文章编号:1009-9603(2022)03-0113-08

DOI: 10.13673/j.cnki.cn37-1359/te.202108037

基于嵌入式离散裂缝模型的页岩气 水平井立体开发优化设计

周德华1,戴 城2,方思冬2,刘 华2

(1.中国石化油田勘探开发事业部,北京100728; 2.中国石化石油勘探开发研究院,北京100083)

摘要:为提高页岩气区块整体采收率,涪陵页岩气田2020年以来采用在上部、中部及下部气层井间部署调整井的立体开发模式,并在涪陵页岩气田部分井组试验中取得了良好效果。采用数值模拟方法评估不同页岩气立体式开发技术方案的开发效果,是进一步优化方案,提升区块整体动用率和采收率的基础。提出一种基于嵌入式离散裂缝模型的数值模拟方法,并以涪陵江东区块为例,综合分析不同工艺压裂结果、井间干扰等因素对井组产能的影响,评估了立体开发的效果,提出相应的稳产增产对策。研究结果表明:采用嵌入式离散裂缝可以刻画多层系水平井立体开发中裂缝的分布,从而准确模拟裂缝的干扰情况;在下、上部气层分别存在未有效动用、基本未动用储量,具有加密调整潜力;立体开发可以有效提高页岩气储量的动用。

 关键词:页岩气;立体开发;数值模拟;嵌入式离散裂缝;井间干扰

 中图分类号:TE359
 文献标识码:A

Optimization of 3D development in shale gas horizontal wells based on embedded discrete fracture model

ZHOU Dehua¹, DAI Cheng², FANG Sidong², LIU Hua²

(1.SINOPEC Oilfield Exploration and Development Division, Beijing City, 100728, China; 2.SINOPEC Petroleum Exploration and Production Research Institute, Beijing City, 100083, China)

Abstract: Since 2020, 3D development with deploying adjustment wells between wells in the upper, middle and lower layers has achieved good results in some well group tests of Fuling Shale Gas Field, which is expected to improve the overall recovery of the whole play. Adopting the numerical simulation method to evaluate the development effect of different technical schemes for shale gas 3D development is the basis for further optimizing the scheme and improving the overall recovery. Accordingly, this paper proposes a numerical simulation method based on an embedded discrete fracture model. Taking the Fuling Jiangdong Block as an example, the paper comprehensively analyzes the influence of factors such as results of different fracturing technologies and inter–well interference on well group productivity. It also evaluates the effects of 3D development and proposes corresponding countermeasures for stabilizing and increasing production. The results indicate that the embedded discrete fracture model can depict the distribution of fracture networks in multi–layers with 3D development of horizontal wells and simulate the interference of fractures. There are not effectively producing and basically unproducing shale gas reserves in the lower and the upper layers respectively, which are the potentials of infill adjustment. 3D development can effectively improve the production of shale gas reserves.

Key words: shale gas; 3D development; numerical simulation; embedded discrete fracture; inter-well interference

中国石化涪陵页岩气田是中国首个实现商业

化开发的页岩气田,也是最大的页岩气田[1-3],截至

收稿日期:2021-10-14。

通信作者:戴城(1987一),男,浙江天台人,高级工程师,博士。E-mail:daicheng.syky@sinopec.com。

基金项目:国家自然科学基金项目"海相深层油气富集机理与关键工程技术基础研究"(U9B6003)和"页岩气压后有效缝网反演方法研究"(51804334)。

作者简介:周德华(1968—),男,湖北孝感人,教授,博士,从事非常规油气勘探开发研究和管理工作。E-mail:zhoudh@sinopec.com。

2020年探明储量为7926×10⁸ m^{3[4]}。涪陵页岩气田 气井生产主要采用定产量生产方式,气井生产可以 分为稳产阶段和产量递减阶段。现有资料显示,涪 陵页岩气田老井第1年递减率约为60%,气井平均 稳产期为2.9 a^[3]。目前,涪陵老井基本已进入产量 递减阶段。涪陵页岩气田初始开发方案采用500~ 600 m井距,水平井穿行气藏下部层系,矿场生产数 据显示,上部气层和下部气层现有井的井间储量动 用不充分^[3]。页岩气水平井立体开发模式就是针对 储层多个层系甜点分别部署井网,有效挖掘未动用 储量^[5]。因此,为了实现涪陵页岩气田稳产接替, 2020年以来现场开展了在上部、中部及下部气层现 有井的井间部署调整井的立体开发试验^[6-7],试验结 果显示,立体开发模式可以提高区块整体的动用率 和采收率。

