文章编号:1009-9603(2023)02-0104-08

DOI:10.13673/j.cnki.cn37-1359/te.202106030

低渗透油藏 CO₂驱不同注入方式对提高采收率与 地质封存的适应性

丁帅伟^{1,2},席 怡^{3,4},刘广为⁵,刘 骞^{1,2},于红岩^{1,2}

(1.西北大学大陆动力学国家重点实验室/地质学系,陕西西安710069; 2.二氧化碳捕集与封存技术国家地方联合工程研究中心,陕西西安710069; 3.中国石油长庆油田分公司勘探开发研究院,陕西西安710018; 4.低渗透油气田勘探开发国家工程实验室,陕西西安710018;
 5.中国海洋石油国际有限公司,北京100020)

摘要:低渗透油藏已成为中国油气开发的重要领域,开展CO2驱可实现提高采收率和CO2地质封存的双重目的,但 不同的注入方式对其适应性存在差异。以某低渗透油藏典型物性和流体参数为例,利用数值模拟手段论证了CO2 连续注入(CGI)、水气交替注入-气水段塞比恒定(CWAG)和水气交替注入-气水段塞比逐渐减小(TWAG)3种不同 注入方式对提高采收率和地质封存的适应性。研究结果表明,3种注入方式对于渗透率为1mD的储层累积产油量 和CO2埋存量最高,采用生产气油比约束的工作制度更有利于CO2驱提高采收率或地质封存。CGI注入方式在生产 气油比界限为0.4倍的最大生产气油比约束下生产,更适合CO2地质封存项目,CWAG注入方式在生产气油比界限 为0.2倍的最大生产气油比约束下生产,更适合CO2驱提高采收率和地质封存相结合的项目,而TWAG注入方式在 生产气油比界限为0.6倍的最大生产气油比约束下生产,更适合CO2驱提高采收率项目。 关键词:低渗透油藏;不同注入方式;提高采收率;CO2地质封存;适应性

中图分类号:TE357.45

文献标识码:A

Adaptability of different injection methods of CO₂ flooding in low permeability reservoirs to enhanced oil recovery and geological storage

DING Shuaiwei^{1,2}, XI Yi^{3,4}, LIU Guangwei⁵, LIU Qian^{1,2}, YU Hongyan^{1,2}

(1.State Key Laboratory of Continental Dynamics/Department of Geology, Northwest University, Xi' an City, Shaanxi Province, 710069, China; 2.National & Local Joint Engineering Research Center for Carbon Capture and Storage Technology, Xi' an City, Shaanxi Province, 710069, China; 3.Exploration and Development Research Institute, Changqing Oilfield Company, PetroChina, Xi' an City, Shaanxi Province, 710018, China; 4.National Engineering Laboratory for Exploration and Development of Low–Permeability Oil & Gas Fields, Xi' an City, Shaanxi Province, 710018, China; 5.CNOOC International Limited, Beijing City, 100020, China)

Abstract: The development of low permeability reservoirs has become an important field of oil and gas development in China. CO_2 flooding in such reservoirs can achieve the dual purposes of enhanced oil recovery and CO_2 geological storage, but the adaptability varies with injection methods. On the basis of typical physical properties and fluid parameters of a low permeability reservoir, the numerical simulation is conducted for the adaptability of continuous gas injection (CGI), constant water alternating gas(CWAG), and tapered water alternating gas(TWAG) for enhanced oil recovery and geological storage. The results show that three injection methods can obtain the highest cumulative oil production and CO_2 storage capacity for

收稿日期:2021-06-14。

作者简介:丁帅伟(1987—),男,河南新密人,讲师,博士,从事油气田开发研究工作。E-mail:shwding@126.com。

基金项目:国家自然科学基金项目"基于饱和度和不同尺度的湖相页岩力学响应机理研究"(41902145),陕西省自然科学基础研究计划 "基于响应面理论和粒子群算法的致密油藏 CO₂吞吐数值模拟研究"(2021JQ-454)。

the reservoir with the permeability of 1 mD. The working system constrained by the production gas-oil ratio (GOR) is more conducive to enhanced oil recovery or geological storage by CO_2 flooding. CGI is more suitable for CO_2 storage projects under 0.4 times the maximum GOR. CWAG is of more advantage in the project combining CO_2 enhanced oil recovery with geological storage under 0.2 times the maximum GOR. TWAG is more suitable for CO_2 enhanced oil recovery under 0.6 times the maximum GOR.

