文章编号:1009-9603(2019)01-0037-09

DOI: 10.13673/j.cnki.cn37-1359/te.2019.01.004

中美典型含油气页岩地质特征及开发现状

张奥博^{1,2,3},汤达祯^{1,2,3},陶 树^{1,2,3},许 浩^{1,2,3},王海华⁴,庄永涛⁵
(1.中国地质大学(北京)能源学院,北京100083;2.煤层气开发利用国家工程研究中心煤储层实验室,北京100083;
3.非常规天然气地质评价与开发工程北京市重点实验室,北京100083;4.中国地质图书馆, 北京100083;5.中国石油大港油田公司采油工艺研究院,天津300280)

摘要:为进一步了解页岩油气资源,洞悉国外成功开发经验,通过对比北美地区俄亥俄(Ohio)、马塞勒斯(Marcellus)、巴耐特(Barnett)、沃夫坎组(Wolfcamp)页岩与中国龙马溪组、沙河街组页岩的地质背景,明确了中外典型含油 气页岩有机地球化学和储层发育特征的异同以及中美页岩油气资源开发动态,并给出了借鉴意义。结果表明:北 美开发效果好的含油气页岩大多具有构造简单、厚层页岩发育、厚度变化小、总有机碳含量及有机质成熟度适中、 多为Ⅱ型干酪根、脆性矿物含量高、储层压力高等特点。北美页岩油气开发商采用大液量、大砂量、小压裂簇间距 和阶段间距来改进压裂工艺,采用井工厂模式来降低土地占用面积,并且在其上进行"拉链式"压裂缩短整体的工 程时间,在油田的生产资料数据库中运用大数据分析不同生产参数对产量的影响权重,从而更好地配置生产参数、 提高产量。美国页岩油气开发为中国提供的可借鉴的开发经验包括合并油气输送管网、引入民间资本和加大创新 奖励。

关键词:页岩油气;地质特征;沃夫坎组页岩;巴耐特页岩;马塞勒斯页岩;俄亥俄页岩;龙马溪组;沙河街组 中图分类号:TE121 文献标识码:A

Analysis of geological background and development situation of typical oil/gas-bearing shales in China and America

ZHANG Aobo^{1,2,3}, TANG Dazhen^{1,2,3}, TAO Shu^{1,2,3}, XU Hao^{1,2,3}, WANG Haihua⁴, ZHUANG Yongtao⁵

(1.School of Energy Resources, China University of Geosciences (Beijing), Beijing City, 100083, China; 2.Coal Reservoir Laboratory of National Engineering Research Center of CBM Development & Utilization, Beijing City, 100083, China;
3.Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering, Beijing City, 100083, China; 4.China Geological Library, Beijing City, 100083, China; 5.Oil Production Technology Institute, Dagang Oilfield Company, PetroChina, Tianjin City, 300280, China)

Abstract: In order to gain a further understanding of shale gas/oil resource, and to learn from successful overseas development experience, the geological characteristics of shale in Ohio, Marcellus, Barnett, Wolfcamp in North America and the shale in Longmaxi and Shahejie in China were compared in detail. The similarities and differences of typical shales in organic geochemistry and reservoir characteristics in both China and America were deeply clarified, at the same time, the development trends of oil and gas resources in China and the United States were also presented, and the referential values were given. The results show that the oil/gas-bearing shales developed successfully are characterized by simple structure, thick layer, small thickness change, moderate *TOC* content and organic maturity, rich type II kerogen, rich brittle mineral content and overpressure. North American shale oil developers use large amount of fracturing fluid, large amount of sand, short fracture cluster distance and stage distance to improve the fracturing technique, and use multi-well pad mode to reduce the land occupancy area, and apply the "chain" fracturing to reduce the overall engineering time. By using the big data to analyses the influence weight of different production parameters on oil or gas output, the production increases with the

收稿日期:2018-09-11。

作者简介:张奥博(1994—),男,湖南岳阳人,在读硕士研究生,从事非常规油气开发理论与技术方面的研究。联系电话:18810029561,E-mail:zhangaobo1994@outlook.com。

基金项目:中国地质调查项目"美国Permian和Fort Worth页岩油气盆地文献情报收集与分析"(cgl2017015A1)。

well configured parameters. The development experiences of shale oil or gas that China can learn from U.S. include combining transport pipelines, introducing private capital, and rewarding innovation.

Key words: shale oil/gas; geological background; Wolfcamp shale; Barnett shale; Marcellus shale; Ohio shale; Longmaxi Formation; Shahejie Formation

1981年,被誉为"页岩气之父"的乔治·米歇尔 对巴耐特页岩C.W.Slay 1号井实施大规模压裂并获 成功^[1],在北美掀起了"页岩气革命"。据EIA(美国 能源信息署)统计^[2],目前美国页岩气产量已经从 2000年天然气总产量的2%增长到2017年的 50.8%,同期美国天然气总产量增长了37.2%。2015 年底,EIA统计表明美国已发现的页岩气探明储量 为8.7×10¹²m³。

受"页岩气革命"以及短期油价上涨的影响, 2008年始页岩油逐渐成为主要勘探开发对象。据 EIA 2015年统计^[3],俄罗斯页岩油技术可采资源量 为119.3×10⁸ m³,美国为76.3×10⁸ m³,中国(除鄂尔多 斯盆地)为50.9×10⁸ m³。美国油气勘探开发理论和 工程技术方面都相对成熟,在页岩层系"甜点区"筛 选和压裂工程技术方面具有优势。目前美国页岩 油勘探主要聚焦在巴肯(Bakken)、沃夫坎(Wolfcamp)、斯普拉贝里(Spraberry)、鹰潭(Eagle Ford)、 奈厄布拉勒(Niobrara)和犹他(Utica)页岩区块^[4-5]。

