引用格式:杨术刚,蔡明玉,张坤峰,等.CO<sub>2</sub>-水-岩相互作用对CO<sub>2</sub>地质封存体物性影响研究进展及展望[J].油气地质与采收率,2023,30(6):80-91.

YANG Shugang, CAI Mingyu, ZHANG Kunfeng, et al.Research progress and prospect of  $CO_2$ -water-rock interaction on petrophysical properties of  $CO_2$  geological sequestration [J].Petroleum Geology and Recovery Efficiency, 2023, 30(6): 80-91.

# CO<sub>2</sub>-水-岩相互作用对CO<sub>2</sub>地质封存体物性 影响研究进展及展望

杨术刚1.2,蔡明玉1.2,张坤峰1.2,曹冬冬1.2,赵兴雷1.2,刘双星1.2

(1.中国石油集团安全环保技术研究院有限公司,北京102206; 2.石油石化污染物控制与处理国家重点实验室,北京102206)

摘要:CO<sub>2</sub>-水-岩相互作用是CO<sub>2</sub>地质封存的核心问题,CO<sub>2</sub>的注入打破了岩石-地层水化学平衡,引发的地层水化学性质改变、 原生矿物溶蚀和次生矿物沉淀,会导致储层和盖层岩石孔隙度、润湿性、力学性质等物性变化并进而影响CO<sub>2</sub>的注入能力、封 存效率以及封存安全性与稳定性。从CO<sub>2</sub>-水-岩相互作用机制出发,系统阐述了CO<sub>2</sub>-水-岩相互作用对地层岩石孔隙度、渗透 率、润湿性、力学性质的影响研究进展。研究表明,CO<sub>2</sub>-水-岩相互作用导致岩石孔隙度和渗透率的变化与其初始孔渗特征和 矿物组成密切相关,岩石孔渗特征的改变直接影响储层的注入能力与封存潜力和盖层的封闭能力。润湿性的变化与初始亲水 亲油特征有关,CO<sub>2</sub>-水-岩相互作用通常会减弱亲水岩石而增强亲油岩石的水润湿性,进而影响多相流体在岩石孔隙中的微观 分布与渗流特征。由于胶结物溶蚀以及溶蚀孔的形成,CO<sub>2</sub>-水-岩相互作用会引起岩石损伤,抗压强度、抗拉强度、弹性模量等 力学参数减小,一定程度上影响封存安全性。碳中和背景下,微纳米尺度孔隙、深地微生物介导、非纯CO<sub>2</sub>或工业尾气注入、封 存全周期等情景下的CO<sub>2</sub>-水-岩相互作用及岩石物性响应仍有待深入研究。

关键词:CO,地质封存;CO,-水-岩相互作用;孔隙度;渗透率;润湿性;力学特性

文章编号:1009-9603(2023)06-0080-12 中图分类号:TE82 DOI:10.13673/j.pgre.202301014 文献标识码:A

# **Research** progress and prospect of CO<sub>2</sub>-water-rock interaction on petrophysical properties of CO<sub>2</sub> geological sequestration

YANG Shugang<sup>1,2</sup>, CAI Mingyu<sup>1,2</sup>, ZHANG Kunfeng<sup>1,2</sup>, CAO Dongdong<sup>1,2</sup>, ZHAO Xinglei<sup>1,2</sup>, LIU Shuangxing<sup>1,2</sup> (1.CNPC Research Institute of Safety and Environment Technology, Beijing City, 102206, China; 2.State Key Laboratory of Petroleum Pollution Control, Beijing City, 102206, China)

Abstract: The  $CO_2$ -water-rock interaction is the core issue of  $CO_2$  geological sequestration. The injection of  $CO_2$  disrupts the chemical balance of rock-formation water, and the changes in the chemical properties of formation water, primary mineral dissolution, and secondary mineral precipitation will lead to changes in the physical properties of reservoir and caprock, such as porosity, wettability, and mechanical properties and thus directly affect the  $CO_2$  injection capacity, sequestration efficiency, and sequestration security and stability. Based on the mechanism of  $CO_2$ -water-rock interaction, this paper systematically expounds on the research progress of the effects of  $CO_2$ -water-rock interaction on porosity, permeability, wettability, and mechanical properties of formation rocks. The results show that the change in rock porosity and permeability caused by  $CO_2$ -water-rock interaction is closely related to its initial porosity and permeability characteristics and mineral composition, and the change of rock porosity and permeability characteristics directly affects the injection capacity and sequestration potential of the reservoir and the sealing capacity of the caprock. The change in wettability is related to the initial hydrophilic and oil-philic characteristics. The  $CO_2$ -water-rock interaction usually

