气水同注驱油技术提高采收率物理模拟

马云飞^{1,2,3},赵凤兰^{1,2,3},侯吉瑞^{1,2,3},端祥刚^{1,2,3},李 实⁴ (1.中国石油大学(北京)提高采收率研究院,北京 102249; 2.中国石油三次采油重点实验室 低渗油田提高采收率应用基础理论研究室,北京 102249; 3.石油工程教育部重点实验室,北京 102249; 4.中国石油勘探开发研究院,北京 100083)

摘要:为了研究气水同注驱油技术扩大水驱波及体积提高采收率的适应性,通过室内驱油实验,评价了氮气—水和 氮气—活性水2种体系作为驱油剂的驱油效果,并探讨了各自的渗透率适应界限和驱油机理。实验结果表明:当渗 透率为5×10⁻³~100×10⁻³ μm²时,氮气—水同注体系的流度降低因子随渗透率的增大而减小;当渗透率为5×10⁻³~40× 10⁻³ μm²时,该体系可有效增大水驱波及效率,提高采出程度35.1%~16.8%。由于流度降低因子与采出程度增值匹 配性良好,可将其作为表征气水同注体系扩大波及体积能力的重要指标之一。当渗透率为30×10⁻³~500×10⁻³ μm² 时,氮气—活性水同注体系可有效增大渗流阻力,扩大波及体积,提高采出程度22.6%~19.4%。因此,氮气—水同注 体系适用于渗透率小于40×10⁻³ μm²的地层,氮气—活性水同注体系适用于渗透率为30×10⁻³~500×10⁻³ μm²的地层。 关键词:气水同注 波及体积流度降低因子 渗透率适应性 提高采收率 中图分类号:TE357 文献标识码:A 文章编号:1009-9603(2015)05-0089-05

Physical simulation of enhancing oil recovery by simultaneous water and gas injection flooding

Ma Yunfei^{1,2,3}, Zhao Fenglan^{1,2,3}, Hou Jirui^{1,2,3}, Duan Xianggang^{1,2,3}, Li Shi⁴

(1.Research Institute of Enhanced Oil Recovery, China University of Petroleum (Beijing), Beijing City, 102249, China; 2.Basic Theory Laboratory of Enhanced Oil Recovery in Low Permeability Oilfield, Key Laboratory of Tertiary oil Recovery, PetroChina, Beijing City, 102249, China; 3.MOE Key Laboratory of Petroleum Engineering, Beijing City, 102249, China; 4.PetroChina Research Institute of Petroleum Exploration & Development, Beijing City, 100083, China)

Abstract: Dynamic simulation experiments were operated so as to evaluate the recovery efficiency of the two types of simultaneous water and gas injection (SWAG) systems: the nitrogen-water system and the nitrogen-active water system. Their enhanced oil recovery mechanism and permeability adaptability were probed as well. The result suggests that the mobility reduction factor (MRF) of the nitrogen-water system reduces as permeability rises when it ranges from 5×10^{-3} to 100×10^{-3} μ m². The nitrogen-water system can enlarge swept volume and improve recovery efficiency by 35.1%-16.8% after water flooding in the scope of 5×10^{-3} to 40×10^{-3} μ m². MRF can be used as a criterion to evaluate the sweep efficiency enlarging ability of SWAG for it matches well with recovery degree. When permeability ranges from 30×10^{-3} to 500×10^{-3} μ m², the nitrogen-active water system can improve percolation resistance effectively and enhance recovery degree by 22.6%-19.4% after water flooding. Therefore, the nitrogen-water system can be adapted to the formation with permeability under 40×10^{-3} μ m², whereas the nitrogen-active water system may be applied to the formation with the permeability between 30×10^{-3} and $500 \times 10^{-3} \mu$ m².