Key words: low permeability reservoirs; different injection methods; enhanced oil recovery; CO_2 geological storage; adaptability

世界上低渗透油田资源丰富,分布范围广泛。 自"十五"以来,中国原油储量品质不断变差,新增 储量渗透率显著下降,物性不断变差,近几年新发 现的油藏一半以上是低渗透油田^[1-2]。在油田三次 采油开发中,CO₂驱油提高采收率(CO₂-EOR)是一 项已经在油田应用超过40 a的较为成熟的开发方 式^[3-7]。据2014年全球EOR调查报告显示,正在实 施的CO₂-EOR项目有152个,每年通过注CO₂采出 的原油约有1470×10⁴ t。低渗透油层注水启动压力 高,采取注气开发是较好的方法之一^[8-9]。

目前,由于CO₂导致的全球变暖已日趋严重,过 去 250 a 中,大气 CO₂质量浓度从 280 mg/L急剧增加 至 410 mg/L。自从 20 世纪 90 年代以来,CO₂地质封 存就一直被认为是缓解大气中 CO₂排放量的有效措 施,其中由于稳定的盖层封闭特性和成熟的地面配 套设施,油藏埋存成为 CO₂地质封存的理想场所^[10]。 据统计,CO₂-EOR 可提高石油采收率 8%~15%,采 出 1 m³的原油需注入 2.4~3.0 t的 CO₂^[8]。因此,在 低渗透油藏中进行 CO₂驱可达到提高采收率和地质 封存的双重目的。

CO₂驱常用的驱替方式有 CO₂连续注入(Continuous gas injection(CGI))和水气交替注入(Water alternating gas(WAG))2种^[11],其中水气交替注入可分 为气水段塞比恒定(Constant WAG,简称 CWAG)和 气水段塞比逐渐减小(Tapered WAG,简称 TWAG)。 针对低渗透油藏 CO₂驱提高采收率和地质封存相结 合的工程,不同的注入方式对目标函数累积产油量 和 CO₂埋存量的影响程度不同,但目前的适应性多 在于气驱和水驱的对比^[12-14]。此外,由于重力超覆、 黏性指进等问题,导致 CO₂驱在低渗透油藏中的气 窜问题较严重^[15-16]。因此,如何筛选最优的注入方 式及其生产制度,满足不同决策需求是急需解决的 科学问题。

数值模拟是CO2驱提高采收率和地质封存研究的重要手段,也是目前最经济的研究方法之一^[17]。为此,笔者从数值模拟角度论证低渗透油藏CO2驱不同注入方式对提高采收率和地质封存的适应性,

通过对比不同渗透率储层对提高采收率和地质封存的影响,得到不同优化目标下的最佳注入方式,同时优化最优注入方式下的生产气油比关井界限,以缓解注气开发CO2气窜的问题。

1 典型机理模型及研究方案

1.1 模型建立

基于某低渗透油藏典型物性和流体参数,利用 数值模拟技术建立一注一采的机理模型(图1),研 究不同注入方式在不同储层渗透率下对不同优化 目标(累积产油量和CO₂埋存量)的适应性。根据物 质守恒原理,CO₂埋存量等于CO₂驱油和地质封存项 目周期内累积注入CO₂的量与累积产出CO₂的量的 差值,由于采用组分模型,因此可以根据注入和产 出CO₂的量差异来进行计算,计算公式为:

模型网格数为100×1×5 = 500个,平面上网格步 长为2.5 m×5 m,折算注采井距约为250 m,垂向厚 度为25 m。储层平均孔隙度为0.1,渗透率均值为 0.1~50 mD,原始含油饱和度为0.78,原始地层压力 为12.9 MPa。模型采用三相组分模拟,拟组分为6 个,分别是CO₂,C₁,C₂⁺,C₈⁺,C₁₁⁺和C₂₃⁺,状态方程选择 Peng-Robinson,相对渗透率曲线如图2所示。

选用数值模拟软件 ECLIPSE 中的相态模拟分析软件 PVTi 对原油高压 PVT实验数据进行对比计算,利用 CO₂-原油体系高压界面张力测定一次接触 混相压力约为 23.8 MPa,在参数优化过程中重点考 虑对原油性质和流动性质影响较大的饱和压力、 CO,注入实验、恒组成膨胀实验的拟合(图3)。

