文章编号:1009-9603(2023)02-036-08

DOI:10.13673/j.cnki.cn37-1359/te.202209043

胜利油田高89地区特低渗透油藏 CO₂驱非线性渗流规律研究

杨 勇¹,曹小朋^{2,3,4},韩文成^{2,3,4},张 东^{2,3,4},张庆云⁵,王艺璇⁶
(1.中国石化胜利油田分公司,山东东营 257001; 2.中国石化胜利油田分公司勘探开发研究院,山东东营 257015;
3.中国石化CCUS重点实验室,山东东营 257015;4.山东省 CCUS重点实验室,山东东营 257015;
5.东营同邦石油科技有限公司,山东东营 257000; 6.圣彼得堡国立大学,圣彼得堡 199225)

摘要:特低渗透油藏储层物性差,流体流动困难,常表现出非线性渗流特征。以往非线性渗流规律的研究以水驱为 主,对CO2驱的研究较少。针对胜利油田高89地区特低渗透油藏CO2驱非线性渗流规律认识不足的问题,开展了渗 流规律实验研究,揭示了CO2与原油相互作用对原油渗流特征的影响规律,建立了不同渗透率下CO2驱最小启动压 力梯度计算公式及CO2驱非线性渗流规律表征模型。结果表明:特低渗透油藏CO2驱存在启动压力,原油最小启动 压力梯度与流度呈良好的幂函数关系,随着流度的增加,启动压力梯度显著降低;CO2驱渗流曲线呈现"曲线段+直 线段"的两段式特征,直线段的流速与压力梯度呈良好的线性关系,曲线段的流速与压力梯度呈良好的二次函数关 系;CO2溶于原油后有显著的膨胀降黏效果,使得原油最小启动压力梯度明显降低,原油渗流能力增强,渗流曲线非 线性段变短。

关键词:特低渗透油藏;CO₂驱;非线性渗流;启动压力;流度 中图分类号:TE357.7 **文献标识码:**A

Non-linear flow laws of CO₂ flooding in ultra-low permeability reservoirs in Gao89 area of Shengli Oilfield

YANG Yong¹, CAO Xiaopeng^{2,3,4}, HAN Wencheng^{2,3,4}, ZHANG Dong^{2,3,4}, ZHANG Qingyun⁵, WANG Yixuan⁶

(1.Shengli Oilfield Company, SINOPEC, Dongying City, Shandong Province, 257001, China; 2.Exploration and Development Research Institute, Shengli Oilfield Company, SINOPEC, Dongying City, Shandong Province, 257015, China; 3.CCUS Key Laboratory of SINOPEC, Dongying City, Shandong Province, 257015, China; 4.CCUS Key Laboratory of Shandong Province, Dongying City, Shandong Province, 257015, China; 5.Dongying Tongbang Petroleum Technology Co., Ltd., Dongying city, Shandong Province, 257000, China; 6.Saint Petersburg State University, Petersburg, 199225, Russia)

Abstract: The ultra-low permeability reservoirs have poor physical properties, which leads to difficult fluid flow, often showing the characteristics of non-linear flow. In the past, the study on non-linear flow laws focused more on water flooding but less on CO_2 flooding. Considering the insufficient understanding of the non-linear flow laws of CO_2 flooding in ultra-low permeability reservoirs in Gao89 area of Shengli Oilfield, an experimental study in this regard was carried out to reveal the influence of the interaction between CO_2 and crude oil on the flow characteristics of crude oil. The calculation formula of the minimum threshold pressure gradient and the non-linear flow characteristic representation model of CO_2 flooding under different permeability were constructed. The results show that there is threshold pressure in CO_2 flooding in the ultra-low

收稿日期:2022-09-13。

作者简介:杨勇(1971一),男,河南遂平人,正高级工程师,博士,从事油气田开发研究及管理工作。 E-mail: yangyong.slyt@sinopec. com。

基金项目:中国石化重点科技项目"低丰度特低渗滩坝砂油藏CO₂驱技术研究与示范"(P18088-2),胜利油田博士后科研工作站项目"低 渗透油藏CO₂驱油过程中封存机理研究"(YKB2306)。

permeability reservoirs, and the minimum threshold pressure gradient of crude oil has a good power function relationship with fluidity. With the increase in fluidity, the threshold pressure gradient decreases significantly. In addition, the flow curve of CO_2 flooding shows the characteristics of two stages, i.e., non-linear stage+linear stage. The flow velocity at the linear stage has a good linear relationship with the pressure gradient, and that at the non-linear stage has a good quadratic function relationship with the pressure gradient. CO_2 dissolved in crude oil has a significant swelling and viscosity reduction effect, which drastically lowers the minimum threshold pressure gradient of crude oil and enhances the flow capability of crude oil, and the non-linear stage in the flow curve is shortened.