收稿日期:2023-01-15。

作者简介:杨术刚(1993—),男,四川广元人,工程师,博士,从事气田采出水回注、CO<sub>2</sub>地质封存、地下水环境保护等方面的研究工作。E-mail: yshugang@cnpc.com.cn。

通信作者:刘双星(1990—),男,河南洛阳人,高级工程师,博士。E-mail: liushuangxing@cnpc.com.cn。

基金项目:中国石油科学研究与技术开发项目"高含盐污水低成本脱盐外排与回注风险监控技术研究"(2021DJ6602),"高效贫水吸收剂开发与采出水回注协同CO,封存技术研究"(2021DQ03-A2)和"低分压气体吸附过程渗流强化机理研究(以二氧化碳为例)"(RISE2022KY06)。

weakens the water wettability of the hydrophilic rocks and enhances that of the oil-philic rocks, thus affecting the microscopic distribution and seepage characteristics of the multiphase fluids in the pores of the rocks. Due to the dissolution of cement and the formation of dissolution holes, the  $CO_2$ -water-rock interaction will cause rock damage, and the mechanical parameters such as compressive strength, tensile strength, and elastic modulus will decrease. To a certain extent, the security of sequestration is affected. Under the setting of carbon neutrality, the  $CO_2$ -water-rock interaction and rock physical property response under the scenarios of micronano-scale pore, deep microbial mediation, impure  $CO_2$  or industrial tail gas injection, and full sequestration cycle still need to be further studied.

Key words: CO2 geological sequestration; CO2-water-rock interaction; porosity; permeability; wettability; mechanical property

人类活动持续高强度排放CO,是导致全球气候 变暖的主要原因[1-2]。为应对全球气候变化这一全 人类共同面临的严峻挑战,削减CO,排放量已成为 世界共识,多数国家先后提出了"碳中和"承诺。 CO,地质利用与封存以其巨大的减碳潜力和潜在的 经济效益而备受各国关注,是公认的控制全球气候 变暖的有效措施之一,同时也是保障能源安全、促 进可持续发展的重要选择。据《中国二氧化碳捕集 利用与封存(CCUS)年度报告(2021)》,全球陆上 CO,地质封存潜力为6×10<sup>12</sup>~42×10<sup>12</sup>t,海洋理论地 质封存潜力为2×10<sup>12</sup>~13×10<sup>12</sup>t,分别为2021年全 球能源燃烧与工业过程 CO<sub>2</sub>排放量(363×10<sup>12</sup>t)的 165~1157倍和55~358倍<sup>[3]</sup>。为推动CO,地质利 用与封存技术的规模化发展,美国、加拿大、挪威、 阿尔及利亚、澳大利亚、中国等国家先后启动建设 了十万吨级或百万吨级 CO,地质驱油封存或咸水层 封存示范项目,全球CO,封存能力约为4000×10<sup>4</sup>t/ a,预计2050年将达到36×10<sup>12</sup>t/a<sup>[3-4]</sup>。

CO,地质利用与封存技术的规模化应用面临诸 多科学与技术问题,包括但不限于CO,地质封存多 相流体与地质体的长时耦合和互馈作用机制、封存 地质体结构透明化表征及量化选址与封存潜力定 量评估、储层可注入性与长期安全性评价、泄漏风 险监测-评价与控制以及封存数值模拟等。其中, CO,-水-岩相互作用是地质封存的核心科学问题<sup>[5]</sup>。 注入地层中的CO,与地层水及岩石之间的地球化学 反应将直接导致原生矿物的溶蚀与次生矿物的沉 淀,从而影响地层水的组成以及岩石的矿物组成、 孔隙度、渗透率、润湿性以及力学性质等物性,并最 终影响 CO,注入效率、封存容量以及封存的长期安 全性和稳定性[5-6]。目前,已公开发表的CO,地质封 存相关研究进展以场地选址[7-9]、封存机理与封存潜 力评价方法[9-11]、盐析[4,12-13]、矿物溶解与沉淀化学反 应以及反应动力学模拟与参数取值[6,1415]、封存过程 力学问题数值模拟<sup>16]</sup>、环境风险评价方法以及泄漏 风险监测方法为主<sup>[17-20]</sup>, CO<sub>2</sub>-水-岩相互作用对地层 物性影响研究综述报道相对较少。为此,在简要介绍 CO<sub>2</sub>-水-岩相互作用机理的基础上,系统回顾了 CO<sub>2</sub>-水-岩相互作用对孔隙度、渗透率、润湿性以及 岩石力学性质影响规律的研究进展,梳理了研究问题并提出了后续研究方向,以期为 CO<sub>2</sub>地质封存选 址、注入工艺优化与封存安全评估提供有益参考。