Fig.3 Fitting curves of viscosity in swelling test and constant composition expansion experiment of crude oil

1.2 方案设计

根据所建立的低渗透油藏典型机理模型,分别 进行以下研究方案的适应性分析,为保证累积产油 量和CO2埋存量具有可对比性,不同注入方式的模 拟运算时间统一为20a。在模拟过程中保持生产并 定液生产(日注入量为0.1 m³/d),设置最小井底流压 下限为3 MPa,注入井定流量注入(CO,连续注入时 CO,日注入量为39 m³/d,水气交替注入时日注水量 为0.1 m³/d),设置注入井最大注入压力上限为原始 地层压力的1.5倍,即19.35 MPa,由于原始地层压力 (12.9 MPa)和最大注入压力上限(19.35 MPa)都远 小于最小混相压力(23.8 MPa),因此以下2方面研 究中的3种CO,注入方式(CGI,CWAG和TWAG)均 为非混相驱:①研究CO,连续注入(CGI)、水气交替 注入-气水段塞比恒定(CWAG)和水气交替注入-气 水段塞比逐渐减小(TWAG)3种注入方式在不同储 层渗透率(0.1~50 mD)下对提高采收率和地质封存 的适应性,对比渗透率对提高采收率(累积产油量) 和地质封存(CO,埋存量)的影响。②在上述最佳优 化目标对应的注入方式研究结果的基础上,进一步 优化最优注入方式下的生产气油比关井界限,以缓 解注气开发CO,气窜的问题。

2 不同渗透率储层CO2驱适应性分析

2.1 CO2连续注入方式

对储层渗透率为0.1,1,5,10和50mD的模型, 分别以CGI注入方式模拟运算20a,其累积产油量 和CO₂埋存量的变化如图4所示。从图4中可以看 出,累积产油量和CO₂埋存量对不同渗透率储层存 在最优的结果,即当储层渗透率为1mD时,累积产 油量和CO₂埋存量均最优,因此无论从提高采收率

Fig.4 Variation in cumulative oil production and CO₂ storage capacity with different permeability by CGI 角度还是CO₂地质封存角度上来看,渗透率为1 mD 的特低渗透油藏更适合于CO₂连续注入项目,这与 传统渗透率越大提高采收率效果越明显的认识不 一致。另外,当储层渗透率约为0.1 mD时,虽然累 积产油量最低,但CO₂埋存量较大(埋存量仅次于渗 透率为1 mD的储层)。 从模拟20 a 后不同渗透率下剩余油剖面分布 (图5)可以看出,当渗透率为0.1 mD时驱替前缘较 规则但整体波及体积较小;当渗透率大于1 mD时, 顶部剩余油动用较明显,这与CO₂气体的重力超覆 作用有关,渗透率越大,重力超覆现象越明显,但同 时造成整体波及体积的减小。

2.2 水气交替注入-气水段塞比恒定

对储层渗透率为0.1,1,5,10和50mD的模型, 分别以CWAG注入方式模拟运算20a,其累积产油 量和CO₂埋存量的变化如图6所示。从图6中可以 看出,CWAG注入方式的累积产油量和CO₂埋存量 的变化与CGI注入方式类似,即当储层渗透率为1 mD时,累积产油量和CO₂埋存量均最优,但相对于 图4中的CGI注入方式模拟结果,CO₂埋存量的数值 约为前者的一半,因此CWAG注入方式可能更适合 于提高采收率项目。

Fig.6 Variation in cumulative oil production and CO₂ storage capacity with different permeability by CWAG

从模拟20 a 后不同渗透率下剩余油剖面分布 (图7)可以看出,剩余油分布规律与CGI注入方式 的模拟结果基本类似,但CO₂的重力超覆现象相对 于CGI注入方式有明显改善。因此CWAG注入在一 定程度上缓解了气体沿着油藏顶部气窜的趋势,波 及体积有所增大,整体采收率有所提高。

2.3 水气交替注入-气水段塞比逐渐减小

对储层渗透率为 0.1,1,5,10 和 50 mD 的模型, 分别以 TWAG 注入方式模拟运算 20 a,其累积产油 量和 CO₂埋存量的变化如图 8 所示。从图 8 中可以 看出,TWAG 注入方式的累积产油量和 CO₂埋存量 的变化与 CWAG 注入方式类似。不同之处在于 TWAG 注入方式的累积产油量比 CWAG 注入方式 的更高,但 CO₂埋存量却有所降低,因此这种注入方 式比 CWAG 注入方式更适合于提高采收率。