Key words: ultra-low permeability reservoir; CO2 flooding; non-linear flow; threshold pressure; fluidity

胜利油田特低渗透油藏储量丰富,目前原油探 明地质储量高达12.2×10⁸ t^[1],占胜利油田原油总探 明地质储量的22%^[2],开发前景广阔。由于特低渗 透油藏孔隙结构复杂、渗透率低、孔隙度低、非均质 性强、渗流阻力大,常规水驱面临"水井注不进、油 井采不出、采油速度低、采收率低"的技术难题^[3-4], 严重影响该类油藏的开发效果。因此,对于特低渗 透油藏,迫切需要研究新的驱油剂和驱油方式。

CO₂易溶于原油且能与原油发生混相,可有效 增加原油流动能力,扩大气驱波及体积,从而大幅 提高原油采收率^[5-7],且同时可实现CO₂地质封存, 兼具良好的经济效益和社会效益。因此,CO₂作为 良好的驱油溶剂,在特低渗透油藏开发方面具有非 常好的应用前景。

特低渗透油藏复杂的孔隙结构使得原油流动 存在启动压力梯度,渗流规律异常复杂,常表现出 非线性渗流特征[8-9]。启动压力梯度的存在使得特 低渗透油藏流体流动和压力传播规律与中、高渗透 油藏存在显著差异,进而导致该类油藏CO,驱开发 效果受到很大的影响。目前,中外对CO2驱的研究 主要集中在驱油机理、技术政策界限等方面[10-18],而 针对特低渗透油藏CO2驱非线性渗流规律的研究相 对较少。张海龙针对吉林油田黑 59 块开展了 CO2 混相驱提高原油采收率实验研究,发现CO2混相驱 能够降低CO,-原油体系的启动压力梯度^[18]。周思 宾针对红河油田致密砂岩油藏注 CO2的可行性进行 了室内评价研究,结果表明红河油田注CO,存在非 线性渗流特征,注CO2最小启动压力梯度比注水小, 与渗透率相关性较差^[19]。杨晶针对榆树林油田开 展了CO2驱渗流规律研究,认为低渗透油藏CO2驱 存在启动压力,且随着渗透率的降低,启动压力梯 度增大[20]。章星等针对吉林油田黑79块开展了 CO,混相驱启动压力梯度实验研究,发现低渗透岩 心压力梯度与流量关系呈凹型分布,存在非线性流 动和线性流动[21]。白素针对榆树林油田树101块开 展了CO2驱渗流规律数值模拟研究,认为启动压力

对 CO₂驱开发效果有重要的影响,渗透率越低其影 响越大^[22]。尽管上述学者们已开展了部分关于 CO₂ 驱渗流规律的研究,但由于不同地区储层物性、流 体物性、温度和压力等条件存在明显差异,因此得 到的研究结果也不尽相同,且没有形成适用于不同 储层条件下 CO₂驱渗流规律的表征模型,故无法计 算其他区块 CO₂驱渗流特征参数,如最小启动压力 梯度等。

高89地区特低渗透油藏是胜利油田CO₂驱开 发技术应用的主阵地,为了揭示该区CO₂驱渗流规 律,基于高89地区特低渗透油藏的岩心和油样,开 展了CO₂与原油相互作用实验研究,并采用不同渗 透率级别的岩心分别开展了CO₂驱渗流规律实验研 究,最终建立了不同渗透率岩心CO₂驱最小启动压 力梯度计算公式和CO₂驱非线性渗流规律表征模 型,为胜利油田特低渗透油藏CO₂驱启动压力梯度 及渗流特征曲线的计算提供了有效方法。

1 CO₂驱渗流规律实验

特低渗透油藏储层孔隙尺度小、孔隙结构复杂,原油流动受孔隙壁面作用影响较大,存在启动 压力梯度,只有当驱替压力梯度高于最小启动压力 梯度时,原油才可以流动。在CO₂驱过程中,随着 CO₂的注入,根据原油中CO₂含量的不同可将注入井 至采油井间的储层划分为5个相带(图1),即CO₂相 带、高CO₂含量原油带、中CO₂含量原油带、低CO₂含 量原油带和原始油相带。