为提升页岩气水平井立体开发效果,可采用数 值模拟技术,定量确定储量动用和剩余储量分布状 况,并以此制定合理的加密井方案。利用数值模拟 评估立体开发效果的关键是精确刻画人工裂缝及 天然裂缝分布,模拟两者并存条件下的渗流过程, 可用于页岩气数值模拟的模型主要包括等效连续 介质模型、离散裂缝网络模型和混合模型[8]。常用 的商业模拟软件(如Eclipse,tNavigator等)主要采用 等效连续介质模型。该模型简单易用,但当裂缝非 均质性较强时,模拟会产生较大误差。因此,并不 适用于刻画多甜点层水平井立体开发的储量动用 状况。离散裂缝网络模型可以细分为2类:①基于 非结构化网格的离散裂缝模型(DFM)。它以裂缝 面为约束,在裂缝面附近剖分非结构化网格,计算 相应传导率。该方法可以较为清晰地刻画每一条 裂缝的展布规律、开度等信息,因此近几年在页岩 气领域逐渐得到应用^[9-12]。但该方法基于非结构化 网格,剖分困难、计算量大,难以在实际矿场模型中 得到大规模应用。②嵌入式离散裂缝模型(ED-FM)。它以结构化网格为背景网格,将裂缝嵌入背 景网格中,以非相邻连接将二者相连,可以在保证 裂缝刻画精度的条件下大幅提高模拟效率[13-16]。近 年来,嵌入式离散裂缝模型也逐渐在页岩气开发中 得到应用[17-19]。鉴于页岩气水平井立体开发优化要 求,模拟结果必须能够准确地反映不同工艺压裂效 果、井间干扰等因素对井组产能的影响,综合考虑, 采用嵌入式离散裂缝模型是较优的选择。为此,笔 者提出了一套基于嵌入式离散裂缝模拟的页岩气 水平井立体开发优化设计方法,并以涪陵江东区块 为例,验证了该方法在实际矿场中的应用效果。模

拟结果揭示了现有储层的储量动用情况和剩余气 分布,模拟了立体开发的效果,提出调整方案部署 建议。

1 研究方法

1.1 数值模拟渗流控制方程

以嵌入式离散裂缝模型模拟页岩气渗流过程, 储层中的渗流过程细分为裂缝中的渗流和基质中 的渗流两部分,分别由不同的控制方程进行描述^[20-21]。

在基质中,气相和水相的控制方程分别为:

$$\nabla \left[\frac{KK_{\rm rg}}{B_{\rm g}\mu_{\rm g}} \left(\nabla p_{\rm g} - \rho_{\rm g}g\nabla D \right) \right] = \frac{\partial}{\partial t} \left(\frac{\phi S_{\rm g}}{B_{\rm g}} \right) + q_{\rm g}^{\rm S} - q_{\rm g}^{\rm mf}$$
(1)

$$\nabla \left[\frac{KK_{\rm rw}}{B_{\rm w}\mu_{\rm w}} \left(\nabla p_{\rm w} - \rho_{\rm w}g\nabla D \right) \right] = \frac{\partial}{\partial t} \left(\frac{\phi S_{\rm w}}{B_{\rm w}} \right) - q_{\rm w}^{\rm mf} \quad (2)$$

在裂缝中,气相和水相控制方程分别为:

$$\nabla \left[\frac{KK_{\rm rg}}{B_{\rm g}\mu_{\rm g}} \left(\nabla p_{\rm g} - \rho_{\rm g}g\nabla D \right) \right] = \frac{\partial}{\partial t} \left(\frac{\phi S_{\rm g}}{B_{\rm g}} \right) + q_{\rm g}^{\rm w} - q_{\rm g}^{\rm mf}$$
(3)

$$\nabla \left[\frac{KK_{\rm rw}}{B_{\rm w}\mu_{\rm w}} \left(\nabla p_{\rm w} - \rho_{\rm w}g\nabla D \right) \right] = \frac{\partial}{\partial t} \left(\frac{\phi S_{\rm w}}{B_{\rm w}} \right) + q_{\rm w}{}^{\rm mf} - q_{\rm w}{}^{\rm w}$$
(4)