笔者选取最早开发页岩气的俄亥俄(Ohio)页 岩、最早规模运用压裂改造的巴耐特(Barnett)页岩、 产能及储量最大的马塞勒斯(Marcellus)页岩、最新 发现的储量巨大的沃夫坎组(Wolfcamp)页岩以及 四川盆地龙马溪组页岩、渤海湾盆地东南部济阳坳 陷沙河街组页岩进行对比分析,明确中美典型含油 气页岩地质条件、生烃模式以及开发工艺上的差异 与共同点。

1 地质特征

1.1 构造背景

美国页岩油气盆地主要沿阿巴拉契亚、马拉松-沃希托和科迪勒拉逆冲推覆带分布(图1)^[6]。 阿巴拉契亚(Appalachia)盆地是一个经历过Taconic, Acadian和Alleghanian造山运动的大型非对称前 陆盆地,最早开发俄亥俄页岩,目前主要产油气页 岩为马塞勒斯页岩。沃斯堡(Fort Worth)盆地是晚 古生代沃希托造山运动形成的不对称的楔形前陆 盆地,位于美国德克萨斯州中北部,主要产油气页 岩为巴耐特页岩。二叠(Permian)盆地位于北美地 台南缘,属稳定沉降的晚古生代克拉通盆地,位于 德克萨斯州西部及新墨西哥州东南部,目前主要产 油气页岩为沃夫坎组页岩^[7]。

「国工 安国工 安政石油 「益地及区域力市(英文内区域石, 協致再见寺 「修政) Fig.1 Distributions of main shale oil and gas basins and plays in the United States (block name in English, modified by NIE Haikuan et al^[6])

中国四川盆地属于沉积型叠合盆地,自震旦纪 开始经历了多期构造运动,其中下志留统龙马溪组 页岩为主要产油气页岩^[7]。济阳坳陷属于中一新生 代断陷-拗陷复合盆地,主要页岩产层为沙河街 组^[8-9]。美国页岩油气盆地与中国相比所经历的构 造活动频次较少、规模较小,而这种构造活动的相 对稳定使得美国含油气页岩能够更加连续、稳定的 沉积埋藏并且降低开发难度。

1.2 沉积特征

俄亥俄、马塞勒斯、巴耐特、沃夫坎组以及龙马 溪组页岩多属于深水陆棚相。俄亥俄页岩沉积于 邻近造山带的前陆盆地,其保存条件受盆地边界控 制。马塞勒斯页岩的沉积环境存在一些争议,多数 学者认为其沉积于深目分层的盆地,盆地最深处的 缺氧、弱水循环条件使页岩保存了较高的总有机碳 含量(TOC)^[10-12];而部分学者认为其沉积在水流活 动性强、非永久性缺氧的类大陆架环境中[13-15]。巴 耐特页岩沉积于深水前陆盆地,属于静水斜坡-盆 地相。沃夫坎组页岩沉积于稳定沉降的克拉通盆 地,其中暗灰色、黑色泥页岩在深水环境下沉积。 龙马溪组页岩发育于半闭塞滞留海盆,川中古隆起 遭受剥蚀,发育川北、川东-鄂西和川南3个深水沉 积区。龙马溪组页岩可以分为浅水和深水陆棚 相^[16],埋藏过程中由于志留纪中晚期上扬子地区大 部分上升成陆,所以普遍缺失中、晚志留世的沉 积[17]。济阳坳陷在始新世早期进入断陷鼎盛期,稳 定发育咸水-半咸水湖相沉积的沙四段上亚段、沙 一段以及淡水-微咸水湖相的沙三段下亚段与中亚 段页岩[18]。

综上可知,目前开发较好的含油气页岩多属于 海相并且主要沉积于缺氧、弱水循环条件的深水环 境,因为这种环境的有机质保存条件较好。类大陆 架环境由于水流活动性强且氧气充分,因此保存有 机质的能力较差。湖相页岩的沉积环境随着季节 以及水的补给量的变化而变化,不利于有机质的积 累与保存。

1.3 岩相类型

美国4个海相页岩区块及中国四川盆地均以硅 质页岩和钙质页岩为主,湖相的沙河街组页岩灰质 含量较多。CORTEZ根据岩心描述结果确定沃夫坎 组页岩具有4种不同类型的岩相,即硅质泥岩、钙质 泥岩、泥质碳酸盐岩-砾岩和颗粒灰岩^[19]。巴耐特 页岩可以细分为硅质泥岩、钙质硅质混合泥岩、磷 质沉积物、白云质泥岩、富方解石层状沉积物(底流 沉积物)、再沉积针状泥岩6种岩相^[20-22]。DANIEL 等对西弗吉尼亚州、马里兰州及宾夕法尼亚州的马 塞勒斯页岩露头进行分析,提出马塞勒斯页岩主要 包括钙质粗泥岩、钙质碳质泥岩、硅质碳质泥岩、黏 土质粗泥岩、骨架粒泥灰岩-泥粒灰岩5种岩相^[23]。

四川盆地龙马溪组主要发育硅质页岩、钙质硅 质混合页岩^[17],其中下部可细分为深灰色-黑色硅 质页岩、碳质页岩、钙质页岩、笔石页岩夹生物碎屑 灰岩,上部为灰绿、黄绿色页岩、砂质页岩夹粉砂岩 及泥灰岩^[24]。济阳坳陷沙三段下亚段可分为深灰 色灰质泥岩、深灰色灰质油泥岩、灰色泥灰岩、深灰 色泥页岩和灰色泥质白云岩^[18]。