Key words: simultaneous water and gas injection; sweep efficiency; mobility reduction factor; permeability adaptability; EOR

收稿日期:2015-07-03。

作者简介:马云飞(1989—),男,内蒙古呼和浩特人,在读博士研究生,从事提高采收率与采油化学方面的研究。联系电话:18811391456, E-mail:myf1989mm@163.com。

基金项目:国家科技重大专项"油田开采后期提高采收率技术"(2011ZX05009-004),国家科技支撑计划"CO2埋存与提高采收率评价研究"(2012BAC26B02)。

将水驱与气驱相结合,可充分发挥各自的特点 和优势,目前已形成气水交替注入、气水同注、气与 活性水交替注入以及泡沫辅助水气交替等技术,并 逐步成为油藏提高采收率的有效途径[1]。随着近年 来中国发现低渗透油藏比例的增加,气水交替注入 技术应用日趋广泛[2]。该技术通过控制流度以增大 波及体积和提高微观驱油效率[3]。但是仍存在一些 弊端,如气水注入工作制度的交替变化造成气水切 换困难,以及对注入气流度控制能力不足等[4-6]。气 水同注(或称水气同注)技术作为提高采收率的新 技术,可以有效克服气水交替注入的缺点,该技术 利用重力差异,水和气分离推进,可以获得单一驱 替相所无法得到的纵向波及系数[7-9]。此外,气水同 注技术利用孔道中的贾敏效应,增大渗流阻力,形 成微观堵塞,对于防止气窜和增大波及体积具有明 显的效果。该技术环保、经济,合理利用了采出气, 可在一定程度上提高波及效率和驱油效率,并目能 够保持油藏压力,具有实际应用价值,目前已经在 北海一些油田得到了现场应用^[10]。如果在水中加 入表面活性剂,形成活性水与气同注,则可形成更 加稳定的气泡,相比于普通水与气同注,气一活性 水体系粘度更大,因此渗流阻力更高,更稳定的气 泡提供了更有效的气阻效应[11],且除了贾敏效应之 外,溶液中的表面活性剂可降低油水界面张力,提 高驱油效率[12]。为此,笔者考察了不同渗透率岩心 中氮气-水同注体系和氮气-十二烷基硫酸钠 (SDS)活性水同注体系的驱油效果和渗流阻力增加 幅度,研究了体系流度降低因子随渗透率的变化规 律,并确定了2种体系的渗透率适用范围。

1 实验器材与方法

1.1 实验器材

实验仪器包括 CS200A 型气体质量流量控制器、HAS-100HSB 型恒压恒速泵、HW-Ⅱ型自控恒温箱和压力采集系统等。

实验用油为由大庆油区萨尔图油田脱气脱水 原油与航空煤油配制的模拟油,其密度为0.845 g/ mL,45 ℃时粘度为24.1 mPa·s。实验用水为去离子 水和矿化度为6778 mg/L的模拟地层水。实验试剂 主要包括十二烷基硫酸钠(分析纯)和纯度为99.5% 的压缩高纯氮气。

实验岩心为人工压制模型,长度为30 cm,截面 为4.5 cm×4.5 cm,岩心孔隙度为12.31%~33.02%,渗 透率为5.25×10⁻³~4 560.60×10⁻³ μm²(表1)。

Table1 Basic core parameters and designed injection rate						
注入 体系	岩心 编号	渗透率/ 10 ⁻³ µm ²	孔隙 度,%	孔隙体 积/cm ³	初始含油 饱和度,%	注入速度/ (m·d ⁻¹)
氮气— 水	S01	5.25	12.31	74.0	60.81	4.8
	S02	40.30	22.30	134.0	67.59	5.2
	S03	107.71	22.30	135.5	72.12	5.2
氮气— 活性水	F01	31.00	22.48	137.5	68.43	5.2
	F02	127.20	22.90	136.5	74.20	5.2
	F03	480.10	28.31	168.7	77.15	5.3
	F04	959.40	27.58	169.8	76.89	5.4
	F05	4 560.60	33.02	198.4	81.42	10.8

