文章编号:1009-9603(2023)02-0044-09

DOI:10.13673/j.cnki.cn37-1359/te.202212015

低渗透-致密油藏CO2驱油与封存协同评价方法

曹小朋¹,熊 英²,冯其红¹,赵乐坤³,张世明⁴,刘同敬⁵,王 森¹,杨雨萱¹
(1.中国石油大学(华东)石油工程学院,山东青岛 266580; 2.中国石油大港油田分公司 采油工艺研究院,天津 300280;
3.中国石油大学(北京)石油工程学院,北京 102249; 4.中国石化胜利油田分公司 勘探开发研究院, 山东东营 257015; 5.中国石油大学(北京)克拉玛依校区石油学院,新疆克拉玛依 834000)

摘要:针对目前 CO₂驱油与封存(CCUS-EOR)油藏工程理论缺少对 CO₂驱油与封存协同评价指标及协同评价方法 相关研究的问题,从 CO₂驱油与封存双目标协同设计的角度出发,明确 CO₂驱油与封存油藏工程方案设计原则,构 建 CO₂驱油与封存油藏工程评价指标体系。分析驱油与封存双目标评价指标间的内在联系,构建 CO₂驱油指数和 CO₂埋存指数。在此基础上,构建 CO₂驱油与封存油藏工程协同评价指标:CO₂驱油与封存协同指数,建立 CO₂驱油 与封存协同评价模型,形成 CO₂驱油与封存协同评价方法。低渗透-致密油藏试验井区的应用实例表明,该协同评 价方法有助于明确 CO₂驱油与封存油藏工程方案中关键注采参数的技术政策界限,所推荐方案能够同时实现驱油 效果好和埋存量大的双重目标。

关键词:CO₂驱油与封存;协同评价;评价指标;评价模型;评价方法
 中图分类号:TE34
 文献标识码:A

Collaborative evaluation method of CO₂ flooding and storage in low-permeability and tight reservoirs

CAO Xiaopeng¹, XIONG Ying², FENG Qihong¹, ZHAO Lekun³, ZHANG Shiming⁴, LIU Tongjing⁵, WANG Sen¹, YANG Yuxuan¹

(1.School of Petroleum Engineering, China University of Petroleum(East China), Qingdao City, Shandong Province, 266580, China;
2.Oil Processing Research Institute, Dagang Oilfield Company, PetroChina, Tianjin City, 300280, China;
3.College of Petroleum Engineering, China University of Petroleum(Beijing), Beijing City, 102249, China;
4.Exploration and Development Research Institute, Shengli Oilfield Company, SINOPEC, Dongying City, Shandong Province, 257015, China;
5.Petroleum Institute, China University of Petroleum–Beijing at Karamay, Karamay, Xinjiang, 834000, China)

Abstract: Research on collaborative evaluation indexes and methods of CO_2 flooding and storage technology (CCUS-EOR) in reservoir engineering theory of CO_2 flooding and storage is few. Therefore, from the perspective of collaborative design of CO_2 flooding and storage, the design principles of CO_2 flooding and storage reservoir engineering scheme were defined, and the evaluation index system of CO_2 flooding and storage reservoir engineering was constructed. The internal relationships between the evaluation indexes of CO_2 flooding and storage were analyzed, and two new indexes were constructed; CO_2 flooding index and CO_2 storage index. On this basis, the collaborative evaluation index of CO_2 flooding and storage reservoir engineering was constructed, namely the synergy index of CO_2 flooding and storage, the collaborative evaluation model of CO_2 flooding and storage was established, and the collaborative evaluation method of CO_2 flooding and storage was formed. The practical application in low-permeability and tight reservoir test wells shows that the collaborative evaluation method is helpful to clarify the technical policy limits of the key injection and production parameters in the CO_2 flooding and storage reservoir engineering scheme, and the recommended scheme can simultaneously achieve positive oil flooding effect and large storage volume.

收稿日期:2022-12-15。

作者简介:曹小朋(1983—),男,山东东营人,研究员,在读博士研究生,从事油气田开发与提高采收率研究。E-mail:caoxiaopeng.slyt@sin-opec.com。

通信作者:冯其红(1969—),男,四川南充人,教授,博导。E-mail:fengqihong@126.com。

基金项目:国家重点研发计划项目"CO2驱油技术及地质封存安全监测"(2018YFB0605500)。

Key words: CO2 flooding and storage; collaborative evaluation; evaluation indexes; evaluation model; evaluation method