Fig.1 Distribution of different phase zones in CO₂ flooding

为了研究高89地区特低渗透油藏CO2驱替过 程中不同CO2含量原油带的启动压力梯度变化规 律,根据目标储层温度、压力、油气组成及原始气油 比,配制地层原油及不同CO2含量的原油,开展PVT 实验研究,分析CO2对原油性质的影响规律;选取目 标储层岩心,在不同条件下测定原油流速-压力梯 度关系曲线,求取不同CO2含量原油启动压力梯度, 分析CO2驱非线性渗流规律,建立CO2驱原油启动 压力梯度计算公式及CO2驱非线性渗流规律表征模 型。

1.1 实验设备

地层原油及不同CO₂含量原油的配制所用设备 为高精度地层流体PVT分析仪;CO₂驱渗流规律实 验所用设备为高温高压岩心驱替系统,主要由高精 度的微量注入泵、岩心夹持器、围压泵、回压泵、回 压阀、恒温系统及产出流体测量系统组成(图2)。

1.2 实验样品及条件

岩心 实验所用岩心为胜利油田高 89 地区特 低渗透油藏3类不同渗透率级别储层的岩心(表1), G1和G2岩心渗透率小于1 mD,G3和G4岩心渗透 率为1~3 mD,G5和G6岩心渗透率大于3 mD。

	表1 实验所用岩心基础物性
Table1	Basic physical properties of cores used in experiments

	r r	r r		· · · · ·
岩心编号	长度/cm	直径/cm	气测孔隙度/%	气测渗透率/mD
G1	6.560	2.524	13.85	0.15
G2	3.776	2.524	14.63	0.31
G3	5.052	2.524	15.20	2.41
G4	4.706	2.524	15.98	2.21
G5	3.242	2.524	15.12	4.34
G6	4.756	2.524	16.72	15.63

流体 实验用水为根据储层水样组成配制而成的 CaCl,型模拟地层水;实验用油为根据储层油气组

成及原始气油比配制而成的地层原油及添加不同 CO₂含量配制而成的模拟油,用于模拟CO₂注入过程 中原始油相带、低CO₂含量原油带、中CO₂含量原油 带和高CO₂含量原油带的原油。

实验条件 设定实验温度与储层温度一致,即 126℃,CO₂驱渗流规律实验中设定回压高于油样泡 点压力。

1.3 实验步骤

实验步骤主要包括:①配制地层原油;②在已 配制的地层原油中分别加入不同含量的CO₂,制成 不同CO₂溶解气油比(*R*_{co₂})的模拟油;③开展地层原 油及模拟油的PVT实验,测定各油样的泡点压力、 原油密度、原油黏度及体积系数;④岩心抽真空饱 和水,通过称重法测定岩心孔隙度,然后设定回压 高于油样泡点压力,油驱水至束缚水状态,恒温老 化24 h;⑤设定注入泵流量为0.001 mL/min进行油 驱水,待岩心出口段开始有原油流出后,关闭岩心 夹持器上游开关,待压力稳定后记录此时的压力, 即为油样最小启动压力;⑥逐步增加注入泵的流 量,记录不同流量下岩心上下游压力稳定后的压 差;⑦更换不同渗透率的岩心,重复步骤④—⑥。

2 结果及分析

2.1 CO₂对原油性质的影响

配制了 CO₂溶解气油比分别为0,8.71,30.63 和 67.79 m³/m³共4种油样模拟 CO₂注入过程中原始油 相带、低 CO₂含量原油带、中 CO₂含量原油带和高 CO₂含量原油带的原油,并开展了 PVT 实验研究。 不同 CO₂含量的油样物性参数如表2所示。结果表 明,随着地层原油中 CO₂含量的升高,原油饱和压力 和体积系数逐渐升高,密度和黏度均逐渐降低。这 是由于非极性的 CO₂分子易溶于地层原油,使得原 油膨胀,饱和压力升高,体积系数增大。当原油中 的 CO₂溶解气油比由 0(原始地层原油)升高至 67.79