表1 实验岩心基本参数和设计的注入速度

1.2 实验步骤与参数设计

实验步骤 实验步骤主要分为5步:①称取3.0g 十二烷基硫酸钠,将其溶解于200 mL去离子水中, 机械搅拌4h,待完全溶解后,用模拟地层水稀释至 1000 mL,即配制得到质量分数为0.3%的SDS活性 水溶液;②按照图1安装物理模拟实验装置;③对 岩心施加围压,抽真空后饱和地层水,测定水相渗 透率;④饱和油,建立束缚水饱和度,老化24h;⑤进 行驱油实验,在温度恒定为45℃的条件下,先以设 计的注入速度(表1)进行一次水驱,至产液含水率 大于98%,再注入1.5倍孔隙体积的氮气一水或氮 气—活性水同注段塞,后续水驱至含水率大于98% 为止。实验过程中实时监测并记录入口压力、注入 气体流量、出口油水体积和出口气体流量。

参数设计 赵金省等研究发现,在气液比、注 入速度和渗透率3个因素中,渗透率对流度降低因 子的影响最大^[13-15],因此对渗透率为5×10⁻³~5000× 10⁻³μm²的岩心进行对比实验。Sohrabi等研究表 明,气水同注的气液比对驱油效果存在一定影响, 当气液比较低时,贾敏效应不明显,采出程度低;当 气液比较高时,容易产生气窜,最佳气液比为0.3~ 1.0^[16]。在气液比可满足较高流度降低因子的情况 下,考虑注入性,将气水同注的气液比定为1:1(入口压力下)。

控制气水同注气液比时,水可以近似视为不可 压缩流体,氮气体积须以实际气体状态方程折算为 入口压力下的体积,计算式为

$$Q_{z} = \frac{Z_{z} p_{0} Q_{0}}{Z_{0} (p_{z} + p_{0})}$$
(1)

式中: Q_x 为入口压力下的氮气流量,mL/min; Z_x 为入口压力下的氮气压缩因子; p_0 为大气压力, kPa; Q_0 为大气压力下的气体流量,mL/min; Z_0 为大 气压力下氮气压缩因子; p_x 为入口压力,kPa。

由于入口压力是变化的,为了维持稳定的气液 比,需要根据压力的变化及时调整氮气的注入速 度。根据实验所用岩心的渗透率和孔隙度,设计了 相应的注入速度(表1)。

2 实验结果与分析

将泡沫驱稳定压力与相同条件下水驱稳定压 力的比值定义为泡沫驱流度降低因子^[13,17]。与此类 似,将气水同注平稳压差与相同条件下水驱平稳压 差的比值定义为气水同注流度降低因子,用以表征 气水同注体系增加水驱渗流阻力的能力。

2.1 氮气一水同注体系

氮气-水同注体系渗透率与采出程度的实验 结果表明:对于渗透率为5.25×10⁻³ µm²的岩心,水驱 采出程度仅为28.4%,注入氮气一水同注体系后最 终采收率达63.5%,比一次水驱提高了35.1%;对于 渗透率为40.3×10-3 μm2的岩心,水驱采出程度为 37.6%,注入氮气一水同注体系后最终采收率为 54.4%,比一次水驱提高了16.8%;当岩心渗透率为 107.7×10⁻³ µm²时,水驱采出程度为44.0%,注入氮 气一水同注体系后最终采收率为44.6%,比一次水 驱仅提高了0.6%。由驱替压差曲线(图2)可以看 出,当岩心渗透率为5.25×10⁻³和40.3×10⁻³ μm²时,注 入氮气一水同注体系后,驱替压差比水驱显著提 高,在后续水驱中仍能维持较高的驱替压差;岩心 渗透率为107.7×10-3 µm2时,注入氮气-水同注体系 后,驱替压差没有明显提升。说明当渗透率小于 40×10-3 µm2时,氮气一水同注体系可有效提高渗流 阻力,扩大波及体积,提高采收率效果良好;当渗透 率大于100×10-3 µm2时,氮气一水同注体系无法通 过增加渗流阻力而扩大波及体积。