开发效果较好的中美含油气页岩的钙质或硅 质含量较高,这主要是因为目前的页岩油气开发与 渗透率这一参数息息相关,而当前技术手段下页岩 储层渗透率的提升主要依靠射孔压裂技术产生的 裂缝。在射孔压裂过程中脆性相对较高的钙质或 硅质页岩比其他页岩容易成缝,并且裂缝形成后在 支撑剂的帮助下更容易保持裂缝张开。

2 有机地球化学特征

2.1 总有机碳含量

就TOC来看,4个美国页岩层系具有一定差异, 其中以巴耐特页岩最高(表1)。俄亥俄页岩TOC值 为0~4.7%,区块自东向西黑色页岩所占比例、TOC 值以及气井产量均增加。马塞勒斯页岩 TOC 值一 般为1%~10%,在中部地区最高(达9%),由纽约州 向东减少到1%~2%,向西减少到2%~3%[25],并且从 北向南减小,纽约州为4.3%,宾夕法尼亚州为6.1%, 西弗吉尼亚州小于2%^[26]。巴耐特页岩在沉积初期 TOC 值可能高达 20%,目前实测 TOC 值为 3%~ 13%^[21],页岩沉积时水体越深对应的沉积初期TOC 值越高,古今较大的TOC差值表明在中低成熟度时 该页岩层具有很好的生烃潜力。沃夫坎组页岩的 TOC 值为1%~7%,高值区集中在中段和下段。四川 盆地龙马溪组页岩呈NE向展布,其TOC值为1.5%~ 6.0%,平均为3.8%^[16],万县到城口县一带 TOC 值可 达5.0%^[27-30]。沙河街组页岩为陆相沉积,TOC值一 般为 0.41%~9.32%^[18],由 深 至 浅 TOC 值 逐 渐 增 高[24]。

TOC值与有机质生烃量联系紧密,但现在所测量的TOC值均属于页岩在经历有机质演化阶段之后残余的TOC值,而能更加准确指示有机质生烃能力的则是沉积埋藏过程中原始TOC值与现今测量残余TOC值的差值,且差值越大,表明在地质历史

Table1 Geological parameters of typical oil and gas-bearing shale											
页岩 层系	盆地 面积/ 10 ⁴ km ²	层位	埋深/m	厚度/m	地层压 力梯度/ (psi•ft ⁻¹)	TOC/ %	干酪根 类型	R ₀ / %	孔隙 度/%	渗透 率/mD	技术可 采储量
沃夫 坎组	2.9	二叠 系	3 300~3 750(西) 2 250~3 300(东)	米德兰次盆地为300~ 600 m,特拉华次盆 地最大可达2800 m	0.55~ 0.70	1~7	I 型和 Ⅱ型	0.6~ 1.3	4~10	0.04	2×10 ¹⁰ bbl(原油) 4 530.72×10 ⁸ m ³ (天然气)
巴耐 特	6.8	密西西 比系	1 980~2 590	30~180	0.52	3~13	Ⅱ 1型	0.4~ 2.0	5~6	<0.1	9 231.3×10 ⁸ m ³ (天然气)
马塞 勒斯	15.1	中泥 盆统	1 600~2 740	15~201	0.46~ 0.51	1~10	主要为 Ⅱ型,混 有Ⅲ型	0.5~ 3.5	6~10	0.004~ 0.770	28 000×10 ⁸ ~ 42 500×10 ⁸ m ³ (天然气)
俄亥 俄	15.1	泥盆 系	600~1 500	90~300	0.15~ 0.40	0~4.7	I 型和 Ⅱ型	0.4~ 1.3	0.4~11,平 平均为4.3	0.025~ 0.760	4 106×10 ⁸ ~7 787× 10 ⁸ m ³ (天然气)
龙马 溪组	3.8	下志 留统	2 000~4 000	平均为300 m,川 东达500~1 250 m		1.5~6.0, 平均为3.8	I 型和 Ⅱ型	2.0~ 4.5	1.5~8.2	0.001~ 0.326	35 000×10 ⁸ m ³ (天然气)
沙河 街组	2.9	古近 系	2 800~5 100	累积厚度为1000m,沙四 段上亚段为100~400m,沙 三段下亚段为100~300m		0.41~9.32	I 型	0.70~ 0.93	2~7	<10	

表1 典型含油气页岩地质参数

时期生烃量越多。

2.2 干酪根类型及热成熟度

海相页岩以Ⅱ型干酪根为主(表1),差别在于 马塞勒斯区块东部马塞勒斯页岩混有一定量的Ⅲ 型干酪根,而沃夫坎组、俄亥俄以及龙马溪组页岩 包含一定量的 I 型干酪根^[31-34]。俄亥俄区块俄亥俄 页岩的R。值为0.4%~1.3%,自西北往东南方向干酪 根成熟度逐渐上升,而这也是泥盆系页岩层埋深增 大的方向。马塞勒斯页岩的R。值为0.5%~3.5%,从 俄亥俄州东部的0.5%~1%向宾夕法尼亚州东部逐 渐增加到3.0%~3.5%。GTI(天然气技术研究所)公 布巴耐特页岩气藏的R。值为1.0%~1.3%,实际上R。 值在产气区的西部为1.3%,东部为2.1%,平均为 1.7%。SPEE(石油评价师协会)在2015年报告中表 明沃夫坎组页岩R。值为0.6%~1.3%,特拉华(Delaware)次盆地沃夫坎组页岩的有机质成熟度高于米 德兰(Midland)次盆地。龙马溪组页岩干酪根的R。 值为2.0%~4.5%,一般大于2.5%^[34],由四川盆地西 北部向东南部逐渐增高[14]。

沙河街组页岩以Ⅰ型干酪根为主,有机质成熟 度较低,*R*。值一般为0.45%~0.94%,绝大部分页岩的 *R*。值大于0.76%^[18]。其中沙三段下亚段含有部分Ⅱ₁ 型干酪根,*R*。值为0.70%~0.93%^[24]。