> 表2 不同CO₂含量的油样物性参数 Table2 Physical properties of crude oil samples

	WIL	n unierent C	O_2 content		
油样	$R_{\rm CO_2}/({\rm m}^3\cdot{\rm m}^{-3})$	饱和压力/ MPa	密度/ (g•cm ⁻³)	黏度/ (mPa•s)	体积 系数
油样1	0	15.05	0.783	1.310	1.207
油样2	8.71	15.93	0.769	1.229	1.214
油样3	30.63	17.55	0.761	1.121	1.265
油样4	67.79	21.90	0.750	0.980	1.410

m³/m³时,原油密度由0.783 g/cm³降至0.750 g/cm³,降 幅为4.2%,而原油黏度由1.310 mPa·s降至0.980 mPa·s,降幅为25.2%。由此可见,注入CO₂对于胜 利油田高89地区特低渗透油藏原油具有良好的膨 胀降黏作用。

2.2 CO₂驱原油渗流能力分析

针对胜利油田高 89 地区特低渗透油藏 3 类不同渗透率级别的 6 块岩心,分别采用 4 种油样进行流速-压力梯度关系测定,每组实验分别以 7 种不同流速驱替。由不同油样在不同渗透率岩心中的流速-压力梯度关系曲线(图 3)可见,所有曲线均不通过原点,这种非线性特征表明 CO₂驱油过程中原油存在启动压力梯度。对于不同渗透率的岩心,在相

同压力梯度下不同油样的流速由高到低依次为:油 样4、油样3、油样2和油样1,这表明CO₂含量越高的 原油,在相同压力梯度作用下其流动能力越强。此 外,渗透率越低的岩心,不同油样的流速-压力梯度 曲线越分散,油样流动能力差别越大,而随着岩心 渗透率的增大,不同油样的流速-压力梯度曲线越 集中,CO₂含量对原油流动能力的影响逐渐减小,这 也进一步体现了CO₂驱在特低渗透油藏开发中的优 越性。

由不同CO₂含量的油样在不同渗透率岩心中的 最小启动压力梯度(表3)可知,4种油样在不同渗透 率岩心中的启动压力梯度均随着岩心渗透率的增 加而降低,这表明在渗透率较低的储层中,原油流

图3 不同渗透率岩心中不同CO2含量的油样流速-压力梯度关系曲线

动所需的启动压差更大,而对于渗透率相对较高的 储层,原油流动所需的启动压差则相对较小,如G6 岩心,由于渗透率较高,最小启动压力梯度最低。 胜利油田高89地区特低渗透油藏渗透率差异大、非 均质性强^[23],渗透率较高的砂体条带原油启动压力 梯度较小,易成为CO₂的优势渗流通道,从而可能加 快气窜,降低油藏的最终采收率。

表3	不同 CO_2 含量油样的最小启动压力梯度
Table3 M	linimum threshold pressure gradient of crude oil

		samples wit	h different C	O_2 content			
岩心 编号	渗透 率/mD	不同CO2含量油样的最小启动压力梯度/(MPa					
		油样1	油样2	油样3	油样4		
G1	0.15	0.028 9	0.027 4	0.024 4	0.019 8		
G2	0.31	0.018 6	0.015 9	0.013 3	0.008 0		
G3	2.41	0.007 9	0.006 1	0.005 9	0.004 0		
G4	2.21	0.008 5	0.008 0	0.006 4	0.004 2		
G5	4.34	0.006 2	0.005 4	0.003 1	0.003 1		
G6	15.63	0.003 1	0.002 6	0.001 0	0.001 0		

此外,表3中相同渗透率的岩心中不同油样最 小启动压力梯度均随着油样中CO,含量的增加而降 低。如G1岩心,当原油中CO,溶解气油比为67.79 m³/m³时,相比原始地层原油,最小启动压力梯度降 低了31.5%。这表明注入CO,后孔隙壁面与原油的 相互作用减弱,原油流动性增强,有效改善了特低 渗透油藏中原油的渗流能力。在CO₂注入过程中, 由注入井至采油井,原油中的CO。含量依次降低,近 注入井的高CO2含量原油带与CO2相互作用较强, 由于CO,的膨胀降黏作用及其对原油中轻质组分的 抽提作用,使得原油启动压力梯度降低,原油流动 能力增强;随着与注入井距离的增加,原油中的CO。 含量逐渐降低,中、低CO,含量原油带启动压力梯度 逐渐增大;远离注入井的原始油相带流动能力最 差,启动压力梯度最高。但随着CO2前缘的推进, CO,与原油的接触面积增大,CO,-原油相互作用增 强,油相启动压力梯度会逐渐降低,流动性增强,从 而能够大幅提高原油采收率。