从模拟20 a 后不同渗透率下剩余油剖面分布 (图9)可以看出,剩余油分布规律与CWAG注入方 式的模拟结果基本类似,但CO₂的重力超覆现象相 对于CWAG注入方式有所改善,因此波及体积有所 增大,整体采收率也有所提高。

当储层渗透率低到一定程度时,实际油田注水 是较困难的,因此对渗透率为0.1 mD条件下的水气

图 7 模拟 20 a 后不同渗透率下 CWAG 注入方式的剩余油剖面分布 Fig.7 Profile of remaining oil by CWAG for different permeability after 20 years

交替注入中注入水的状况进行分析。从表1可以看出,CWAG注入方式和TWAG注入方式的平均日注水量基本一致,但均远低于设定的注入量(0.1 m³/d),这说明0.1 m³/d的配注量存在注不进去的问题,从注入压力也可以看出已达到最大注入压力上限。由于TWAG注入方式相对于CWAG注入方式随着交替轮次的增多后期注入的CO₂逐渐减少,因此最后的累积CO₂注入量偏低,累积注水量偏高,导致其CO₂埋存量最低。

2.4 不同优化目标下对应的最优注入方式

根据不同开发方式对应的提高采收率和CO₂埋存量的统计结果,绘制的不同渗透率下不同注入方 式累积产油量和CO₂埋存量的对比(图10,图11)可 以看出,不同渗透率下CO₂连续注入(CGI)方式下的 CO₂埋存量均最大,因此该注入方式最适合于CO₂地 质封存项目;水气交替注入-气水段塞比逐渐减小 (TWAG)注入方式在不同渗透率下累积产油量最 大,因此该注入方式最适合于CO₂提高采收率项目; 水气交替注入-气水段塞比恒定(CWAG)注入方式 在不同渗透率下累积产油量和CO₂埋存量处于中等 水平,因此更适合于CO₂提高采收率和地质封存相 结合的项目。

3 最优注人方式下的生产气油比关 井界限适应性分析

选取当储层渗透率为1mD时,优化生产气油比 关井界限,生产气油比优化范围为最大生产气油比 的0.2~1倍,根据模拟结果可知,该注入方式下的最 大生产气油比为1407.27m³/m³,因此不同生产气油 比界限模拟方案为281.45,562.91,844.36,1125.82 和1407.27m³/m³,分别对应0.2,0.4,0.6,0.8和1.0倍 最大生产气油比,当生产气油比超过界限值时,就 关闭生产气油比最大的生产层位。

3.1 CO2连续注入方式

由不同生产气油比下的累积产油量和CO₂埋存 量(图12)可知:当生产气油比界限设置为0.8倍的 最大生产气油比时,该生产制度约束下的累积产油 量最高,CO₂埋存量最少;当生产气油比界限设置为 0.4倍的最大生产气油比时,该生产制度约束下的 CO₂埋存量最多。根据不同优化目标下对应的最优 注入方式研究结果表明,CGI注入方式最适合于CO₂

Fig.9 Profile of remaining oil by TWAG for different permeability after 20 years

Fig.10 Comparison of cumulative oil production by different injection methods for different permeability

地质封存项目,因此建议该方式下设置生产气油比 界限为0.4倍的最大生产气油比约束下的工作制度 进行生产。

3.2 水气交替注入-气水段塞比恒定

由 CWAG 注入方式下不同生产气油比下的累 积产油量和 CO₂埋存量(图 13)可知:当生产气油比 界限设置为 0.8 倍的最大生产气油比时,该生产制 度约束下的累积产油量最高;当生产气油比界限设 置为 0.2 倍的最大生产气油比时,该生产制度约束

图 11 不同渗透率下不同注入方式 CO₂埋存量对比

Fig.11 Comparison of CO₂ storage capacity by different injection methods for different permeability

Fig.12 Variation in cumulative oil production and CO₂ storage capacity by CGI under different GORs