干酪根的类型与成熟度关系到其在演化过程 中生成烃的类型,而这两者的配伍关系也进一步影 响有机质的生烃量。若干酪根类型为Ⅲ型,并且有 机质演化正好处于生气窗阶段,那么该页岩的生气 量就十分可观并可能成为优质的天然气藏,反之亦 然。

3 页岩储层特征

3.1 储层埋深及厚度

马塞勒斯页岩埋深大部分都超过1600m,自东 向西埋深逐渐变浅,在宾夕法尼亚州西南部达到 2740m,沿纽约州南部埋深为914~1523m^[33]。马 塞勒斯页岩总厚度为15~201m,主要集中在15~79 m,纯页岩厚度为15~61m^[12]。与马塞勒斯页岩相比 俄亥俄页岩总厚度更大,为90~300m,但纯页岩厚 度为9~30m,俄亥俄页岩埋深为600~1500m,整体 位于马塞勒斯页岩之上。沃夫坎组页岩埋深为 2250~3300m,在米德兰次盆地即度为300~600m, 在韦瓦德(Val Verde)次盆地和特拉华次盆地南部 厚度最大可达2800m(表1)。巴耐特页岩埋深为 1908~2590m,厚度集中在30~180m,其中在东南 部最厚为200~300m,西南部最薄约为9m。

四川盆地龙马溪组页岩埋深为2000~4000 m, 平均厚度为300 m,主要分布在川东及川南等地区, 其中在川东厚度达500~1250 m,是川东石炭系天然 气的主要来源。济阳坳陷沙四段上亚段、沙三段下 亚段以及沙一段的累积厚度可达1000 m^[35],沙河街 组纯页岩厚度为14~90 m,主力页岩埋深为2800~ 5100 m^[18]。沙四段上亚段厚度为100~400 m,由各 洼陷中心向边缘逐渐减薄,沙三段下亚段分布广 泛,从罗家地区的100~300 m向西部和北部厚度增 大,最大可达800 m^[20]。

总体上看,除俄亥俄页岩外其他页岩埋藏均较 深,其中沙河街组页岩最深、最厚,其次是龙马溪组 与沃夫坎组页岩,这与其丰富的物源有关(表1)。 相较于储层厚度,油气藏开发的难度与页岩埋深的 关系更加密切,过深的油气储层会使得钻井、完井 和后期的储层改造等工程变得复杂并增加开发的 成本,而这也是当前美国二叠盆地中的页岩油开发 主要集中在主力页岩层埋深较浅、页岩厚度较薄的 米德兰次盆地而不是埋深更深、页岩厚度较厚的特 拉华次盆地的原因。

3.2 物性特征

沃夫坎组页岩孔隙度一般为4%~10%,平均为 7%^[36],孔隙类型主要为有机质孔与粒间孔,渗透率 平均为0.04 mD。巴耐特页岩孔隙度为5%~6%,渗 透率低于0.1 mD,喉道半径平均小于0.005 μm,页 岩中天然裂缝发育。马塞勒斯页岩平均孔隙度为 6%~10%^[25,37],渗透率为0.004~0.770 mD,平均为 0.36 mD^[25,37],渗透率为0.004~0.770 mD,平均为 0.36 mD^[25,37],渗透率为0.004~0.770 mD,平均为 0.4%~11%^[25,37],平均为4.3%,渗透率为0.025~0.760 mD。龙马溪组页岩的孔隙度集中在1.5%~8.2%,渝 东南地区龙马溪组页岩游透率小于0.02 mD^[40]。沙河 街组页岩孔隙度主要为2%~7%,渗透率一般小于 10 mD^[41]。

从数据上来看,沙河街组页岩渗透率最高但孔 隙度稍低,马塞勒斯以及俄亥俄页岩孔渗性较好, 沃夫坎组、巴耐特以及龙马溪组页岩孔渗性略差 (表1)。通常认为优秀的页岩需要同时具备较高的 孔隙度和渗透率,根据美国沃夫坎组页岩开发经验 来说,钙质或硅质这种脆性页岩的较低原始渗透率 可通过后期压裂来进行改造,并获得较好的效果。

3.3 地层压力

美国常使用压力梯度来表征页岩储层压力状态,而中国通常采用压力系数来表征。沃夫坎组页岩的地层压力梯度为0.55~0.70 psi/ft,属于超压储层,而沃夫坎组页岩在特拉华次盆地中的压力梯度比米德兰次盆地更高,巴耐特页岩地层压力梯度平均为0.52 psi/ft,俄亥俄页岩地层压力梯度为0.15~0.40 psi/ft。马塞勒斯页岩的核心区地层压力梯度为0.46~0.51 psi/ft^[37,42-43],超压区位于宾夕法尼亚州东北部和西南部以及西弗吉尼亚州东北部,西弗吉尼亚州西南部欠压。龙马溪组页岩地层压力系数为1.55^[44],沙河街组页岩地层压力系数为1.21~1.82^[18]。

地层压力梯度大于0.43 psi/ft或压力系数大于1 的属于超压储层。中美主力含油气页岩都属于超 压状态,通常来讲超压储层有利于页岩油气的开采 (表1),这也使得储层压力不高的俄亥俄、巴耐特页 岩逐渐失去油气开发商的重视(图2),而超压的沃 夫坎组页岩则获得更多的投入(图3)。

3.4 页岩矿物组成

俄亥俄页岩的黏土矿物含量为30%~60%,石英 含量为15%~25%^[7],西弗吉尼亚地区的俄亥俄页岩 石英含量和黏土矿物含量比肯塔基地区高^[45]。马 塞勒斯页岩易碎裂,颜色从灰色、棕黑色到黑色,属 于含碳质含碳酸盐结核的高放射性页岩,其石英含 量为27%~31%,伊利石含量为9%~34%,方解石含 量为3%~48%,绿泥石含量为0~4%,钠长石含量为 0~4%,黄铁矿含量为5%~13%,混层黏土矿物含量 为1%~7%,白云石含量为10%~30%,石膏含量为0~ 6%,基底附近黄铁矿非常丰富,灰岩中可见化石存