2006年北京香山会议,中国专家学者首次提出 了碳捕集、利用与封存(Carbon Capture, Utilization and Storage,简称 CCUS)的概念^[1]。CCUS 是基于联 合国气候变化委员会提出的碳捕集与封存(Carbon Capture and Storage,简称 CCS)技术,增加了对碳的 利用(Utilization)概念^[1-2]。目前,油气行业针对碳 利用的主要途径是 CO₂强化采油和资源化利 用^[1,3-4]。其中,CO₂驱油与封存技术(CCUS-EOR)是 实现 CO₂利用和封存有机统一的一种重要方式^[5-6], 是将所捕集的 CO₂通过注入井注入到目的层,以达 到提高原油采收率的同时将 CO₂进行有效地质封存 的目的。CCUS-EOR 可实现经济效益和环境保护 的双赢,对控制全球温室效应和促进中国经济可持 续发展具有极其重要的社会意义。

国外 CO₂驱油技术始于 20世纪 50 年代, 驱油效 果好、技术发展快,目前已逐渐成为北美地区提高 原油采收率的主要手段^[7-9]。中国 CO₂驱油技术受 油藏条件、配套技术、经济效益等多方面因素的制 约,发展相对缓慢。其中,大庆油田早在 20世纪 60 年代开展了 CO₂驱提高采收率方法探索, 胜利、江苏 等多个油田在 90 年代陆续开展了 CO₂驱先导性试 验,但都没有形成规模应用^[5]。2000年以来由于全 球碳排放问题日益严重, 国际社会把 CCS-EOR 作 为碳减排的主要技术进行攻关和推广, 从而促进了 中国 CCUS-EOR 的研究和发展^[10-12]。近年来针对 中国低渗透-致密油藏, CCUS-EOR 在 CO₂驱油理 论、开发技术、注采工艺技术等方面都取得了重要 进展,已经步入快速发展阶段, 但总体上还处于基 础研发和小规模示范阶段^[5]。

目前CCUS-EOR油藏工程理论研究主要集中 在:CO2驱油与封存潜力评估^[13-15]、CO2驱油与封存 协同机理^[16-18]、CO2驱油与封存优化方法^[19-20]、CO2 驱油与封存渗流规律^[21-23]、CO2驱油与封存油藏经 济评价等方面^[24-26],缺少对CO2驱油与封存协同评 价指标及协同评价方法的研究。因此,从CO2驱油 与封存协同设计的角度出发,首先明确CO2驱油与 封存油藏工程方案设计原则,构建CO2驱油与封存 油藏工程评价指标间的内在联系,构建CO2驱油与封 存油藏工程协同评价指标,最终建立CO2驱油与封 存油藏工程协同评价指标,最终建立CO2驱油与封 存加藏工程协同评价指标,最终建立CO2驱油与封 础具有非常重要的现实意义。

1 CO₂驱油与封存油藏工程评价指标 体系

1.1 方案设计原则

单纯考虑 CO₂驱油强化油藏开发时,更加重视 驱油作用和驱油效果。因此,通常采用增油量、阶 段产油量、增加采收率或者采收率作为核心评价指 标,进行 CO₂驱油方案设计。进行 CCUS-EOR 油藏 开发设计时,既要考虑 CO₂驱油效果,又要兼顾 CO₂ 封存效果,即实现双目标下的 CO₂驱油与封存协同 设计。因此,CO₂驱油与封存油藏工程方案设计,不 能仅以反映 CO₂驱油与封存油藏工程方案设计,不 能仅以反映 CO₂驱油为果的核心评价指标作为设计 目标,还需结合 CCUS-EOR 在油藏开发以及 CO₂埋 存过程中各阶段物理化学过程时间上和空间上的 相互作用,来综合考虑能够反映 CO₂驱油与封存双 目标的油藏工程评价指标体系。

基于近年来中国实施 CCUS-EOR 油藏开发的 成功案例和经验总结,提出了 CO₂驱油与封存油藏 工程方案设计原则,其内涵主要包括3个方面:①油 层物理、渗流力学、油藏工程、油田化学等多学科、 多层次的有序融合。②优化油藏参数、流体作用、 开发控制、过程调整、堵调配套等多种因素在时空 域的相互作用。③同时实现驱油效果好和埋存比 例高的双重设计目标。明确 CO₂驱油与封存油藏工 程方案设计原则,对科学建立 CO₂驱油与封存油藏 工程评价指标体系具有非常重要的指导意义。

1.2 评价指标

目前中外相关文献没有对埋存和封存这2个概 念的区别给出具体的解释或说明,但在中国近年来 CCUS-EOR油藏开发实践中,对埋存和封存这2个 概念的理解和应用是存在一定区别的。因此,在建 立 CO₂驱油与封存油藏工程评价指标前,首先需要 明确二者的具体内涵和区别。其中,埋存是指 CO₂ 从地面到地下的注入过程,以及部分注入 CO₂从地 下产出或泄漏的过程,反映了 CO₂注入地下后的动 态变化过程;封存是指 CO₂注入地下后不再有产出 或泄漏的一种静态特征,反映了 CO₂注入地下后的 相对静止状态。由此可见,在 CO₂驱油与封存油藏 工程方案设计过程中,CO₂封存侧重于反映目的和 目标,CO₂埋存侧重于反映方法和过程。