不同油样最小启动压力梯度与岩心渗透率的 关系(图4)表明,渗透率对高89地区特低渗透油藏 中原油的流动能力有显著的影响,对于不同CO₂含 量的原油,最小启动压力梯度均随着渗透率的降低 而升高,当渗透率低于2mD时,最小启动压力梯度 急剧增大,这与水驱最小启动压力梯度变化规律相 似^[24]。这是由于渗透率越低的储层,孔喉结构越复 杂,控制流体通过的喉道越窄,渗流阻力越大,流体 流动所需的启动压差越高。但与水驱不同的是,特 低渗透油藏 CO₂驱最小启动压力梯度明显低于水 驱。研究表明相同条件下水驱最小启动压力梯度 为CO₂驱的2~4倍^[16],且随着渗透率的降低,二者差 异逐渐增大。其主要原因有两个方面:①由于吸附 作用,水被吸附在储层孔隙表面而形成一层水化 膜,导致流体渗流阻力增大,且孔隙越小,水化膜对 流体流动的影响越明显,而CO₂不会产生薄膜,流动 能力强于水;②由于CO₂易溶于原油,使得原油体积 膨胀,黏度降低,且随着压力的升高,CO₂与原油界 面张力逐渐降低直至混相,流体系统流动阻力低。 因此,相比水驱CO₂驱启动压力梯度更低,对于特低 渗透油藏的开发更具优势。

Fig.4 Relationship between minimum threshold pressure gradient and permeability of crude oil samples with different CO₂ content

2.3 CO₂驱最小启动压力梯度计算公式

分析不同CO₂含量的油样在不同渗透率岩心中 的最小启动压力梯度与流度的关系,发现两者呈现 很好的幂函数关系(图5),可表示为:

$$\left(\frac{\Delta P}{L}\right)_{\min} = m \left(\frac{K_{g}}{\mu_{o}}\right)^{n}$$
(1)

图 5 不同 CO₂含量的油样最小启动压力梯度与流度的关系 Fig.5 Relationship between minimum threshold pressure gradient and fluidity of crude oil samples with different CO₂ content

分析常数 m 和 n 与 R_{co₂}的关系(图 6),两者与 R_{co₂}均呈良好的负线性关系,由此可得胜利油田高 89地区特低渗透油藏CO₂驱最小启动压力梯度的计 算公式为:

Fig.6 Relationship between constants m, n and R_{CO_2}

2.4 CO₂驱非线性渗流规律表征模型

分析图3可知,高89地区特低渗透油藏中原油 流动表现出非线性渗流特征,渗流曲线呈"直线段+ 曲线段"的两段式,这与水驱非线性渗流特征相似。 但CO2驱非线性段初始值,即最小启动压力梯度显 著低于水驱最小启动压力梯度。以油样2在G2岩 心中的流速-压力梯度关系曲线为例,分析不同阶 段流速与压力梯度的关系。如图7所示,在压力梯 度较小时,流速与压力梯度呈良好的二次函数关 系,可表示为:

gradient of crude oil sample in Core G2

在压力梯度较大时,流速与压力梯度呈良好的 线性关系,可表示为:

$$q = \alpha \frac{\Delta P}{L} + \beta \tag{4}$$

经分析,在不同压力梯度范围内,4种油样分别 在6块岩心中的流速-压力梯度关系均满足上述的 二次函数关系和线性关系。因此,采用(3)式和(4) 式分别拟合不同油样在不同岩心中的流速-压力梯 度关系曲线,拟合参数如表4所示。

进一步分析参数*a*,*b*,*c*,*α*,*β*与流度的关系可 知,*a*和*b*分别与流度呈二次函数关系,*α*和*β*与流度 分别呈对数函数关系,即:

$$a = 0.332 \ 3 \left(\frac{K_{\rm g}}{\mu_{\rm o}}\right)^2 - 0.034 \frac{K_{\rm g}}{\mu_{\rm o}} + 0.052 \ 6$$
$$R^2 = 0.955 \ 2 \tag{5}$$

$$b = 0.0107 \left(\frac{K_{\rm g}}{\mu_{\rm o}}\right)^2 - 0.019 \frac{K_{\rm g}}{\mu_{\rm o}} + 0.0085$$

$$R^2 = 0.6524 \qquad (6)$$

$$K_{\rm g}$$

$$\alpha = 0.307 \, 3 \ln \frac{\kappa_{\rm g}}{\mu_{\rm o}} + 0.406 \, 4 \quad R^2 = 0.784 \, 8 \tag{7}$$

$$\beta = -0.003 \, 1 \ln \frac{K_g}{\mu_o} - 0.006 \qquad R^2 = 0.822 \, 6 \quad (8)$$

$$c = 0.000\,25$$
 (9)