Fig.2 Oil and gas production trends in major basins of the United States from 2007 to 2018(EIA, 2018)

•42·

在。巴耐特页岩碳酸盐含量低于25%,石英、长石 和黄铁矿含量为20%~80%,黏土矿物含量为 20%~80%,其中硅质页岩黏土矿物含量通常小于 50%,石英等含量超过40%。沃夫坎组页岩主要为 黑灰到黑色均质的硅质泥页岩,"甜点"段石英含量 平均为37.7%,方解石含量平均为21.6%,黏土矿物 含量平均为22.8%,95%~99%为伊利石和伊利石/蒙 脱石的混合物及痕量的绿泥石和高岭石所组成的 残余黏土碎屑^[46]。

龙马溪组页岩脆性矿物含量为30%~85%,平均为56.3%;黏土矿物含量为25.6%~51.5%,平均为42.1%,此外还含有少量黄铁矿^[14,38]。陈美玲等通过XRD分析得出沙河街组页岩主要矿物的平均质量分数:石英为18.17%,长石为1.40%,方解石为51.92%,白云石为6.17%,黄铁矿为3.81%,另有少量的菱铁矿,黏土矿物为18.89%,以伊/蒙混层和伊利石为主^[18]。

整体上来看,俄亥俄、巴耐特以及龙马溪组页 岩黏土矿物含量较高,而马塞勒斯、沃夫坎组以及 沙河街组页岩的脆性矿物含量较高,而较高的脆性 矿物含量有利于压裂裂缝的扩展,保证储层改造顺 利进行。

4 开发动态及借鉴意义

4.1 页岩油气资源开发动态

美国的页岩气开发最早在俄亥俄页岩中的Big sandy油田中进行,随后页岩气革命在1998年米切 尔公司改良水力压裂技术成功开发巴耐特页岩后 正式掀起,马塞勒斯页岩作为页岩气开发的后起之 秀靠着自身的大储量以及良好的储层条件在美国 页岩气总产量中占据极高的比例。美国能源企业 在2008年的低气价环境下将开发重心转向了页岩 油。USGS调查了二叠盆地中的米德兰次盆地后发 现其页岩油储量远超美国其他区块,同时由于开发 成本较低,使其在美国页岩油生产中逐渐占据主导 地位。

美国的"页岩气革命"以及正在进行的"页岩油 革命"有以下的趋势:水平井的数量、水平段长度显 著地增长,其中沃夫坎区块的水平井最长已达到 3962 m,而且区块内3017口水平井的平均长度超 过了2166 m;压裂设计向大液量、大砂量以及更小 的压裂簇间距和阶段间距方向发展,其中先锋自然 资源公司现在使用的压裂设计为:支撑剂为1700 lb/ft,压裂液为50 bbl/ft,压裂簇间距为15 ft,阶段间 距为100 ft;钻井地面设施采用了更方便的井工厂模 式,并且在其上进行"拉链式"压裂,降低了整体的 工程时间(图4);在油田的生产资料数据库中运用 数据挖掘的手段分析不同生产参数,RF法和GBM法 目前被认为是预测结果最准确的方法^[47]。

图 4 沃夫坎页岩区块多产层"井工厂"开发 Fig.4 Multi-well pad development of multiple pay zones in the Wolfcamp Play, Permian basin

中国页岩气开发目前处于快速增长阶段,龙马 溪组页岩的主力区块是重庆的涪陵页岩气田以及 四川的长宁-威远页岩气田,短短几年的攻关使中 国的页岩气产量跃居世界第三,虽然与美国在页岩 气领域还有很大差距,但是正在逐渐形成适合中国 的一套页岩气富集成藏模式,并基本实现了勘探开 发技术和装备国产化。美国页岩油主要生产自海 相页岩,但中国的海相页岩成熟度一般都处在生气 窗阶段,所以转而将页岩油开发的目标放在成熟度 相对较低的陆相页岩上,但相关的勘探与开发理论 都处于摸索阶段。最早在2007年胜利油田开始关 注中国页岩油并在两年后正式进行立项研究,研究 内容最初是济阳坳陷的东营凹陷,随后扩大到整个 济阳坳陷,并在2010年初步建立了陆相盆地页岩油 评价方法体系,随后尝试将这一评价体系运用到济 阳坳陷的各个凹陷。除此之外中国石化还在潜江 凹陷、泌阳凹陷、东濮凹陷以及苏北盆地等进行页 岩油的勘探以及试采,初步预计这些区块的资源量 可达108.28×10⁸ t^[48]。

4.2 借鉴意义

美国含油气页岩展布面积大,厚度变化缓,沉 积时经历构造变动少,多发育深水陆棚相,岩石类 型以钙质、硅质泥页岩为主,脆性矿物含量高,TOC 值较高,以II型干酪根为主,热演化程度适中,地层 压力状态多为超压,孔隙度均较高,而渗透率则有 一定区别,部分页岩(如马塞勒斯页岩)天然裂隙非 常发育,渗透率高,部分(如沃夫坎组页岩)渗透率 不高但可改造性较好。中国龙马溪组页岩储层条 件与美国主力页岩类似,但页岩面积相对较小,且 厚度变化大,沙河街组页岩纹层发育,而这也限制 了该区块页岩油产量的增长,并使增产措施效果不 理想。基于这种现状,一方面需要加大页岩油气勘 探力度,优选有利目标区;另一方面需要针对不同 的资源条件和开发地质条件,优化设计压裂方案、 开发井型和井网部署。