基于CO2驱油与封存油藏工程方案设计原则,

建立了CO₂驱油与封存油藏工程评价指标体系,常 用评价指标如图1所示。其中,阶段产油量、阶段采 出程度、累积增油量、累油换油率、动态换油率、累 积增油换油率这6项指标属于兼具驱油效果和埋存 状况的评价指标,但阶段产油量、阶段采出程度、累 积增油量(前3项)与累油换油率、动态换油率、累积 增油换油率(后3项)在多数情况下又是互相背离的 一对矛盾,即:从气驱过程控制的角度,推荐后3项 作为驱油效果的评价指标,而前3项作为埋存状况 的评价指标。若要实现CO₂驱油与封存的协同评 价,必须合理选择双目标下单一的评价指标,来构 建CO₂驱油与封存油藏工程协同评价指标。

CCUS-EOR 注入 CO₂ 埋存与赋存 分析

2.1 注入CO₂埋存状况分析

油藏是目前国际上公认的比较理想的CO2封存

场所,由于油藏自身的成藏特性决定了其具有良好的储层稳定性和密封性^[13]。因此,通过CCUS-EOR进行CO₂驱油与封存是中国兼顾经济生产和实现 "碳达峰、碳中和"目标的有效方法之一^[7],然而地质 特征的复杂性、生产设备的完整性以及工艺技术的 先进性等都是制约CCUS-EOR能否实现CO₂驱油与 封存油藏工程设计方案预期效果的影响因素。

CO2通过CCUS-EOR注入到地下后,其埋存状况主要表现为产出、封存和泄漏3种类型^[10],详见表1。其中,有利于提高驱油效果的CO2主要以溶解态和少量气态的形式随油气水等产出液从生产井产出;有利于封存效果的CO2主要以地质构造俘获、束缚空间俘获、溶解俘获和矿化俘获4种方式封存于地下^[13];而生产井气窜以及各种情况引起的CO2泄漏则均不利于CO2驱油与封存,其中,前者对驱油的影响更大,后者对封存的影响更大,尤其是后者,不但直接影响CO2封存效果,还会造成环境污染和安全隐患。因此,明确CO2注入地下后的埋存状况对

图1 CO2驱油与封存油藏工程评价指标

Fig.1 Evaluation indexes of CO2 flooding and storage reservoir engineering

表1 CCUS-EOR的CO₂埋存状况 Table1 CO₂ storage status of CCUS-EOR

CO2埋存类型	CO2埋存方式	CO2封存机理及产出泄漏原因	CO2赋存状态	对CCUS-EOR 贡献
产出	生产井产出	溶解于原油的CO2随原油从生产井产出	气态、溶解态	有利于驱油
	生产井气窜	注入 CO ₂ 未溶解于原油,沿储层裂缝、裂隙、 高渗透通道等部位从生产井快速产出	气态	对驱油与封存都不利
封存	地质构造俘获	CO2通过浮力运移并密封在盖层中	游离态	有利于封存
	束缚空间俘获	CO2通过毛管力作用填充岩石孔隙	游离态	有利于封存
	溶解俘获	CO2迁移并溶解于地层流体中	溶解态	有利于封存
	矿化俘获	CO2与岩石反应形成固态碳酸盐矿物	矿化态	有利于封存
泄漏	井筒泄漏	井筒破损或被CO2与水形成的弱酸腐蚀	气态、游离态	对驱油与封存都不利
	废弃井泄漏	废弃井破损或封闭不严导致 CO2 泄漏	气态、游离态	对驱油与封存都不利
	地质构造泄漏	储层裂缝、裂隙和地质断层等导致CO2窜逸	气态、游离态	对驱油与封存都不利

指导CO2驱油与封存油藏工程评价非常重要。

2.2 注入CO2赋存特征分析

赋存是指CO₂注入地下后的存在条件、存在形 式和表现相态,现有研究表明,CCUS-EOR封存CO₂ 主要通过4种方式:地质构造俘获、束缚空间俘获、 溶解俘获和矿化俘获。虽然每种方式对应的CO₂封 存机理和CO₂埋存量各不相同,但CO₂在地层中的 赋存状态并非一成不变^[27-28];随着时间推移,原本束 缚空间封存的CO₂会变成残留气体并溶解于原油和 地层水中,而残留和溶解的CO₂又会与岩石反应,并 将部分CO₂转变为碳酸盐矿物^[13]。因此,通过 CCUS-EOR封存CO₂后,CO₂在地层中的赋存状态和 埋存比例都是动态变化的。CO₂在地层中的赋存状 态及转化关系如图2所示。