与裂缝型气藏不同,页岩气藏必须考虑基质吸附气解吸的流量。在控制方程中,气相解吸扩散流量可以表示为:

$$q_{\rm g}^{\rm S} = V_{\rm m} v \left(C_{\rm g} - C_{\rm g}^{\infty} \right) \tag{5}$$

通过实验数据分析, 涪陵页岩气平衡吸附浓度 满足 Langmuir 等温吸附公式^[22], 即:

$$C_{g}^{\infty} = \frac{V_{L} p_{g}}{p_{L} + p_{g}}$$
(6)

基质与裂缝之间的水相流量的计算公式为:

$$q_{w}^{mf} = \frac{K_{rw}\rho_{w}}{\mu_{w}B_{w}}T_{mf}\left(P_{w}^{m} - P_{w}^{f}\right)$$
(7)

基质与裂缝之间的气相流量的计算公式为:

$$\eta_{g}^{mf} = \frac{K_{rg}\rho_{g}}{\mu_{g}B_{g}}T_{mf}\left(P_{g}^{m} - P_{g}^{f}\right)$$
(8)

与常规气藏基质与裂缝均能向井筒供气情况 不同的是,由于页岩基质渗透率极低,因此在模拟 过程中,气体只能通过裂缝进入井筒,井筒流量的 计算公式为:

$$q_i^{w} = WI_i \frac{K_{ii} \rho_i}{\mu_i B_i} T_{mf} (p_i - p^w)$$
(9)

·115·

通过C++语言,已将上述理论在中国石化石油 勘探开发研究院自主研发的数值模拟软件COM-PASS中加以实现^[21],数值模拟工作均是基于COM-PASS来完成的。

1.2 优化设计工作流程

在井台地质及动态资料、分析化验、测试及试 采资料分析的基础上,首先建立压前三维地质模 型,并根据动态分析初步确定缝网分布及属性,基 于嵌入式离散裂缝模型建立压后三维数值模型;然 后,通过历史拟合确定各井的裂缝分布校正模型参 数;最后,在获得校正的数值模拟模型上开展储量 动用状况及剩余气分布、井组立体开发影响因素分 析,对比评估多甜点层水平井立体开发效果,评价 开发技术政策,从而实现立体开发方案优化(图1)。

2 压前三维地质模型的构建

2.1 构造建模

涪陵页岩气田江东区块构造上处于焦石坝背 斜带、乌江背斜带和江东向斜带的结合部位,发育2 组不同走向的断层:西南部乌江断裂带附近断层呈 近南北向,其他断裂多为北东走向,东北部浅,西南 部深,埋深为2500~3500m,工区总面积为93 km²。A平台位于江东区块的东北部,相对构造平 缓,小断层不发育,工区总面积为16.6km²,总井数 为8口,被近南北向断层分割为2个区域,断层以西 井号分别为A-1HF,A-2HF,A-3HF,A-4HF,断层 以东井号分别为A-5HF,A-6HF,A-7HF,A-8HF。 将区块划分为25m×25m的网格,纵向上分为9层, 共计网格为128×365×9=42×10⁴。

2.2 属性建模

江东区块上部气层页岩品质与焦石坝区块大

体相当。基于测井解释结果建立属性模型。①— ⑨小层平均厚度为5.3~12m,其中①—⑤小层为下 部气层,⑥—⑨小层为上部气层。①—⑤小层*TOC* 值平均大于3%,孔隙度为5.3%~5.4%,含气饱和度 为63%。⑥—⑨小层*TOC*值平均大于1.6%,孔隙度 为4.6%~4.8%,含气饱和度为57.7%。下部气层储 层压力系数为1.49~1.74,平均为1.54,属于高压系 统;上部气层储层压力系数为1.28~1.34,平均为 1.30。根据区块内8口水平井的静压测试数据确 定,断层分为2个压力系统,断层东北地层压力为 51 MPa,断层西南地层压力为48 MPa。根据吸附解 吸实验结果,下部气层Langmuir体积平均为1.57 m³/ t,上部气层Langmuir体积平均为0.65 m³/t。