除了地质条件上的优势外,美国还具备地理条件上的优势。美国页岩油气区块地表条件多为平原或丘陵,水资源丰富而且油气管网发达,并且输送管网公用,除了部分生产区遭受飓风以及其他自然灾害影响,整体生产环境较好。而龙马溪组页岩开发的热点区块例如涪陵、长宁、威远的地表条件较为复杂,多为高山和丘陵,整体上油气管网的铺设不如美国发达,而且中国石油、中国石化和中国海油等大型油企独立建设各自管网,使得管网出现重复铺设、利用效率低等问题,所以要想降低中国油气成本,必须从国企中剥离管网业务并将其合并。

与中国不同,美国的油气开发主体是中小油 企,大型油企只在资本数量上拥有优势,但在关键 技术、区块数量以及油气产量方面反而不如中小油 企,比如美国最早利用水力压裂技术开采页岩气的 是一家小型油企——米歇尔能源开发公司,沃夫坎 组页岩开发商中产量最大的是一家刚成为中型油 企的先锋自然资源公司,这主要是因为这些中小型 油企拥有极强的创新积极性并且拥有很好的创新 环境。而中国的开发主体则为国有大型油企,矿 权、技术、资金都高度集中,企业整体对于创新的积 极性没有美国企业那么强烈,同时由于石油装备的 发展时间较短、制造水平存在先天劣势、民间资本 难以进入等原因,导致中国页岩油气开发存在后劲 不足的问题,而解决这些问题需要大力的科研成果 奖励政策,并逐步向中小型企业开放投资通道。

5 结论

北美含油气页岩盆地经历的构造活动不如中 国的强烈,这导致北美页岩发育的连续性更好。中 美页岩气区块沉积模式主要为深水陆棚相,且硅质 含量都很高。含页岩油的济阳坳陷陆相沙河街组 页岩相对北美的海相沃夫坎组页岩受构造运动的 影响更大。受物源的影响,沃夫坎组页岩的硅质含 量比沙河街组页岩的高。巴耐特及马塞勒斯页岩 的总有机碳含量最高,其次是沙河街组页岩,再次 是沃夫坎组与龙马溪组页岩,俄亥俄页岩的最低。 中美海相页岩干酪根类型都以 II 型为主,而湖相的 沙河街组页岩则主要是 I 型干酪根。美国海相页 岩的热成熟度除马塞勒斯页岩的核心区外都相对 较低,而以龙马溪组为代表的中国南方海相页岩的 热成熟度一般较高,所以中国的页岩油只能转向成 熟度相对低的陆相页岩中寻求突破。

美国含油气页岩的埋深整体较中国浅,厚度差 距不大,但美国海相含油气页岩的变化幅度相对较 缓。由于成熟度过高,龙马溪组页岩相对其他海相 页岩的孔隙度要低,而沙河街组页岩则由于成熟度 较低导致渗透率较高。此外,现今进行开发的含油 气页岩主要属于超压储层,地层压力较低的俄亥俄 页岩则逐渐从行业中淡出。除了俄亥俄页岩外其 他页岩脆性矿物含量都较高,利于压裂成缝。

中国可以从美国页岩油气资源的开发中学到 以下经验:将大小油企的管网合并进行管理,增加 油气运输效率;逐步放开油气开发领域,引入民间 资本分担风险;加大对研发方面的投入以及对于创 新成果方面的奖励,激发创新积极性。

参考文献

- [1] 邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.
 ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development, 2010,37(6):641-653.
- [2] EIA. Natural gas gross withdrawals and production [EB / OL]. https://www.eia.gov/dnav/ng/NG_PROD_SUM_A_EPG0_FPD_M MCF_M.html, 2018-8-31/2018-9-10.

- [3] EIA. World shale resource assessments [EB/OL].https://www.eia. gov/analysis/studies/worldshalegas, 2015-9-4/2018-9-5.
- [4] 准景伟,朱如凯,杨智,等.国外页岩层系石油勘探开发进展及 启示[J].非常规油气,2015,2(4):68-82.
 CUI Jingwei, ZHU Rukai, YANG Zhi, et al. Progresses and enlightenment of overseas shale oil exploration and development[J].
 Unconventional Oil & Gas,2015,2(4):68-82.
- [5] MIALL A D.Chapter8 The Southern Midcontinent, Permian Basin, and Ouachitas [J].Sedimentary Basins of the World, 2008, 5(8): 297-327.
- [6] 聂海宽,张金川.页岩气藏分布地质规律与特征[J].中南大学 学报:自然科学版,2010,41(2):700-708.
 NIE Haikuan, ZHANG Jinchuan. Shale gas reservoir distribution geological law, characteristics and suggestions[J].Journal of Central South University: Science and Technology, 2010,41(2):700-708.
- [7] 翟光明,宋建国,靳久强,等.板块构造演化与含油气盆地形成和评价[M].北京:石油工业出版社,2002:123.
 ZHAI Guangming,SONG Jianguo, JIN Jiuqiang, et al.Plate tectonic evaluation and evolution and formation on petroliferous basins
 [M].Beijing:Petroleum Industry Press,2002:123.
- [8] 王永诗, 巩建强, 房建军, 等. 渤南洼陷页岩油气富集高产条件及勘探方向[J]. 油气地质与采收率, 2012, 19(6):6-10.
 WANG Yongshi, GONG Jianqiang, FANG Jianjun, et al. Enrichment condition analysis and exploration direction of shale oil-gas in Bonan subsag[J].Petroleum Geology and Recovery Efficiency, 2012, 19(6):6-10.
- [9] 滕建彬.东营凹陷利页1井泥页岩中白云石成因及层序界面意 义[J].油气地质与采收率,2018,25(2):1-7,36. TENG Jianbin.Genesis of dolomite in shale drilled by Well Liye1 in Dongying Sag and its significance on sequence boundary indication[J].Petroleum Geology and Recovery Efficiency, 2018, 25 (2):1-7,36.
- [10] JOHNSON L J, CHU C H, HUSSEY G A, et al. Quantitative clay mineral analysis using simultaneous linear equations [J]. Clays and Clay Minerals, 1985, 33(2):107–117.
- [11] PASHIN J C, ETTENSOHN F R.Palaeoecology and sedimentology of the dysaerobic Bedford fauna (late Devonian), Ohio and Kentucky (USA) [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 91(1/2):21-34.
- [12] LASH G G, ENGELDER T.Thickness trends and sequence stratigraphy of the Middle Devonian Marcellus Formation, Appalachian basin: implications for Acadian foreland basin evolution [J]. AAPG Bulletin, 2011,95(1):61–103.
- [13] EMMANUEL O O, SONNENBERG S A.Geologic characterization and the depositional environment of the Middle Devonian Marcellus Shale, Appalachian Basin, NE USA [C]. Denver: Unconventional Resources Technology Conference, 2013:654–663.
- [14] SMITH L B, LEONE J. Integrated characterization of Utica and Marcellus black shale gas plays, New York State [C]. New Orleans: AAPG Annual Convention and Exhibition, USA, 2010.
- [15] APLIN A C, MACQUAKER J H. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum

systems[J].AAPG Bulletin, 2011, 95(12): 2 031–2 059.

- [16] 邹才能.非常规油气地质学[M].北京:地质出版社,2014.
 ZOU Caineng. Unconventional petroleum and natural gas geology
 [M].Beijing: Geological Publishing House, 2014.
- [17] 王淑芳,董大忠,王玉满,等.中美海相页岩气地质特征对比研究[J].天然气地球科学,2015,26(9):1666-1678.
 WANG Shufang,DONG Dazhong,WANG Yuman, et al. A comparative study of the geological feature of marine shale gas between China and the United States[J].Natural Gas Geoscience,2015,26 (9):1666-1678.
- [18] 陈美玲,潘仁芳,张超谟,等.济阳拗陷沙河街组页岩与美国 Bakken组页岩储层"甜点"特征对比[J].成都理工大学学报: 自科版,2016,43(4):438-446.
 CHEN Meiling, PAN Renfang, ZHANG Chaomo, et al. Compari-

son of "sweet spots" characteristics of shale oil reservoir rocks between Shahejie Formation in China and Bakken Formation in North America[J].Journal of Chengdu University of Technology: Science & Technology Edition, 2016, 43(4): 438–446.

- [19] CORTEZ M.Chemostratigraphy, paleoceanography, and sequence stratigraphy of the Pennsylvanian-Permian Section in the Midland Basin of West Texas With Focus On The Wolfcamp Formation [D].Arlington: The University of Texas, 2012.
- [20] BUNTING P J, BREYER J A.Lithology of the Barnett Shale (Mississippian), southern Fort Worth Basin, Texas [M]//BREYER J A. Shale reservoirs-giant resources for the 21st century: AAPG Memoir97.Tulsa: American Association of Petroleum Geologists, 2012.
- [21] ABOUELRESH M O, SLATT R M.Shale depositional processes: Example from the Paleozoic Barnett Shale, Fort Worth Basin, Texas, USA [J]. Central European Journal of Geosciences, 2011, 3 (4):398-409.
- [22] ABOUELRESH M O, SLATT R M.Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas[J].AAPG Bulletin, 2012, 96(1): 34-43.
- [23] DANIEL M J, RONALD J H, TIM E R.A comparative study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin [J]. AAPG Bulletin, 2011, 91 (4):475-499.
- [24] 傅成玉.非常规油气资源勘探开发[M].北京:中国石化出版 社,2015.

FU Chengyu. Exploration and development of unconventional oil and gas resources[M].Beijing:China Petrochemical Press, 2015.

- [25] ZIELINSKI R E, MOTEFF J D.Physical and chemical characterization of Devonian gas shale[R].Quarterly Status Report, 1977.
- [26] MILICI R C, ROEN J B, WALKER B J.Stratigraphic history of the Appalachian Basin[R].Morgantown, WV: West Virginia University, 1996.
- [27] 刘成林,李景明,蒋裕强,等.川东小河坝砂岩天然气成藏地球 化学研究[J].西南石油学院学报,2002,24(1):46-49. LIU Chenglin, LI Jingming, JIANG Yuqiang, et al. Geochemistry research on natural gas reservoir formation of Xiaoheba FM of lower Silurian in the eastern Sichuan Basin[J].Journal of Southwest Petroleum Institute,2002,24(1):46-49.
- [28] 朱光有,赵文智,梁英波,等.中国海相沉积盆地富气机理与天

然气的成因探讨[J].科学通报,2007,52(增刊1):46-57. ZHU Guangyou,ZHAO Wenzhi,LIANG Yingbo,et al.The mechanism of gas enrichment and the genesis of natural gas in Chinese marine sedimentary basins[J].Chinese Science Bulletin,2007,52 (Supplement1):46-57.

- [29] 王清晨,严德天,李双建.中国南方志留系底部优质烃源岩发育的构造—环境模式[J].地质学报,2008,82(3):289-297.
 WANG Qingchen, YAN Detian, LI Shuangjian.Tectonic-environmental model of the Lower Silurian high-quality hydrocarbon source rocks from South China[J].Acta Geologica Sinica, 2008, 82(3):289-297.
- [30] 王兰生,邹春艳,郑平,等.四川盆地下古生界存在页岩气的地球化学依据[J].天然气工业,2009,29(5):59-62.
 WANG Lansheng,ZOU Chunyan,ZHENG Ping, et al.Geochemical evidence of shale gas existed in the Lower Paleozoic Sichuan basin[J].Natural Gas Industry,2009,29(5):59-62.
- [31] 刘树根,曾祥亮,黄文明,等.四川盆地页岩气藏和连续型一非 连续型气藏基本特征[J].成都理工大学学报:自然科学版, 2009,36(6):578-592.