of CO_2 in reservoirs

鉴于通过CCUS-EOR 注入的 CO₂被封存后,赋 存状态主要以游离态和溶解态为主,矿化态比例极 少(可忽略不计),且其他赋存状态若转化为矿化态 需要极其漫长的时间。因此,在 CO₂驱油与封存油 藏工程方案设计和评价过程中,主要考虑游离态和 溶解态的 CO₂比例和埋存量。以低渗透-致密均质 油藏 CO₂混相驱为例,利用数值模拟方法,得到混相 驱条件下油藏中 CO₂赋存状态和埋存比例的动态变 化(图3),可以看出,随着注气量增加,CO₂突破后从 生产井产出;虽然油藏的采出程度继续增加,但 CO₂ 埋存比例下降,且 CO₂在地层中的赋存状态由突破

and storage rate in reservoirs

前的溶解态转变为以游离态为主、溶解态为辅。

3 CO₂驱油与封存协同评价方法

3.1 油藏工程评价指标分析

以低渗透-致密均质油藏CO₂混相驱为例,利用 数值模拟方法,得到混相驱条件下油藏中CO₂埋存 量与累油换油率的动态变化关系(图4),可以看出, 随着采出程度(产油量)的增加,累油换油率和CO₂ 埋存量此消彼长,而CO₂埋存量与采出程度(或者累 积增油量、阶段产油量)之间呈单调正相关的变化 关系,且较为接近线性关系。因此,可以采用累油 换油率(或者累积增油换油率)作为CO₂驱油效果评 价指标,以累积增油量(或者阶段产油量、采出程 度)作为CO₂埋存状况评价指标。

Fig.4 Dynamic change of CO₂ storage volume and cumulative oil change rate in reservoirs

3.2 协同评价模型

基于 CO₂驱油与封存油藏工程评价指标体系, 以及兼具驱油效果和埋存状况的评价指标的内在 关系,采用累积增油量(评价 CO₂埋存状况)和累积 增油换油率(评价 CO₂驱油效率),构建 CO₂驱油指 数和 CO₂埋存指数。在此基础上,构建 CO₂驱油与 封存油藏工程协同评价指标:CO₂驱油与封存协同 指数,建立 CO₂驱油与封存协同评价模型。

CO₂驱油指数的定义及表达式为: CO₂驱油指数 =

 $\begin{bmatrix} \dot{\mu} - f x x x x x + \frac{1}{2} - f x + \frac{1}{$

CO₂驱油与封存协同评价模型的函数表达式为:

$$CO_2$$
驱油与到存仍同指数 – CO_2 驱油指数 ^m × CO_2 埋存指数 ⁿ (3)

一般情况下,(3)式中*m*=1,*n*=1。从CO₂驱油与 封存协同设计的角度考虑,若CO₂驱油与封存协同 指数越大则该方案越可取,具体方案设计参数可以 通过数值模拟得到。如果想突出埋存的重要性,则 增大*n*值;反之,如果想突出驱油的重要性,则增大 *m*值,一般取值为0.3~2。

以低渗透-致密均质油藏CO₂混相驱为例,利用 数值模拟方法,得到混相驱条件下CO₂驱油与封存 协同指数变化规律(图5),可以看出,最优推荐方案 应选CO₂驱油与封存协同指数的最大值所对应的方 案,然而在理想状态下,CO₂驱油与封存协同指数的 最大值正好对应CO₂驱油指数和CO₂埋存指数变化 曲线的交汇点。

图 5 CO₂驱油与封存协同指数变化规律 Fig.5 Change law of synergy index of CO₂ flooding and storage

4 CO2驱油与封存协同评价实例

基于所建立的 CO₂驱油与封存协同评价方法, 针对中国低渗透-致密油藏,开展 CO₂驱油与封存油 藏工程方案设计与协同评价研究,确定关键注采工 艺参数对 CO₂驱油与封存协同效果的影响规律及技 术政策界限,为低渗透-致密油藏 CO₂驱油与封存油 藏工程方案优化设计和协同评价提供科学依据。

4.1 试验井区概况

试验井区为中国中西部地区典型的低渗透-致 密油藏,孔隙度主要为7%~12%,平均值为9.6%, 渗透率主要为0.1~5 mD,平均值为0.94 mD。该油 藏于1991年投入试采,先后经历了试油试采、规模 建产、注水开发3个开发阶段。2003年投入开发, 2006年年产油量达到12.3×10⁴ t后,产能呈现快速 递减趋势;2007—2012年,该油藏的阶段产量递减 率为11.2%。因此,2011年后进行了注采井网完善、 注采系统建立等开发调整策略,使产量递减情况得 到明显改善。至2019年,该油藏通过注水开发已不 能解决地层能量补充困难的问题,亟需采取合适的 EOR技术改善油藏开发效果。