根据地质模型统计显示,该区块储层物性较好,下部气层储量为100.26×10⁸ m³,丰度为6.04×10⁸ m³/km²;上部气层储量为73.87×10⁸ m³,丰度为4.45×10⁸ m³/km²;总储量为174.13×10⁸ m³,总丰度为10.49×10⁸ m³/km²。

3 压后三维数值模型构建

压后三维数值模型构建是页岩气数值模拟的 重点和难点。综合运用微地震监测、压裂施工数据 及气藏工程解释建立了8口井压后非均匀缝网的初 始分布,为下一步数值模拟和历史拟合提供基础。 根据微地震监测信息显示,A-1HF井微地震解释平 均缝高为39m,裂缝主要在①一⑤小层内延伸。A-1HF井微地震监测46段,波及体裂缝半长平均为 190m。

在微地震监测基础上,利用动态储量分析、特征线分析及RTA分析等气藏工程分析方法,确定各并的解释裂缝半长(表1)。其中,改造地层系数是

Fig.1 Workflow of study

指裂缝总流动面积和地层有效渗透率的负二分之 一次幂的乘积,该系数可以在一定程度上反映压裂 改造效果和产能大小^[15]。

Table1	Anal	Analysis parameters of gas reservoir engineering				
井号	水平 段长 度/m	压裂 簇数	改造地 层系数/ (m ² •mD ^{-0.5})	动态总 储量丰度/ (10 ⁸ m ³ ·km ⁻²)	解释 裂缝 半长/m	
A-1HF	1 789	46	4 000	1.13	61	
A–2HF	1 722	51	3 334	0.83	45	
A-3HF	869	28	3 776	1.15	140	
A-4HF	1 195	37	2 248	0.72	60	
A–5HF	2 163	71	5 334	1.42	70	
A-6HF	2 081	69	5 748	1.40	60	
A–7HF	1 724	57	5 830	1.45	75	
A-8HF	1 769	64	4 815	1.32	72	

表1 气藏工程分析参数 Table1 Analysis parameters of gas reservoir engineeri

以解释裂缝半长为压裂改造区的半长,改造区 内部随机生成次级裂缝,以微地震响应裂缝半长为 各段主裂缝半长,生成该井的压裂缝网。从A-1HF 井压后缝网模型(图2)中可以看出,压裂改造区 (SRV)区域宽度为123 m,主裂缝半长约为190 m。 该压后缝网可以初步反映压裂和气藏工程的信息, 具体参数将在数值模拟中进一步加以调整确定。

图 2 A-IHF 升压卢维网模型 Fig.2 Fracture model of Well A-1HF after fracturing

4 立体开发方案数值模拟与优化

4.1 数值模拟模型构建及生产数据历史拟合

在地质模型基础上建立A平台的数值模拟模型。主裂缝采用嵌入式离散裂缝模拟,分支缝采用 粗化算法作为SRV的等效渗透率。 A平台生产井采用放压生产,中途无明显调配 产以及关井开井等制度变化,产量曲线明显为递 减特征。通过对A平台8口井进行生产历史拟合, 得到每口井的裂缝参数,主要包括每段裂缝半长、 裂缝导流能力和SRV平均渗透率。导流能力为 0.61~1.74 mD·m, SRV平均渗透率为0.58×10⁻⁴~ 1.2×10⁻⁴ mD。

4.2 储量动用分析

如图3所示,由于水平井轨迹主要穿越③小层, 导致临近的①—⑤小层储量被动用,动用部位压力 由初始的52 MPa下降到2~37 MPa。⑥—⑨小层距 离水平井较远,除⑥小层由于局部微裂缝沟通导致 储量有少量动用外,其余大部分区域压力仍然保持 在42 MPa左右的原始状态,储量基本未动用。

Fig.3 Vertical pressure distribution of wells

选取3个剖面分析平面纵向储量动用状况(图 4),A-5HF和A-6HF井之间改造较好、未动用区宽 度相对较小(约为200m),其他井间未动用区宽度 约为270~320m;A平台平面上的动用面积为6.5 km²,动用储量为39.26×10⁸m³。