参数 c 与流度无明显关系,且不同条件下 c 值接 近,故取其平均值为0.000 25。结合(3)—(9)式,根 据目标区块储层岩心的渗透率和原油黏度,则可近 似求得该区块的流速-压力梯度关系曲线。

3 结论

胜利油田高 89地区特低渗透油藏 CO2驱过程 中油相流动呈现明显的非线性渗流特征,渗流曲线 表现为"直线段+曲线段"的两段式,直线段的流速 与压力梯度呈良好的线性关系,曲线段的流速与压 力梯度呈现良好的二次函数关系。CO2溶于原油后 由于膨胀降黏作用,使得 CO2驱最小启动压力梯度 明显低于水驱最小启动压力梯度,且原油中 CO2含 量越高,原油渗流能力越强,渗流曲线非线性段变 短;CO2驱最小启动压力梯度与流度呈良好的幂函 数关系,随着流度的增加,原油启动压力梯度显著 降低。基于 CO2驱过程中油相的非线性渗流规律, 考虑特低渗透油藏渗透率及原油黏度的影响,建立 了高 89地区特低渗透油藏 CO2驱最小启动压力梯

岩心 油样 编号	24.4%	$(K_{\rm g}/\mu_{\rm o})/$	拟		合	参	数
	油作	$\left[mD \cdot (mPa \cdot s)^{-1} \right]$	a	b	с	α	β
油样 G1 油样: 油样: 油样:	油样1	0.115	0.053 06	0.001 39	-0.000 05	0.004 69	-0.000 42
	油样2	0.122	0.053 40	0.001 96	-0.000 06	0.006 21	-0.000 50
	油样3	0.134	0.054 00	0.003 23	-0.000 09	0.009 14	-0.000 64
	油样4	0.153	0.055 18	0.004 57	-0.000 11	0.014 83	-0.000 74
	油样1	0.237	0.063 16	0.006 95	-0.000 15	0.021 53	-0.000 83
C 2	油样2	0.252	0.038 23	0.010 26	-0.000 17	0.025 12	-0.000 93
62	油样3	0.277	0.068 61	0.007 49	-0.000 12	0.027 87	-0.000 87
	油样4	0.316	0.075 10	0.008 16	-0.000 08	0.031 98	-0.000 6
油	油样1	1.840	1.114 71	0.007 20	-0.000 10	0.420 60	-0.010 9
	油样2	1.961	1.263 72	0.012 00	-0.000 10	0.420 60	-0.010 1
63	油样3	2.150	1.515 37	0.033 70	-0.000 20	0.420 60	-0.008 40
	油样4	2.459	1.978 60	0.024 60	-0.000 10	0.441 70	-0.006 8
	油样1	1.687	0.940 98	0	-0.000 07	0.176 80	-0.005 0
64	油样2	1.798	1.065 97	0.006 72	-0.000 13	0.185 70	-0.004 6
G4	油样3	1.971	1.277 10	0.011 21	-0.000 11	0.201 30	-0.004 7
	油样4	2.255	1.665 83	0.006 97	-0.000 06	0.190 80	-0.003 3
	油样1	3.313	3.587 22	0.062 99	0.001 40	0.881 40	-0.015 0
05	油样2	3.531	4.076 40	0.074 84	0.004 30	0.730 30	-0.010 1
65	油样3	3.872	4.901 76	0.095 32	0.000 50	0.898 70	-0.012 1
	油样4	4.429	6.419 18	0.134 21	0.001 60	0.974 00	-0.009 3
	油样1	11.931	46.951 79	1.305 01	0	1.251 90	-0.014 20
G6	油样2	12.718	53.366 00	1.497 47	0	1.519 50	-0.017 7
	油样3	13.943	64.179 22	1.823 71	0	1.760 20	-0.019 70
	油样4	15.949	84.037 47	2.427 23	0	1.617 40	-0.013 2