LIU Shugen, ZENG Xiangliang, HUANG Wenming, et al. Basic characteristics of shale and continuous – discontinuous transition gas reservoirs in Sichuan Basin, China [J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2009, 36(6):578–592.

- [32] 黄籍中.四川盆地页岩气与煤层气勘探前景分析[J].岩性油气 藏,2009,21(2):116-120.
 HUANG Jizhong.Exploration prospect of shale gas and coal-bed methane in Sichuan Basin [J]. Lithologic Reservoirs, 2009, 21 (2):116-120.
- [33] MILICI R C, SWEZEY C S.Assessment of Appalachian Basin oil and gas resources: Devonian Shale-Middle and Upper Paleozoic Total Petroleum System[R].U.S.Geological Survey Open-File Report2006-1237,2006:1-70.
- [34] 尹亚辉,蒋有录,LEONARD J E. 川东地区五百梯构造天然气 运聚成藏史模拟研究[J].石油大学学报:自然科学版,2000,24 (4):119-122.

YIN Yahui, JIANG Youlu, LEONARD J E.Modeling of migration and accumulation of gas in Wubaiti Structure in the east of Sichuan Province [J]. Journal of the University of Petroleum, China: Edition of Natural Science, 2000, 24(4):119–122.

- [35] 宁方兴.济阳坳陷页岩油富集主控因素[J].石油学报,2015,36
 (8):905-914.
 NING Fangxing. The main control factors of shale oil enrichment in Jiyang depression[J]. Acta Petrolei Sinica, 2015, 36(8):905-914.
- [36] BAUMGARDNER Jr R W, ROWE H D. PS using hierarchical cluster analysis to improve facies definitions in Permian Mudrocks (Wolfcamp and Lower Leonard), Midland Basin, Texas[J].Geochemistry, 2016, 23:2 198-2 213.
- [37] HILL D G, LOMBARDI T E, MARTIN J P.Fractured shale gas potential in New York [J]. Northeastern Geology and Environmental Sciences, 2004, 26(1/2):57–78.

- [38] ENGELDER T. Marcellus2008: Report card on the breakout year for gas production in the Appalachian Basin [J]. Fort Worth Basin Oil and Gas Magazine, 2009, 20: 18–22.
- [39] 赵瞻,李嵘,冯伟明,等.滇黔北地区五峰组—龙马溪组页岩气 富集条件及有利区预测[J].天然气工业,2017,37(12):26-34. ZHAO Zhan, LI Rong, FENG Weiming, et al. Enrichment conditions and favorable zone prediction of Wufeng-Longmaxi shale gas reservoirs in the northern Yunnan-Guizhou provinces, China [J].Natural Gas Industry,2017,37(12):26-34.
- [40] 郭岭,姜在兴,郭峰.渝东南龙马溪组黑色页岩矿物组成及其页岩气意义[J].中南大学学报:自然科学版,2015,46(11):4146-4154.
 GUO Ling, JIANG Zaixing, GUO Feng. Mineral components of shales from Longmaxi Formation in southeastern Chongqing and heiter in the second state.

their implications for shale gas [J].Journal of Central South University: Science & Technology, 2015, 46(11):4146-4154.

- [41] 张善文,张林晔,李政,等.济阳坳陷古近系页岩油气形成条件
 [J].油气地质与采收率,2012,19(6):1-5.
 ZHANG Shanwen,ZHANG Linye,LI Zheng, et al.Formation conditions of Paleogene shale oil and gas in Jiyang depression[J].Petroleum Geology and Recovery Efficiency,2012,19(6):1-5.
- [42] LYLE D.Marcellus draws a crowd[M].Marcellus playbook: Houston, Texas, Hart Energy Publishing, 2009:22–25.
- [43] WRIGHTSTONE G. Marcellus Shale–Geologic Controls on Production[C].Denver: AAPG Annual Convention, 2009.
- [44] 杨锐,何生,胡东风,等.焦石坝地区五峰组—龙马溪组页岩孔 隙结构特征及其主控因素[J].地质科技情报,2015,34(5): 105-113.

YANG Rui, HE Sheng, HU Dongfeng, et al. Characteristics and the main controlling factors of micro-pore structure of the shale in Wufeng Formation – Longmaxi Formation in Jiaoshiba Area [J]. Geological Science & Technology Information, 2015, 34(5):105– 113.

- [45] 徐向华,王健,李茗,等.Appalachian 盆地页岩油气勘探开发潜 力评价[J].资源与产业,2014,16(6):62-70.
 XU Xianghua, WANG Jian, LI Ming, et al.Shale-gas exploration and development potential in Appalachian Basin[J].Resources & Industries,2014,16(6):62-70.
- [46] HAMLIN H S, BAUMGARDNER R W.PS Wolfberry Play, Midland Basin, West Texas[R].Ft.Worth: AAPG 2012 Southwest Section Meeting, Texas, 2012.
- [47] WILSON A.Do data-mining methods matter? A Wolfcamp Shale case study [J].Journal of Petroleum Technology, 2015, 67(10): 87–89.
- [48] 国家能源局油气司.中国页岩油中长期发展规划研究[R].北 京:国家能源局油气司,2012.

Oil and Gas Division, National Energy Administration. Research on medium and long term development plan of China's shale oil [R]. Beijing: Oil and Gas Division, National Energy Administration, 2012.