如图5所示,按照目前井网预测30a后,单井压 降范围可增加50~65m,井间仍然存在较大的未有 效动用区域。根据井组数值模拟评价的储量动用 状况,截至2021年1月,①—⑤小层储量未动用区 域宽度为240~380 m, ⑥—⑨小层储量基本无动用, 具有加密调整潜力。

Fig.5 Pressure distribution at different periods in (3) layer

4.3 上、下部气层立体开发调整及效果分析

根据储量动用模拟结果,进行立体开发调整, 其中①—⑤小层在老井间(井距为500m)加密1口 井,水平井井轨迹穿行③小层底部;在⑦小层底部, 如图6所示位置处部署3口调整井,井距为250m。 根据此方案,3个井台共设计①—⑤小层中加密4口 井,在⑥—⑨小层中调整9口井。

图 6 上、下部气层立体开发调整井部署位置示意 Fig.6 Positions of infill adjustment wells in strategy of 3D development in upper and low layers

①一⑤小层加密的4口井,水平井井段长度为 2000 m,穿行③小层的下部;在⑥一⑨小层调整的9 口井,水平井井段长度为2000 m,穿行⑦小层的下 部。上、下部调整/加密井参考试采井动态分析结 果,均采用密切割新工艺压裂,考虑风险及工程技 术进步,考虑3种改造情况(表2)。其中,情况2的 参数取值为老井气藏工程解释的平均值,即加密井 裂缝半长为20~100m,平均为60m,①—⑤小层加 密井的SRV渗透率为4×10-5 mD。鉴于⑥—⑨小层 可压性劣于①—⑤小层,导致⑥—⑨小层预期压裂 效果较①--⑤小层差, ⑥--⑨小层调整井的SRV渗 透率设为2×10⁻⁵ mD。在相同的压裂规模下,一般压 裂施工会出现形成长主缝和网状缝2种情况。与情 况2相比,情况1考虑的是主裂缝更短,改造区渗透 率更高的情况。相反,情况3则考虑主裂缝更长、改 造区渗透率略低的情况。经过模拟预测可知,不进 行加密,全区块30a末累积产气量为8.59×10⁸m³,控 制储量的采收率(30 a末的累积产量/(上部井总长× 井距×上部丰度+下部井总长×井距×下部丰度))为 14.2%;若只部署下部井网(包含老井和加密井),3 种情况的全区块30a末的累积产气量分别为12.52× 10⁸,13.48×10⁸和14.08×10⁸m³,平均单井产气量为 1.04×10⁸, 1.12×10⁸和1.17×10⁸m³, 控制储量的采收 率分别为20.7%,22.4%和23.4%;若只部署上部井 网,上部储层动用面积为4.5 km²,动用储量为 20.03×10⁸ m³,3种情况下的全区块30 a末的累积产 气量分别为6.21×10⁸,8.10×10⁸和8.82×10⁸m³,平均 单井产气量分别为0.69×10⁸,0.9×10⁸和0.98×10⁸ m³, 相应的控制储量的采收率分别为10.3%,13.4%和 14.6%,总体可见上部井比下部井开发效果差;若采 用立体开发调整方案,总动用储量为59.29×10⁸ m³, 较单层加密增加了51%,3种情况下的全区块30a 末的累积产气量分别为18.73×10⁸, 21.58×10⁸和 22.90×10⁸ m³,上部气层调整井与下部加密井间不存 在明显干扰。3种情况的立体开发控制储量的采收 率分别为31.0%,35.8%和38.0%。

4.4 三层立体开发调整及效果分析

采用上、下2个层系的立体开发井间不存在明显的干扰现象。在上、下2套调整/加密井网基础上,在⑤小层部署中部调整井(图7)。同样以A-1HF和A-2HF井所在区域进行分析,通过3层调整/加密方案模拟发现全井台(共7口井,下部加密井、中、上部调整井分别为1,2和2口,压裂改造参数采