下的CO₂埋存量最多;当生产气油比界限设置为0.2 倍的最大生产气油比时,该生产制度约束下的累积 产油量和CO₂埋存量之和最大。根据不同优化目标 下对应的最优注入方式研究结果表明,CWAG注入 方式更适合于CO₂提高采收率和地质封存相结合的 项目,因此建议该方式下设置生产气油比界限为0.2 倍的最大生产气油比约束下的工作制度进行生产。

图 13 不同生产气油比下 CWAG 注入方式的累积产油量和 CO₂埋存量的变化

3.3 水气交替注入-气水段塞比逐渐减小

由TWAG不同生产气油比下的累积产油量和 CO₂埋存量(图14)可知:当生产气油比界限设置为 0.6倍的最大生产气油比时,该生产制度约束下的累 积产油量最高,但此时的CO₂埋存量中等;当生产气 油比界限设置为0.2倍的最大生产气油比时,该生 产制度约束下的CO₂埋存量最多。根据不同优化目 标下对应的最优注入方式研究结果表明,TWAG注 入方式最适合于CO₂提高采收率项目,因此建议该 方式下设置生产气油比界限为0.6倍的最大生产气 油比约束下的工作制度进行生产。

图 14 不同生产气油比下 TWAG 注入方式的累积产油量和 CO₂埋存量的变化

Fig.14 Variation in cumulative oil production and CO₂ storage capacity by TWAG with different GORs

4 结论

提高采收率、CO₂地质封存、不同CO₂注入方式 等对不同渗透率储层均存在最优结果。其中,渗透 率为1 mD的特低渗透储层更适合 CO₂驱提高采收 率和地质封存的项目。在不同的 CO₂注入方式下, CO₂气体的重力超覆作用会造成顶部剩余油动用较 明显,且这种现象会随着渗透率的增大而变得更为 显著,从而导致 CO₂纵向波及系数的降低,但 TWAG 注入方式对重力超覆现象的缓解最明显,因此提高 采收率效果最好。

在 CO₂驱中采用生产气油比约束的工作制度将 有利于 CO₂驱油或埋存。CGI 注入方式最适合于 CO₂地质封存项目,建议在生产气油比界限为0.4倍 的最大生产气油比约束下生产;CWAG 注入方式更 适合于 CO₂提高采收率和地质封存相结合的项目, 建议在生产气油比界限为0.2倍的最大生产气油比 约束下生产;TWAG 注入方式最适合于 CO₂提高采 收率项目,建议在生产气油比界限为0.6倍的最大 生产气油比约束下生产。

符号解释

参考文献
SC _{C02} ——CO2埋存量,t。
<i>K</i> ——渗透率,mD;
CO ₂ 的量,kmol;
CMPT _{CO2} ——CO2驱油和地质封存项目周期内累积产出
CO ₂ 的量,kmol;
CMIT _{co2} ——CO2驱油和地质封存项目周期内累积注入

 [1] 杜金虎,杨涛,李欣.中国石油天然气股份有限公司"十二五" 油气勘探发现与"十三五"展望[J].中国石油勘探,2016,21
 (2):1-15.

DU Jinhu, YANG Tao, LI Xin.Oil and gas exploration and discovery of PetroChina Company Limited during the 12th Five-Year Plan and the prospect during the 13th Five-Year Plan [J].China Petroleum Exploration, 2016, 21(2):1-15.

- [2] 付金华,董国栋,周新平,等.鄂尔多斯盆地油气地质研究进展 与勘探技术[J].中国石油勘探,2021,26(3):19-40.
 FU Jinhua, DONG Guodong, ZHOU Xinping, et al.Research progress of petroleum geology and exploration technology in Ordos Basin[J].China Petroleum Exploration,2021,26(3):19-40.
- [3] HARO H A V, GOMES M S P, RODRIGUES L G.Numerical analysis of carbon dioxide injection into a high permeability layer for CO₂-EOR projects [J]. Journal of Petroleum Science and Engineering, 2018, 171:164-174.
- [4] 李士伦,孙雷,陈祖华,等.再论CO2驱提高采收率油藏工程理 念和开发模式的发展[J].油气藏评价与开发,2020,10(3):1-14.

LI Shilun, SUN Lei, CHEN Zuhua, et al.Further discussion on reservoir engineering concept and development mode of CO_2 flood-ing-EOR technology[J].Reservoir Evaluation and Development,

Fig.13 Variation in cumulative oil production and CO_2 storage capacity by CWAG with different GORs

•111•

2020, 10(3): 1-14.