表4 不同油样在不同渗透率岩心中流速-压力梯度关系曲线拟合参数

度计算公式和CO2驱非线性渗流规律表征模型。

符号解释

a,*b*,*c*,*α*,*β*——与储层物性、原油性质有关的参数;

 K_{a} ——岩心气测渗透率,mD;

L---岩心长度, cm;

m,n——与原油性质有关的常数;

q——流速,cm/min;

R_{co},——CO₂在原油中的溶解气油比,本文指单位体积地

面脱气油在地层条件下溶解的CO2的标准体积,m³/m³;

ΔP----最小启动压差, MPa;

 μ_{o} ——储层条件下油相的黏度,mPa·s。

参考文献

[1] 刘小波.CO,混相驱技术在特低渗透滩坝砂油藏的开发实践及 效果评价[J].油气地质与采收率,2020,27(3):113-119. LIU Xiaobo. Application and evaluation of CO2 miscible flooding

in extra-low permeability beach-bar sand reservoirs [J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3):113-119.

[2] 李金志.胜利油田低渗透油藏CO,混相驱合理注采井距研究 [J].油气地质与采收率,2020,27(3):64-69.

LI Jinzhi. Reasonable well spacing for CO_2 miscible flooding in low-permeability reservoirs of Shengli Oilfield [J].Petroleum Geology and Recovery Efficiency, 2020, 27(3):64-69.

- [3] 束青林,郭迎春,孙志刚,等.特低渗透油藏渗流机理研究及应 用[J].油气地质与采收率,2016,23(5):58-64. SHU Qinglin, GUO Yingchun, SUN Zhigang, et al. Research and application of percolation mechanism in extro-low permeability oil reservoir [J]. Petroleum Geology and Recovery Efficiency, 2016,23(5):58-64.
- [4] 阳晓燕.非均质油藏水驱开发效果研究[J].特种油气藏,2019, 26(2):152-156.

YANG Xiaoyan. Waterflood development effect study of heterogeneous reservoir [J]. Special Oil & Gas Reservoirs, 2019, 26(2): 152-156.

[5] AZZOLINA N A, NAKLES D V, GORECKI C D, et al.CO₂ storage associated with CO2 enhanced oil recovery: A statistical analysis of historical operations [J]. International Journal of Greenhouse Gas Control, 2015, 37(3): 384–397.

- [6] 龙冕,齐桂雪,冯超林.二氧化碳混相与非混相驱油技术研究 进展[J].中外能源,2018,23(2):18-26.
 LONG Mian, QI Guixue, FENG Chaolin.Research progress of miscible and immiscible carbon dioxide flooding[J].Sino-Global Energy,2018,23(2):18-26.
- [7] 杨勇.胜利油田特低渗透油藏CO₂驱技术研究与实践[J].油气 地质与采收率,2020,27(1):11-19.
 YANG Yong.Research and application of CO₂ flooding technology in extra-low permeability reservoirs of Shengli Oilfield[J].Petroleum Geology and Recovery Efficiency,2020,27(1):11-19.
- [8] 李玉丹,董平川,张荷,等.低渗透油藏渗透率及启动压力梯度 应力敏感性分析[J].油气地质与采收率,2016,23(6):57-63.
 LI Yudan, DONG Pingchuan, ZHANG He, et al.Stress sensitivity analysis of permeability and threshold pressure gradient in lowpermeability reservoir [J]. Petroleum Geology and Recovery Efficiency,2016,23(6):57-63.
- [9] 熊伟,雷群,刘先贵,等.低渗透油藏拟启动压力梯度[J].石油 勘探与开发,2009,36(2):232-236.
 XIONG Wei,LEI Qun,LIU Xiangui, et al.Pseudo threshold pressure gradient to flow for low permeability reservoirs[J].Petroleum Exploration and Development,2009,36(2):232-236.
- [10] 曹小朋,冯其红,杨勇,等.CO₂-原油混相带运移规律及其对开 发效果的影响[J].油气地质与采收率,2021,28(1):137-143.
 CAO Xiaopeng, FENG Qihong, YANG Yong, et al. Migration law of CO₂-crude oil miscible zone and its influence on development effect [J]. Petroleum Geology and Recovery Efficiency, 2021, 28 (1):137-143.
- [11] 张东,刘显太,刘彦东,等.CO₂驱合理注入量计算方法[J].油气 地质与采收率,2020,27(1):107-112.
 ZHANG Dong,LIU Xiantai,LIU Yandong, et al.Calculation method of reasonable injection amount of CO₂ flooding[J].Petroleum Geology and Recovery Efficiency,2020,27(1):107-112.
- [12] 史云清,贾英,潘伟义,等.致密低渗透气藏注CO₂提高采收率 潜力评价[J].天然气工业,2017,37(3):62-69.
 SHI Yunqing,JIA Ying,PAN Weiyi, et al.Potential evaluation on CO₂-EGR in tight and low-permeability reservoirs [J]. Natural Gas Industry,2017,37(3):62-69.
- [13] BIKKINA P, WAN Jiamin, KIM Y, et al. Influence of wettability and permeability heterogeneity on miscible CO₂ flooding efficiency [J].Fuel,2016,166:219–226.
- [14] FIROUZ A Q, TORABI F.Utilization of carbon dioxide and methane in huff-and-puff injection scheme to improve heavy oil recovery[J].Fuel, 2014, 117:966–973.
- [15] PU Wanfen, WEI Bing, JIN Fayang, et al. Experimental investigation of CO₂ huff-and-puff process for enhancing oil recovery in tight reservoirs [J]. Chemical Engineering Research and Design, 2016,111:269-276.
- [16] 于友,魏建光,张宝忠,等.低渗透油藏常规水驱与二氧化碳驱