鉴于该油藏靠近气源且运输便利,具备良好的 CCUS-EOR适应性和可行性。因此,在该油藏选取 了19个井组,作为CO₂驱油与封存试验井区。试验 井区为不规则反七点井网,共有注气井19口(含3 口注水井转注气和16口设计注气井),采油井69口 (含65口采油井和4口未投产新井),井网密度为 17.2口/km²,井距为150~350m。针对各井组生产状 况差异大的情况,需要对试验井区内的所有井组进 行分类,以便为后续注采参数优化奠定基础。将试 验井区的井组依据油井类型分为3类(图6):含水稳 定且含水率低的油井(一类油井)属于一类井组、全 程中-特高含水率的油井(二类油井)属于二类井 组、水窜油井(三类油井)属于三类井组。

图 6 试验井区井组类型平面分布示意 Fig.6 Plane distribution of well group types in test well area

4.2 试验井区油藏工程方案设计

基于所建立的CO₂驱油与封存协同评价方法, 利用油藏数值模拟方法对试验井区的3类注气井组 进行CO₂驱油与封存油藏工程方案关键注采参数优 化研究,主要包括:注气方式、注气速度、合理注气 时机(控制注气前的注水时间)、初期采油速度(控 制采油井的井底流压)、压力恢复方式(控制采油井 的关井时间),各参数的水平取值详见表2。

根据油藏实际地质特征和流体特征参数,首先 建立试验井区地质模型,然后根据试验井区的实际 开发动态数据建立油藏数值模拟模型。模型三维 网格尺寸为30 m×30 m×2 m,网格总数为133×102×

Table2 Design schemes for optimizing key injection and production parameters								
参数水平	注气方式	注气速度/(t•d-1)	合理注气时机/a	井底流压/MPa	压力恢复方式/月			
1	连续注气(GAS)	0	0	0.5	0			
2	注水3个月+注气3个月(WAG1:1)	10	0.5	1.5	3			
3	注水3个月+注气6个月(WAG1:2)	20	1	3				
4	注水6个月+注气3个月(WAG2:1)	30	3					
5	连续注气2a后WAG1:1(2GASWAG1:1)	40	5					
6	连续注气2a后WAG1:2(2GASWAG1:2)							
7	连续注气5a后WAG1:1(5GASWAG1:1)							

表 2 关键注采参数优化设计方案 Table 2 Design schemes for optimizing key injection and production parameter

55共计746130个。利用该油藏数值模拟模型进行 开发历史拟合,拟合结果如图7所示,其中,区块日 产液量误差为3.4%,区块日产油量误差为1.89%。 试验井区的整体拟合效果较好,因此认为该模型能 够真实反映试验井区的开发历史,可以满足后续方 案优化设计需求。

4.3 注采参数优化与协同评价

注采参数优化以注气井组为基本单元,采用井 组累积增油量与井组累积增油换油率作为CO₂驱油 与封存油藏工程评价指标。相关指标计算公式如 下:

并组累油换油率
$$(t/t) = \frac{#组累积产油量(t)}{#组累积注气量(t)}$$
 (4)

井组累积增油量(t)=井组气驱累积产油量(t)-

以试验井区中的一类井组为例,说明应用CO₂ 驱油与封存协同评价方法对注气方式这项参数进 行注采参数优化与协同评价的具体过程。首先根 据表3中注气方式的水平取值,对7个水平方案进 行数值模拟运算;然后根据数值模拟得到的各单井 开发期内的产出数据,与连续水驱方案(沿用之前 注水制度)进行对比,应用(4)—(6)式分别计算出 井组的累积产油量、累油换油率、累积增油量、累积 增油换油率等综合评价指标;接着应用(1)—(3)式 分别计算出井组的CO₂驱油指数、CO₂埋存指数以及 CO₂驱油与封存协同指数;最后根据上述计算结果 绘制出不同注气方式情况下,一类井组CO₂驱油与 封存协同评价指标关系曲线(图8)。

Fig.8 Collaborative evaluation index relationship curves of CO₂ flooding and storage in the first type of well group(gas injection method preferred)

从图8中可以看出,CO₂驱油指数最大时对应的 方案是WAG2:1,CO₂埋存指数最大时对应的方案 是2GASWAG1:1,从2个指标对应曲线的交汇关系 判断,最优注气方式偏向于推荐WAG1:1,该结论与 目前很多文献的研究结论一致。但这个结论存在 很大的不确定性,因为这2个指标在不同方案条件 下数值差距较大,交汇点不一定是CO₂驱油与封存 协同效果的最优结合点,因此需要结合CO₂驱油与 封存协同指数进行判断。在*m*=1且*n*=1的情况下, 一方面,方案WAG1:1和2GASWAG1:1对应的CO₂ 驱油与封存协同指数虽然比较接近,但方案2GAS- WAG1:1的指标值更大;另一方面,方案 2GAS-WAG1:1对应的CO₂埋存指数最大且能够兼顾驱油与封存双目标。因此,推荐一类井组的最优注气方式为2GASWAG1:1,即连续注气2a后WAG1:1。

采用同样的方法可以得到其他注采参数,以及 其他类型并组对应注采参数的优化评价结果。由 于低渗透油藏采油速度难以维持稳定,因此,采用 井底流压作为初期采油速度优化的控制参数。试 验井区 CO₂驱油与封存油藏工程方案关键注采参数 优化设计结果详见表3。