祝2 5仲间仍是表望数秋道								
Table2 Parameters of infill adjustment wells in three situations								
情况 水平井井 段长度/m	나 코려 내나 내나	下	部 气	层 加 密 井		油 軟 井		
	水平开开 段长度/m	断层东	北部	断层西南部		 照 登 开		
	τχ κ/χ/m	SRV渗透率/10 ⁻⁵ mD	裂缝半长/m	SRV渗透率/10 ⁻⁵ mD 裂缝半长/m	SRV渗透率/mD	裂缝半长/m		
1	2 000	6	$20 \sim 80/40$	6 20~70/40	3	$20 \sim 80/40$		
2	2 000	4	$20 \sim 100/60$	4 20~100/60	2	$20 \sim 100/60$		
3	2 000	2	$40 \sim 120/75$	2 40~120/75	1	$40 \sim 120/75$		

2 劫候识正刻会粉现估

注:20~80/40表示裂缝半长范围/平均值。

用情况2取值)30 a 累积产气量为5.98×10⁸ m³(平均 单井30 a 累积产气量为0.85×10⁸ m³),30 a 末控制储 量的采收率达48.1%。从表3可知,A-2HF井由于 井间干扰,累积产气量变化较大;老井A-1HF由于 空间位置关系,干扰较小,累积产气量变化较小。 从图8结果可知,中部调整井1与上部调整井和下

Table3 Cumulative gas production of each well at end of 30 years before and after adjustment in middle layer

- 11 - E	30 a末累积产气量/10 ⁸ m ³			
开写	调整前	调整后		
A-1HF	1.38	1.36		
A-2HF	1.48	1.26		
下部加密井1		0.75		
中部调整井1		0.76		
中部调整井2		0.69		
上部调整井1		0.64		
上部调整井2		0.52		

部加密井均存在压力连通区域,井间裂缝存在沟 通。分析中部调整井层间压力场(图9),从下部② 小层到上部⑧小层均有动用。目前的布井方式下,

图8 上、中、下部气层立体开发30a压力分布

Fig.8 Pressure distributions of 3D development in upper, middle and lower gas layers in 30 years

井间层间动用不均匀,造成局部裂缝干扰严重,局 部未动用,影响了整体的开发效果。

综合所有模拟结果发现:按照目前的改造工艺 技术,加密井及调整井30a末累积产气量整体上不 如现有老井。而在立体开发中,中部调整井开发效 果略低于下部加密井。上部调整井效果不佳,30a 末累积产气量仅为0.52×10⁸~0.64×10⁸ m³。这主要 是上部储层较下部储层物性差所造成的。因此,为 了提高上部调整井产量,有必要进一步提升压裂改 造效果。

原始井网下不进行加密控制储量采收率为 14.2%,仅进行下部加密控制储量采收率为22.4%, 上、下部气层立体开发控制储量采收率为35.8%, 上、中、下部气层立体开发控制储量采收率为 48.1%。可见,继续推进上、中、下部气层立体开发 部署是提高涪陵老区采收率的重要途径。

5 结论

综合运用微地震数据、气藏工程分析数据和生 产历史数据等多类型数据确定主裂缝和压裂改造 区分布,采用嵌入式离散裂缝可以准确刻画裂缝的 非均匀分布,该数值模拟方法可以提高页岩气数值 模拟的准确性,可为页岩气水平井立体开发优化设 计提供技术依据。运用该方法,以涪陵江东区块为 例,综合分析不同工艺压裂结果、井间干扰等因素 对井组产能的影响,评估了立体开发的效果,分析 结果显示:立体开发是提高采收率的重要途径,需 要进一步加大缝网改造效果,降低单井投资,实现 效益开发。下一步可在江东区块开展全面立体开 发调整,有效提高气田整体采收率。