气水同注提高采收率的机理是:由于水与气存 在重力差异,会形成分流^[18],相对密度小的气体波

及岩心上层,相对密度大的液体波及岩心下层,从 而获得单一相驱替无法得到的波及体积^[19]。同时, 由于注入流体优先进入大的孔隙喉道,气泡在其中 产生贾敏效应,提高了大孔道的渗流阻力,从而迫 使液体进入水驱未波及到的较小的孔隙喉道中。

由氮气一水同注体系流度降低因子和采出程 度增值随渗透率变化曲线(图3)可看出:当渗透率 分别为5.25×10⁻³,40.30×10⁻³和107.71×10⁻³μm²时, 流度降低因子分别为3.74,1.92和1.04,采出程度增 值分别为35.1%,16.8%和0.6%,表明流度降低因子 和采出程度增值均随渗透率的增大而降低,两者呈 现相似趋势。说明当渗透率为5×10⁻³~100×10⁻³μm² 时,采用氮气一水同注体系驱油,流度降低因子可 作为表征气水同注体系扩大波及体积能力的重要 指标,同时还说明氮气一水同注体系适用于渗透率 较低的地层,在本次实验条件下,渗透率适用范围 为5×10⁻³~40×10⁻³μm²。

2.2 氮气—活性水同注体系

由于氮气一水同注体系在渗透率大于100× 10⁻³μm²后无法有效提高采收率,考虑到表面活性 剂对气泡的稳定作用以及提高洗油效率的能力,研 究了氮气—活性水同注体系提高采收率的效果。

由图4可以看出:当渗透率由31.00×10⁻³ µm²增 至4560.60×10⁻³ µm²时,驱替压差曲线呈现相似的 变化规律,在一次水驱驱替压差稳定后转入氮气一 活性水同注,随着注入孔隙体积倍数的增加,驱替 压差快速上升,渗流阻力明显增大;在后续水驱过 程中,驱替压差也没有迅速降低,说明氮气一活性 水形成的两相体系在多孔介质中具备一定的稳定 性。尽管岩心宏观为均质,但微观孔隙并非完全均 匀,孔喉半径有所差别,氮气与活性水形成的泡沫 在运移过程中遇小孔道发生堵塞滞留,阻力增大, 压差提高,当压差升至可克服贾敏效应时,泡沫通 过,阻力减小,继而压差降低,泡沫滞留堵塞到通过 孔道的过程,宏观上表现为驱替压差的波动。

与氮气一水同注体系相同,氮气一活性水同注体系也可显著增大渗流阻力,提高波及系数,较之 于前者,氮气一活性水同注体系在注入岩心后受到 多孔介质的剪切作用,可生成更稳定的泡沫,产生 更有效的贾敏效应,从而有效减弱指进,防止窜流, 提高波及系数。此外,溶液中表面活性剂能降低油 水界面张力,提高洗油效率。

当渗透率分别为 31.00×10⁻³, 127.20×10⁻³, 480.10×10⁻³,959.40×10⁻³和4 560.60×10⁻³μm²时,一 次水驱采出程度依次为 36.0%,38.3%,44.4%, 46.7%和48.3%,呈现递增规律;5块岩心注入氮气一 活性水同注体系后续水驱后的采出程度增值分别 为22.6%,21.3%,19.4%,16.9%和8.3%,呈现递减规 律(图5),而且当渗透率大于 500×10⁻³μm²后,采出 程度增值迅速下降。说明渗透率越高,岩心平均孔 喉半径越大,氮气一活性水同注体系形成的气泡对 半径越大的孔喉的气阻效应越不理想,控制流度的 能力越差,所以岩心渗透率越高,氮气一活性水驱 替压差越低,后续水驱时压力下降越快,采出程度 增值就越小。特别是当渗透率大于 500×10⁻³μm²

Fig.5 Relationship of permeability and recovery degree increment of the nitrogen–water system