根据表3中关键注采参数的优化设计结果,编

Table 3 Optimized design results of key injecti

井组类型 注气方式 注气速度/(t・d ⁻¹) 合理注气时机/a 井底流压/MPa 压力恢复方式 -一类井组 2GASWAG1:1 10 偏向于0.5 二类井组 5GASWAG1:1 20 直接注CO2 偏向于0.5~1.5 三类井组 2GASWAG1:1 10~20 值向王15~3	Tables optimized design results of key injection and production parameters								
一类井组 2GASWAG1:1 10 偏向于0.5 二类井组 5GASWAG1:1 20 直接注CO ₂ 偏向于0.5~1.5 关井恢复压力 3个月或暂不考虑	井组类型	注气方式	注气速度/(t•d ⁻¹)	合理注气时机/a	井底流压/MPa	压力恢复方式			
二类并组 5GASWAG1:1 20 直接注CO ₂ 偏向于0.5~1.5 天井恢复压力 三类并组 2CASWAG1:1 10~20 偏向于1.5~3	一类并组	2GASWAG1:1	10		偏向于0.5				
三米井组 2CASWAC1:1 10~20 偏向于15~3	二类并组	5GASWAG1:1	20	直接注CO2	偏向于0.5~1.5	天井恢复压力 3个月戓暂不考虑			
	三类并组	2GASWAG1:1	10~20		偏向于1.5~3				

制了试验井区 CO₂驱油与封存油藏工程推荐方案, 并通过油藏数值模拟对方案进行了开发效果预测。 其中,由试验井区 CO₂驱油效果和埋存率预测结果 (图9)可以看出,开发 20 a 后试验井区采收率为 22.46%,CO₂驱阶段采出程度为14.05%,CO₂埋存率 为78.8%,阶段平均采油速度为0.69%,比水驱提高

采收率8.1%。

由试验井区推荐方案 CO₂驱油与封存协同评价 结果(图 10)可以看出:推荐方案实施 20 a时,能够 同时实现驱油效果好、埋存体量大的双重目标,表 明 CO₂驱油与封存协同评价方法具有良好的可靠性 和实用性。

图 10 试验井区推荐方案 CO₂驱油与封存协同评价结果 Fig.10 Collaborative evaluation results of CO₂ flooding and storage by recommended scheme in test well area

5 结论

基于 CCUS-EOR 油藏工程开发方案的成功案 例和经验总结,明确了 CO₂驱油与封存油藏工程方 案设计原则的基本内涵:多学科多层次有序融合, 多因素时空域的相互作用,兼顾驱与存的双目标。

基于CO2驱油与封存油藏工程方案设计原则,

•51·

建立了 CO₂驱油与封存油藏工程评价指标体系,明确了兼具驱油效果和埋存状况的评价指标的内在 关系:此消彼长,互相背离的一对矛盾。

基于 CO₂驱油与封存油藏工程评价指标体系, 构建了 CO₂驱油指数、CO₂埋存指数、CO₂驱油与封 存协同指数,建立了 CO₂驱油与封存协同评价模型 (CO₂驱油与封存协同指数)。

低渗透-致密油藏 CO2驱油与封存油藏工程方 案设计与协同评价实例表明,CO2驱油与封存协同 评价方法具有良好的可靠性和实用性,能够同时实 现驱油效果好和埋存量大的双重目标。

参考文献

- 秦积舜,李永亮,吴德斌,等.CCUS全球进展与中国对策建议
 [J].油气地质与采收率,2020,27(1):20-28.
 QIN Jishun,LI Yongliang,WU Debin, et al.CCUS global progress and China's policy suggestions[J].Petroleum Geology and Recovery Efficiency,2020,27(1):20-28.
- [2] 刘石慧.基于CCUS的二氧化碳价值链评价体系研究[J].中国 国土资源经济,2021,34(12):84-89.
 LIU Shihui.Research on evaluation system of carbon dioxide value chain based on CCUS[J].Natural Resource Economics of China,2021,34(12):84-89.
- [3] 张烈辉,张安安,陈怡男,等.钻完井电气化"电代油"技术助力 油气行业实现"双碳"目标[J].油气藏评价与开发,2022,12
 (5):703-710.

ZHANG Liehui, ZHANG An'an, CHEN Yi'nan, et al. Electricity substitution technology of drilling and completion electrification promote petroleum and gas industry to achieve "carbon peak and neutrality" targets [J]. Reservoir Evaluation and Development, 2022, 12(5):703-710.