符号解释

- Bg----气相地层压力系数,无量纲;
- B_i——i相地层压力系数,无量纲;
- B_w——水相地层压力系数,无量纲;
- C_--基质当前吸附浓度,kg/m3;
- C_{g}^{∞} ——平衡吸附浓度,kg/m³;
- D---海拔高度,m;
- g----重力加速度,m/s²;
- i——表示气或水;
- K——绝对渗透率,mD;
- K_{rg}——气相的相对渗透率,无量纲;
- K_n——*i*相的相对渗透率,无量纲;
- K_{rw}——水相的相对渗透率,无量纲;
- pg——气相压力, MPa;
- pg^m——基质中气相压力, MPa;
- p_{g}^{f} ——裂缝中气相压力, MPa;
- *p*₁——Langmuir压力, MPa;
- *p_i*——*i*相地层压力, MPa;
- *p*, ——水相压力, MPa;
- p_w^{f} ——裂缝中水相压力, MPa;
- pw^m——基质中水相压力, MPa;
- p^w——井底压力, MPa;
- q_{g}^{mf} ——基质与裂缝之间的气相流量,kg/s;
- q_{g}^{s} ——气相解吸扩散流量,kg/s;
- q_{g} ^w——裂缝与井之间的气相流量,kg/s;
- q_i ^w——裂缝与井之间的i相流量,kg/s;
- q_w^{mf} ——基质与裂缝之间的水相流量,kg/s;
- q_w^w ——裂缝与井之间的水相流量,kg/s;
- Sg---气相饱和度,无量纲;
- S_w——水相饱和度,无量纲;

- ϕ ——孔隙度,无量纲。

参考文献

- [1] 邹才能,赵群,丛连铸,等.中国页岩气开发进展、潜力及前景
 [J].天然气工业,2021,41(1):1-14.
 ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China [J].Natural Gas Industry,2021,41(1):1-14.
- [2] 马永生,蔡勋育,赵培荣.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发,2018,45(4):561-574.
 MA Yongsheng, CAI Xunyu, ZHAO Peirong.China's shale gas exploration and development: Understanding and practice[J].Petroleum Exploration and Development,2018,45(4):561-574.
- [3] 蔡勋育,赵培荣,高波,等.中国石化页岩气"十三五"发展成果 与展望[J].石油与天然气地质,2021,42(1):16-27.
 CAI Xunyu, ZHAO Peirong, GAO Bo, et al.Sinopec's shale gas develpment achievements during the "Thirteenth Five-Year Plan" period and outlook for the future [J].Oil & Gas Geology, 2021,42(1):16-27.
- [4] 赵文智,贾爱林,位云生,等.中国页岩气勘探开发进展及发展展望[J].中国石油勘探,2020,25(1):31-44.
 ZHAO Wenzhi, JIA Ailin, WEI Yunsheng, et al.Progress in shale gas exploration in China and prospects for future development[J].
 China Petroleum Exploration,2020,25(1):31-44.
- [5] 李国欣,吴志宇,李桢,等.陆相源内非常规石油甜点优选与水 平井立体开发技术实践——以鄂尔多斯盆地延长组7段为例
 [J].石油学报,2021,42(6):736-750.
 LI Guoxin, WU Zhiyu, LI Zhen, et al. Optimal selection of uncon-

ventional petroleum sweet spots inside continental source kitchens and actual application of three-dimensional development technology in horizontal wells: a case study of the Member 7 of Yanchang Formation in Ordos Basin [J]. Acta Petrolei Sinica, 2021,42(6):736-750.

- [6] 胡德高,刘超.四川盆地涪陵页岩气田单井可压性地质因素研究[J].石油实验地质,2018,40(1):20-24.
 HU Degao, LIU Chao.Geological factors of well fracability in Fuling shale gas field, Sichuan Basin[J].Petroleum Geology & Experiment, 2018,40(1):20-24.
- [7] 刘建亮,王亚莉,陆家亮,等.中国页岩气开发效益现状及发展

策略探讨[J].断块油气田,2020,27(6):684-688,704.

LIU Jianliang, WANG Yali, LU Jialiang, et al.Discussion on internal rate of return status and development strategy of China shale gas[J].Fault-Block Oil and Gas Field, 2020, 27(6):684-688, 704.

