度较高。但在实际评估工作中,由于评估单元油藏类型、开发规律、成本构成等条件的不同,造成各因素对SEC储量的影响程度会存在一定差异,应用图版时须具体问题具体分析。

参考文献:

- [1] 王树华,魏萍.SEC储量动态评估与分析[J].油气地质与采收率,2012,19(2):93-94.
- [2] 贾承造.美国SEC油气储量评估方法[M].北京:石油工业出版 社.2004
- [3] 张玲,魏萍,肖席珍. SEC 储量评估特点及影响因素[J].石油与 天然气地质,2011,32(2):33-34.
- [4] 张玲,袁向春.国内储量计算与上市储量评估对比分析[J].中国西部油气地质,2006,2(3):247-248.
- [5] 尚明忠.用SEC标准进行储量评估应注意的主要问题[J].油气 地质与采收率,2005,12(1):49-51.
- [6] 郭齐军.对油田剩余经济可采储量及评估的讨论——以东辛油田为例[J]. 石油与天然气地质,2003,24(3):309-312.
- [7] 尚明忠,苏映宏,侯春华,等.新增探明储量的经济可采储量计算方法[J].油气地质与采收率,2002,9(5):22-23.
- [8] 刘超英,郭娜,闫相宾.国内油气储量评估及信息披露与SEC对比分析[J]. 资源与产业,2009,4(2):18-19.
- [9] 许静华.SEC标准油气储量评估的常用方法及其影响因素分析 [J]. 国际石油经济,2002,10(12):33-34.
- [10] 程晓珍,王亮,魏浩元,等.浅析经济因素对SEC原油储量评估的影响[J],新疆石油地质,2008,29(6):785-787.
- [11] 黄学斌,曾晓阳,杨园园.储量动态评估方法及影响因素分析 [J].油气地质与采收率,2003,10(2):17-18,25.
- [12] 邴绍献.油田单井可采储量定量预测模型[J].油气地质与采收率,2013,20(1):85-88.
- [13] 张玲,侯庆宇,庄丽,等. 储量估算方法在缝洞型碳酸盐岩油藏的应用[J].油气地质与采收率,2012,19(1):24-27.
- [14] 王华. 改进型水驱特征曲线计算技术可采储量的公式推导及 其应用[J].油气地质与采收率,2012,19(4):84-86.
- [15] 邴绍献.水驱油藏单井可采储量影响因素权重定量研究[J].油 气地质与采收率,2011,18(6):78-81,85.

编辑 王 星