- [4] 桑树勋,刘世奇,陆诗建,等.工程化CCUS全流程技术及其进展[J].油气藏评价与开发,2022,12(5):711-725,733.
 SANG Shuxun,LIU Shiqi,LU Shijian, et al.Engineered full flow-sheet technology of CCUS and its research progress [J].Reservoir Evaluation and Development,2022,12(5):711-725,733.
- [5] 李阳.低渗透油藏CO₂驱提高采收率技术进展及展望[J].油气 地质与采收率,2020,27(1):1-10.
 LI Yang.Technical advancement and prospect for CO₂ flooding enhanced oil recovery in low permeability reservoirs [J].Petroleum Geology and Recovery Efficiency,2020,27(1):1-10.
- [6] 向勇,侯力,杜猛,等.中国CCUS-EOR技术研究进展及发展前 景[J/OL].油气地质与采收率:1-17[2022-06-16].DOI: 10.13673/j.CNKI.CN37-1359/TE.202112048.

XIANG Yong, HOU Li, DU Meng, et al.Research progress and development prospect of CCUS-EOR technologies in China [J/OL]. Petroleum Geology and Recovery Efficiency: 1-17[2022-06-16]. DOI: 10.13673/j.CNKI.CN37-1359/TE.202112048.

[7] 李嘉豪,王怀林,肖前华,等.全球CO₂驱油及封存技术发展现 状[J].重庆科技学院学报:自然科学版,2022,24(4):103-108. LI Jiahao, WANG Huailin, XIAO Qianhua, et al.Development status of global CO_2 flooding and storage technology [J]. Journal of Chongqing University of Science and Technology: Natural Science Edition, 2022, 24(4):103–108.

- [8] 钱伯章,朱建芳.世界封存CO2驱油的现状与前景[J].能源环 境保护,2008,22(1):1-4. QIAN Bozhang,ZHU Jianfang.Present situation together with foreground that CO2 sequestrate and drive oil in the world[J].Energy
- Environmental Protection,2008,22(1):1-4.
 [9] 李海峰,王强.CCUS中CO₂利用和地质封存研究[J].现代化工,2022,42(10):86-90,95.
 LI Haifeng,WANG Qiang.Study on utilization and geological storage of CO₂ in CCUS [J]. Modern Chemical Industry, 2022, 42
- (10):86-90,95.
 [10] 姜睿.二氧化碳封存技术在油气行业应用进展[J].当代石油石
- 化,2022,30(2):34-38.

JIANG Rui. Progress of CO_2 sequestration technique application in oil and gas industry [J]. Petroleum & Petrochemical Today, 2022, 30(2): 34-38.

- [11] 肖筱瑜,谷娟平,梁文寿,等.二氧化碳捕集、封存与利用技术 应用状况[J].广州化工,2022,50(3):26-29.
 XIAO Xiaoyu, GU Juanping, LIANG Wenshou, et al. Application of carbon dioxide capture, storage and utilization technology [J]. Guangzhou Chemical Industry,2022,50(3):26-29.
- [12] 刘辰,王中原,于方.二氧化碳的综合利用技术及应用状况概述[J].绿色科技,2013,15(5):225-227.
 LIU Chen, WANG Zhongyuan, YU Fang. Overview of the comprehensive utilization technology and application status of carbon dioxide[J]. Journal of Green Science and Technology, 2013, 15(5): 225-227.
- [13] 叶航,刘琦,彭勃.基于二氧化碳驱油技术的碳封存潜力评估 研究进展[J].洁净煤技术,2021,27(2):107-116.
 YE Hang, LIU Qi, PENG Bo.Research progress in evaluation of carbon storage potential based on CO₂ flooding technology [J]. Clean Coal Technology,2021,27(2):107-116.
- [14] 梁凯强,王宏,杨红,等.延长油田CO₂非混相驱地质封存潜力 初步评价[J].断块油气田,2018,25(1):89-92.
 LIANG Kaiqiang, WANG Hong, YANG Hong, et al. Preliminary evaluation of CO₂-EOR geological sequestration potential for Yanchang Oilfield[J].Fault-Block Oil and Gas Field, 2018, 25 (1):89-92.
- [15] 唐良睿,贾英,严谨,等.枯竭气藏CO₂埋存潜力计算方法研究
 [J].油气藏评价与开发,2021,11(6):858-863.
 TANG Liangrui, JIA Ying, YAN Jin, et al. Study on calculation method of CO₂ storage potential in depleted gas reservoir [J].Petroleum Reservoir Evaluation and Development, 2021, 11(6): 858-863.
- [16] 张海龙.CO₂混相驱提高石油采收率实践与认识[J].大庆石油 地质与开发,2020,39(2):114-119.
 ZHANG Hailong.Practice and understanding of enhancing the oil recovery by CO₂ miscible flooding[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(2):114-119.
- [17] 郑玉飞,李翔,徐景亮,等.渤海P油田层内生成CO2调驱技术

[J].石油钻探技术,2020,48(2):108-112.

ZHENG Yufei, LI Xiang, XU Jingliang, et al. In-situ CO₂ generation technology in Bohai P Oilfield [J]. Petroleum Drilling Techniques, 2020, 48(2):108-112.