- [5] 孙焕泉,王海涛,吴光焕,等.稠油油藏注CO₂提高采收率影响 因素研究[J].石油实验地质,2020,42(6):1009-1013,1023. SUN Huanquan, WANG Haitao, WU Guanghuan, et al.CO₂ EOR factors in heavy oil reservoirs [J]. Petroleum Geology & Experiment,2020,42(6):1009-1013,1023.
- [6] 贾瑞轩,孙灵辉,苏致新,等.二氧化碳吞吐致密油藏的可动用 性[J].断块油气田,2020,27(4):504-508.
 JIA Ruixuan, SUN Linghui, SU Zhixin, et al. Availability of CO₂ huff and puff in tight reservoir[J].Fault-Block Oil and Gas Field, 2020,27(4):504-508.
- [7] 张艳梅,万文胜,李琛,等.彩9井区西山窑组特高含水油藏CO₂混相驱先导试验[J].特种油气藏,2021,28(6):121-128.
 ZHANG Yanmei, WAN Wensheng, LI Chen, et al. Pilot test of CO₂ miscible displacement for extra high water cut reservoir in Xishanyao Formation of Block Cai9[J].Special Oil & Gas Reservoirs,2021,28(6):121-128.
- [8] ZHANG L, LI X, REN B, et al.CO₂ storage potential and trapping mechanisms in the H–59 block of Jilin Oilfield China [J].International Journal of Greenhouse Gas Control, 2016, 49:267–280.
- [9] 张海龙.CO₂混相驱提高石油采收率实践与认识[J].大庆石油 地质与开发,2020,39(2):114-119. ZHANG Hailong.Practice and understanding of enhancing the oil recovery by CO₂ miscible flooding[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(2):114-119.
- [10] ETTEHADTAVAKKOL A, LAKE L W, BRYANT S L.CO₂-EOR and storage design optimization [J].International Journal of Greenhouse Gas Control, 2014, 25: 79–92.
- [11] LEACH A, CHARLES F M, VELD K V. Co-optimization of enhanced oil recovery and carbon sequestration [J]. Resource and Energy Economics, 2011, 33(4):893–912.
- [12] 李菊花,李相方,刘斌,等.注气近混相驱油藏开发理论进展 [J].天然气工业,2006,26(2):108-110.

LI Juhua, LI Xiangfang, LIU Bin, et al.Advancement of oilfield development theory of near-miscible gas flooding [J].Natural Gas Industry, 2006, 26(2):108-110.

- [13] 李剑,段景杰,姚振杰,等.低渗透油藏水驱后注 CO₂驱提高采 收率影响因素分析[J].非常规油气,2017,4(6):45-52.
 LI Jian, DUAN Jingjie, YAO Zhenjie, et al.Analysis on influence factors of enhanced oil recovery in CO₂ flooding after water flooding in low permeability reservoir[J].Unconventional Oil & Gas, 2017,4(6):45-52.
- [14] 贾凯锋, 计董超, 高金栋, 等. 低渗透油藏 CO₂驱油提高原油采 收率研究现状[J]. 非常规油气, 2019, 6(1):107-114, 61.
 JIA Kaifeng, JI Dongchao, GAO Jindong, et al. The exisiting state of enhanced oil recovery by CO₂ flooding in low permeability reservoirs[J].Unconventional Oil & Gas, 2019, 6(1):107-114, 61.
- [15] 张世明.低渗透油藏CO₂驱气窜通道识别方法[J].油气地质与 采收率,2020,27(1):101-106.
 ZHANG Shiming.Study on identification method for gas channeling of CO₂ flooding in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):101-106.
- [16]杨大庆,尚庆华,江绍静,等.渗透率对低渗油藏CO₂驱气窜的影响规律研究[J].西南石油大学学报:自然科学版,2014,36
 (4):137-141.

YANG Daqing, SHANG Qinghua, JIANG Shaojing, et al. A study about influence law of permeability on gas channeling of CO₂ flooding under low permeability reservoirs [J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2014, 36(4):137-141.

[17] BLUNT M, FAYERS F J, ORR F M.Carbon dioxide in enhanced oil recovery[J].Energy Conversion and Management, 1993, 34(9/ 11):1 197-1 204.

编辑王星