并距界限研究[J].特种油气藏,2021,28(2):120-125.

YU You, WEI Jianguang, ZHANG Baozhong, et al. Study on well spacing limit for conventional water flooding and carbon dioxide flooding in low-permeability reservoirs[J].Special Oil & Gas Reservoirs, 2021, 28(2):120-125.

- [17] 李阳.低渗透油藏CO₂驱提高采收率技术进展及展望[J].油气 地质与采收率,2020,27(1):1-10.
 LI Yang.Technical advancement and prospect for CO₂ flooding enhanced oil recovery in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):1-10.
- [18] 张海龙.CO₂混相驱提高石油采收率实践与认识[J].大庆石油 地质与开发,2020,39(2):114-119.
 ZHANG Hailong.Practice and understanding of enhancing the oil recovery by CO₂ miscible flooding[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(2):114-119.
- [19] 周思宾.红河致密砂岩油藏注 CO₂可行性室内评价研究[J].石 油化工高等学校学报,2019,32(1):41-46.
 ZHOU Sibin.Feasibility study of CO₂ flooding in Honghe tight oil reservoir[J].Journal of Petrochemical Universities, 2019, 32(1): 41-46.
- [20] 杨晶.CO₂驱油非达西渗流理论模型研究及应用[D].大庆:东 北石油大学,2011.

YANG Jing.Research and application on Non–Darcy flow theorical model of CO₂ flooding[D].Daqing: Northeast Petroleum University, 2011.

- [21] 章星,杨胜来,文博,等.低渗油藏CO₂混相驱启动压力梯度实验研究[J].石油实验地质,2013,35(5):583-586.
 ZHANG Xing, YANG Shenglai, WEN Bo, et al. Experimental study on threshold pressure gradient of CO₂ miscible flooding in low permeability reservoir[J].Petroleum Geology & Experiment, 2013,35(5):583-586.
- [22] 白素.榆树林油田CO2驱非线性渗流数值模拟研究[D].大庆: 东北石油大学,2011.
 BAI Su.Numerical simulation research on Non-Darcy flow of CO2 flooding in Yushulin Oilfield [D]. Daqing: Northeast Petroleum University,2011.
- [23] 曹绪龙, 吕广忠, 王杰, 等. 滩坝砂特低渗透油藏 CO₂驱油技术 及应用[J].油气藏评价与开发, 2019, 9(3):41-46.
 CAO Xulong, LÜ Guangzhong, WANG Jie, et al. Technology and application of CO₂ flooding in ultra-low permeability beach-bar sand reservoir[J].Reservoir Evaluation and Development, 2019, 9 (3):41-46.
- [24] 杨钊.大庆外围低渗透油田分类方法及开发对策研究[D].大 庆:东北石油大学,2010.

YANG Zhao. Study on Daqing peripheral low permeability reservoir classification method and development countermeasures [D]. Daqing:Northeast Petroleum University, 2010.

编辑 经雅丽