- [18] 王高峰,廖广志,李宏斌,等.CO₂驱气机理与提高采收率评价 模型[J].油气藏评价与开发,2022,12(5):734-740.
 WANG Gaofeng, LIAO Guangzhi, LI Hongbin, et al. Mechanism and calculation model of EOR by CO₂ flooding[J].Reservoir Evaluation and Development,2022,12(5):734-740.
- [19] 丁帅伟,席怡,刘广为,等.低渗透油藏CO₂驱不同注入方式对提高采收率与地质封存的适应性[J/OL].油气地质与采收率: 1-8[2022-09-27].DOI:10.13673/j.CNKI.CN37-1359/TE. 202106030.

DING Shuaiwei, XI Yi, LIU Guangwei, et al.Adaptability of different injection methods of CO₂ flooding in low permeability reservoirs to enhanced oil recovery and geological storage[J/OL].Petroleum Geology and Recovery Efficiency; 1–8[2022–09–27].DOI; 10.13673/j.CNKI.CN37–1359/TE.202106030.

[20] 丁帅伟,席怡,刘骞,等.基于粒子群算法的低渗油藏CO₂驱油 与封存自动优化[J].中国石油大学学报:自然科学版,2022,46 (4):109-115.

DING Shuaiwei, XI Yi, LIU Qian, et al.An automatic optimization method of CO_2 injection for enhanced oil recovery and storage in low permeability reservoirs based on particle swarm optimization algorithm [J].Journal of China University of Petroleum; Edition of Natural Science, 2022, 46(4):109–115.

- [21] 吕利刚,张涛,李杰,等.储层矿物类型对致密油藏CO₂驱替效 果的影响[J].大庆石油地质与开发,2023,42(1):159-168.
 LÜ Ligang,ZHANG Tao,LI Jie, et al.Influence of reservoir mineral types on CO₂ displacement effect of tight reservoir [J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(1): 159-168.
- [22] 赵习森,杨红,陈龙龙,等.延长油田化子坪油区长6油层CO₂ 驱油与封存潜力分析[J].西安石油大学学报:自然科学版, 2019,34(1):62-68.

ZHAO Xisen, YANG Hong, CHEN Longlong, et al. Analysis of CO₂ flooding and storage potential of Chang6 reservoir in Huaziping area of Yanchang Oilfield[J].Journal of Xi'an Shiyou University: Natural Science, 2019, 34(1):62-68.

 [23] 张宗標, 吕广忠, 王杰. 胜利油田 CCUS技术及应用[J]. 油气藏 评价与开发, 2021, 11(6):812-822.
 ZHANG Zonglin, LÜ Guangzhong, WANG Jie. CCUS and its ap-

plication in Shengli Oilfield[J].Reservoir Evaluation and Development,2021,11(6):812-822.

- [24] 柏明星,张志超,白华明,等.二氧化碳地质封存系统泄漏风险研究进展[J].特种油气藏,2022,29(4):1-11.
 BAI Mingxing,ZHANG Zhichao, BAI Huaming, et al.Progress in leakage risk study of CO₂ geosequestration system[J].Special Oil & Gas Reservoirs,2022,29(4):1-11.
- [25] 黄飞,张慕真,雷占祥,等.能源转型背景下国家石油公司动态 与启示[J].中国石油勘探,2022,27(6):80-87.
 HUANG Fei,ZHANG Muzhen,LEI Zhanxiang, et al.Trends of national oil companies in the context of energy transition and enlightenments[J].China Petroleum Exploration, 2022, 27(6):80-87.
- [26] 胡永乐,郝明强.CCUS产业发展特点及成本界限研究[J].油气 藏评价与开发,2020,10(3):15-22.
 HU Yongle, HAO Mingqiang. Development characteristics and cost analysis of CCUS in China[J].Reservoir Evaluation and Development,2020,10(3):15-22.
- [27] 王志兴,侯吉瑞,杨宇昊,等.缝洞型油藏填充介质含水饱和度 对CO₂和N₂溶解扩散影响实验[J].特种油气藏,2022,29(1): 91-98.

WANG Zhixing, HOU Jirui, YANG Yuhao, et al. Experiment on the effect of water saturation of filling medium on the dissolution and diffusion of CO_2 and N_2 in fractured-vuggy reservoir [J].Special Oil & Gas Reservoirs, 2022, 29(1):91–98.

[28] 金旸钧,陈乃安,盛溢,等.地质封存条件下CO₂在模拟盐水层 溶液中的溶解度研究[J].油气藏评价与开发,2019,9(3):77-81,88.

JIN Yangjun, CHEN Naian, SHENG Yi, et al.Study on the solubility of CO_2 in simulated saline solution under geological storage condition [J]. Reservoir Evaluation and Development, 2019, 9 (3): 77–81,88.

编辑 刘北羿