- [8] 王强,叶梦旎,李宁,等.页岩气藏数值模拟模型研究进展[J]. 中国地质,2019,46(6):1284-1299.
 WANG Qiang, YE Mengni, LI Ning, et al. Reserch progress of numerical simulation models for shale gas reservoirs [J]. Geology in China, 2019,46(6):1284-1299.
- [9] 糜利栋,姜汉桥,李俊键.页岩气离散裂缝网络模型数值模拟 方法研究[J].天然气地球科学,2014,25(11):1795-1803. MI Lidong, JIANG Hanqiao, LI Junjian.Investigation of shale gas numerical simulation method based on discrete fracture network model[J].Natural Gas Geoscience,2014,25(11):1795-1803.
- [10] 王伟,李阳,陈祖华,等.基于复杂渗流机理的页岩气藏压后数 值模拟研究[J].油气藏评价与开发,2020,10(1):22-29.
 WANG Wei,LI Yang, CHEN Zuhua, et al.Post-fracturing numerical simulation of shale gas reservoir based on complex flow mechanisms[J].Reservoir Evaluation and Development, 2020, 10(1): 22-29.
- [11] 徐中一,方思冬,张彬,等.页岩气体积压裂水平井试井解释新 模型[J].油气地质与采收率,2020,27(3):120-128.
 XU Zhongyi, FANG Sidong, ZHANG Bin, et al. A new well test model for horizontal wells by stimulated reservoir volume in shale gas reservoirs [J]. Petroleum Geology and Recovery Efficiency, 2020,27(3):120-128.
- [12] WU Y S, LI J F, DING D, et al. A generalized framework model for simulation of gas production in Unconventional Gas Reservoirs [J].SPE Journal, 2014, 19(5):845-857.
- [13] MOINFAR A, VARAVEI A, SEPEHRNOORI K, et al. Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs [J]. SPE Journal, 2014, 19(2):289–303.
- [14] 严侠,黄朝琴,姚军,等.基于模拟有限差分的嵌入式离散裂缝 数学模型[J].中国科学:技术科学,2014,44(12):1333-1342.
 YAN Xia, HUANG Zhaoqin, YAO Jun, et al. The embeded discrete fracture model based on mimetic finite difference method
 [J].Scientia Sinica:Technologica,2014,44(12):1333-1342.
- [15] YAN X, HUANG Z Q, YAO J, et al. An efficient embedded dis-

crete fracture model based on mimetic finite difference method[J]. Journal of Petroleum Science & Engineering, 2016, 145(35):11-21.

- [16] 龚斌.煤层气/页岩气藏裂缝建模与数值模拟[M].北京:科学 出版社,2017.
 GONG Bin.Fracture modeling and numerical simulation in CBM/
- shale gas reservoir[M].Beijing:Science Press,2017.
 [17] 姜瑞忠,原建伟,崔永正,等.考虑岩石变形的页岩气藏双重介质数值模拟[J].油气地质与采收率,2019,26(4):70-76.
 JIANG Ruizhong, YUAN Jianwei, CUI Yongzheng, et al.Dual media numerical simulation of shale gas reservoirs considering rock deformation [J]. Petroleum Geology and Recovery Efficiency, 2019,26(4):70-76.
- [18] 赵猛,范锡彦.页岩气缝网优化的数值模拟[J].大庆石油地质与开发,2019,38(4):167-174.
 ZHAO Meng, FAN Xiyan. Optimized numerical simulation of the

fracture network in the shale gas [J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(4):167–174.

- [19] 王程伟,李蕾,苏玉亮,等.页岩气低速渗流特征分析及影响因素研究[J].特种油气藏,2020,27(1):136-141.
 WANG Chengwei, LI Lei, SU Yuliang, et al.Low-velocity shale gas seepage analysis and influencing factors [J]. Special Oil & Gas Reserviors,2020,27(1):136-141.
- [20] 刘华,王卫红,陈明君,等.页岩储层多尺度渗流实验及数学模型研究[J].西安石油大学学报:自然科学版,2018,33(4):66-71.

LIU Hua, WANG Weihong, CHEN Mingjun, et al.Seepage experiment and mathematical model of multi-scale shale reservoir [J] Journal of Xi'an Shiyou University: Natural Science Edition, 2018,33(4):66-71.

- [21] DAI C, LIU H, WANG Y Y, et al. A simulation approach for shale gas development in China with embedded discrete fracture modeling[J].Marine and Petroleum Geology, 2019, 100(24):519–529.
- [22] WANG Y Y, LIU H, WANG W H, et al. A new production analysis method for shale gas well based on the evaluation of decline parameters in advance[J].Journal of Natural Gas Science and Engineering, 2021, 89(2):103-115.

编辑王星