后,提高采收率效果明显变差。

2.3 渗透率适应界限

通过对比分析氮气一水同注体系和氮气一活 性水同注体系在渗透率相近的岩心中的实验结果, 以确定2种体系的渗透率适应界限。

对比岩心 S02 与 F01 的实验结果可知:注入氮 气一水与氮气一活性水体系后,驱替压差均可升至 约1000 kPa,由于表面活性剂的存在,氮气一活性 水体系在推进过程中比氮气一水体系更稳定,表现 为压力维持情况更好;氮气一活性水同注体系采出 程度增值比氮气一水同注体系高出5.8%。这说明 当渗透率为30×10⁻³~40×10⁻³ µm²时,两者皆适用,且 氮气一活性水同注体系增油效果更好。

分析岩心 S03 的实验结果得知:当渗透率为 100×10⁻³ μm²左右时,氮气一水同注体系驱替压差 比水驱无明显升高,这是因为当储层渗透率大于 100×10⁻³ μm²时,其孔喉半径远大于氮气一水同注 体系形成的气泡半径,气体很快从优势通道窜逸, 无法形成有效的气阻效应,注入的流体无法波及到 狭小孔喉中的剩余油。较之于水驱,采出程度也仅 提高了 0.6%,氮气一水同注体系在渗透率大于 100× 10⁻³ μm²时不适用。而在岩心 F02 实验中,氮气一活 性水同注驱替压差显著增大,且采出程度比水驱提 高了 21.3%,说明当岩心渗透率大于 100×10⁻³ μm² 后,氮气—活性水同注体系可以提供足够大的渗流 阻力,降低流度,波及到水驱未波及到的剩余油,其 驱油效果明显优于氮气—水同注体系。

综上所述,氮气一水和氮气一活性水2种同注体系的采出程度增值均随渗透率的增大而下降;但 2种体系的最终采收率变化趋势不同,氮气一水同 注体系最终采收率随渗透率的增大而降低,氮气一 活性水同注体系最终采收率先随渗透率的增大 而增大,当渗透率大于约1000×10⁻³μm²时下降。氮 气一水同注体系在渗透率小于40×10⁻³ μm²的岩心 中驱油效果良好,当渗透率大于40×10⁻³ μm²时,氮 气一活性水同注体系驱油效果明显优于氮气一水 同注体系;氮气一活性水同注体系采出程度在渗透 率为480×10⁻³ μm²时最高,此后最终采收率和采出 程度增值均有所下降,特别是当渗透率大于1000× 10⁻³ μm²时,氮气一活性水同注体系提高采收率效 果明显下降。因此,氮气一水同注体系适用于渗透 率小于40×10⁻³ μm²的地层,氮气一活性水同注体系 适用于渗透率为30×10⁻³~500×10⁻³ μm²的地层。

3 结论

作为一种扩大水驱波及体积的提高采收率技 术,气水同注技术在一定的渗透率范围内可以有效 控制流度,启动水驱后剩余油,从而提高采收率。 气水同注体系的采出程度增值随着岩心渗透率的 增大呈下降趋势。本次实验采用的氮气一水同注 体系适用于渗透率为5×10⁻³~40×10⁻³ μm²的地层,在 该渗透率范围内提高采出程度 35.1%~16.8%;氮 气一活性水同注体系适用于渗透率为30×10⁻³~500× 10⁻³ μm²的地层,在该渗透率范围中提高采出程度 22.6%~19.4%。水驱后氮气一水同注体系流度降低 因子随着岩心渗透率的增大而减小,可作为表征气 水同注体系扩大波及体积能力的重要指标。氮气 一活性水同注体系提高采收率机理复杂,其中扩大 波及系数的能力无法单纯用流度降低因子来表征, 如何描述有待于进一步研究。

参考文献:

- [1] Awan A R, Teigland R, Kleppe J.A survey of north sea enhancedoil-recovery projects initiated during the years 1975 to 2005 [J].
 SPE Reservoir Evaluation & Engineering, 2008, 11(3):497–512.
- [2] 李振泉,殷勇,王其伟,等.气水交替注入提高采收率机理研究 进展[J].西南石油大学学报:自然科学版,2007,29(2):22-26.
 Li Zhenquan, Yin Yong, Wang Qiwei, et al.Development of the research on EOR mechanism by WAG[J].Journal of Southwest Petroleum University: Science & Technology Edition, 2007, 29(2): 22-26.
- [3] Christensen J R, Stenby E H, Skauge A.Review of WAG field experience[C].SPE 39883, 1998.
- [4] 李菊花,姜涛,高文君,等.气水交替驱油藏注入能力分析及优 化[J].西南石油大学学报:自然科学版,2008,30(6):121-125.
 Li Juhua, Jiang Tao, Gao Wenjun, et al.Analysis and optimization of injectivity by gas alternating water flooding in reservoir [J].
 Journal of Southwest Petroleum University: Science & Technology Edition,2008,30(6):121-125.

- [5] Johne Alex Larsen, Arne Skauge.Simulation of the immiscible WAG process using cycle-dependent three-phase relative permeabilities[C].SPE 56475, 1999.
- [6] 郑黎明,王成俊,吴飞鹏,等鄂尔多斯盆地浅层特低渗透油藏 氮气驱实验研究[J].油气地质与采收率,2014,21(4):62-66. Zheng Liming, Wang Chengjun, Wu Feipeng, et al.Experimental research of nitrogen displacement in shallow extra-low permeability oil reservoir [J].Petroleum Geology and Recovery Efficiency, 2014,21(4):62-66.
- [7] Jamshidnezhad M.Oil recovery by miscible SWAG injection [C]. SPE 115710,2008.
- [8] Sohrabi M, Danesh A, Tehrani D H.Oil recovery by near-miscible SWAG injection[C].SPE 94073,2005.
- [9] 张涛.低渗透油层提高采收率实验及理论研究[D].大庆:大庆 石油学院,2009. Zhang Tao.The experimental and theoretical research on enhancing oil recovery of low permeability reservoirs[D].Daqing: Daqing Petroleum Institute,2009.
- [10] Eileen A Quale, Benedicte Crapez, Jan A Stensen, et al.SWAG injection on the Siri Field- an optimized injection system for less cost[C].SPE 65165,2000.
- [11] 李爱芬,李会会,吕姣,等.不同温度下泡沫对气液相相对渗透率的影响[J].油气地质与采收率,2013,20(6):80-82.
 Li Aifen,Li Huihui,Lü Jiao, et al.Experimental study of foam on gas-liquid relative permeability at different temperature[J].Petro-leum Geology and Recovery Efficiency,2013,20(6):80-82.
- [12] 王杰祥,李娜,孙红国,等.非均质油层空气泡沫驱提高采收率 试验研究[J].石油钻探技术,2008,36(2):4-6.
 Wang Jiexiang,Li Na,Sun Hongguo, et al.Experiment study of improved oil recovery through air foam flooding in heterogeneous reservoir[J].Petroleum Drilling Techniques,2008,36(2):4-6.
- [13] 赵金省,张明,李天太,等.基于均匀设计的泡沫渗流阻力因子影响因素研究[J].钻采工艺,2009,32(4):74-76.
 Zhao Jinsheng,Zhang Ming,Li Tiantai, et al.Study on the influential factor of foam filtrational resistance factor based on uniform design method [J].Drilling & Production Technology, 2009, 32 (4):74-76.
- [14] 付美龙,黄俊.低渗透油藏水驱转空气泡沫驱提高采收率物理 模拟实验[J].油气地质与采收率,2014,21(5):104-106.
 Fu Meilong, Huang Jun.Physical modeling study of air foam flooding EOR technology for low permeability reservoirs based on water flooding [J].Petroleum Geology and Recovery Efficiency, 2014,21(5):104-106.
- [15] 谢桂学,刘江涛,李军,等.低气液比泡沫驱的室内物理模拟研究[J].石油地质与工程,2011,25(5):115-117,120.
 Xie Guixue,Liu Jiangtao,Li Jun, et al.Lab physical simulation research on low gas liquid foam flooding[J].Petroleum Geology and Engineering,2011,25(5):115-117,120.
- [16] Sohrabi M, Mobeen Fatemi S.Experimental and numerical investigation of the impact of design parameters on the performance of WAG and SWAG injection in water-wet and mixed-wet systems [C].SPE 165286,2013.