## 1 CO<sub>2</sub>-水-岩相互作用机理

CO<sub>2</sub>地质封存按封存位置可分为陆上封存和海 洋封存,按照封存地质体类型则分为深部咸水层封 存、枯竭油气藏或开采后期油气藏封存以及不可开 采煤层封存<sup>[6,21]</sup>。在前述适宜封存 CO<sub>2</sub>的地质体 中,深部咸水层封存容量占比约为98%,且分布广 泛并与含油气盆地分布基本相同,是目前最具潜力 的封存场所;油气藏因构造完整、地质物探资料详 实且兼具提高采收率,是适合 CO<sub>2</sub>地质封存的早期 选择。近年来研究发现,近地表广泛分布的基性、 超基性岩石(如玄武岩、橄榄岩)碳酸盐化固碳也具 有巨大的 CO<sub>2</sub>封存潜力,且经济投入低、泄漏风险 小、封存更加安全,为CO<sub>2</sub>地质封存提供了一种新途 径,已受到国际社会的广泛关注<sup>[22:23]</sup>。

储层与盖层是 CO<sub>2</sub>地质封存最基本的物质条件,储层提供容纳 CO<sub>2</sub>的孔隙空间,盖层则阻止 CO<sub>2</sub>向上泄漏至浅层含水层或地表<sup>[5]</sup>。储层的注入性与 盖层的封闭性是衡量 CO<sub>2</sub>地质封存项目成败的关 键。适宜规模化实施 CO<sub>2</sub>地质封存的地质体,储层 分布广、厚度大、孔隙度与渗透率高,上覆与下伏盖 层厚度大、渗透率低,且无贯通性的裂缝或断裂。 储层岩性通常为砂岩、白云岩、灰岩、玄武岩以及煤 等,以石英、长石、方解石为主要矿物;盖层一般为 页岩、泥岩、泥灰岩、粉砂质泥岩或泥质粉砂岩等超 低渗透岩石,以石英和黏土矿物为主<sup>[5, 24-25]</sup>。注入地 下的 CO<sub>2</sub>,因地质体类型的不同,其封存机理主要包 括:①构造封存;②残余封存;③溶解封存;④矿化 封存;⑤水动力封存;⑥吸附封存<sup>[5, 21, 26]</sup>。无论何种 形式的封存,都伴随着复杂的CO<sub>2</sub>-水-岩相互作用 过程。

注入的 CO<sub>2</sub>部分在地层水中发生溶解并生成 碳酸,碳酸电离产生 H<sup>+</sup>, HCO<sub>3</sub>和 CO<sub>3</sub><sup>2-</sup>(表1)。研 究表明, CO<sub>2</sub>在地层水中的溶解度与地层水矿化 度、CO<sub>2</sub>注入压力以及地层温度密切相关,表现为 CO<sub>2</sub>溶解度随压力增加而增大,随地层温度、地层 水矿化度的增加而显著降低,其中温度为影响 CO<sub>2</sub> 溶解度的主控因素,压力次之,矿化度对 CO<sub>2</sub>溶解 的影响最小<sup>[14, 27-28]</sup>。CO<sub>2</sub>的溶解改变了原始地层水 的酸碱平衡环境,生成的碳酸根将与地层水中的 钙、镁、钡、铁等金属离子发生反应并生成沉淀(表 1)。WANG 等研究表明,地层水中的钙离子浓度 对 CO<sub>2</sub>的矿化捕获至关重要<sup>[29]</sup>。此外,酸性流体会 与岩石中的方解石、白云石、长石以及黏土等矿物 发生溶解反应,并生成石英、高岭石、片钠铝石等 次生矿物<sup>[6,14,21]</sup>(表2)。随着温度的升高或溶液 pH值的降低或溶液盐度的增加,矿物的溶蚀溶解 作用加剧,热力学性质不稳定的矿物(如方解石) 的溶蚀速率远大于热力学性质稳定的矿物(如素 土和石英)<sup>[30:31]</sup>。方解石、白云石、铁白云石在酸性 环境中发生全等溶解,而长石、黏土等矿物在酸性 环境中发生非全等溶解,伴随有新矿物生成。原 生矿物的溶解、次生矿物的沉淀以及微粒迁移将 直接导致孔隙度、渗透率、润湿性以及力学性质等 岩石物性的变化,进而改变储层的可注性与盖层 的封闭性,最终影响封存地质体的长期稳定性与 安全性。

| Ų | PU/1 9 H/ |                     |        | <b>L</b> U |  |
|---|-----------|---------------------|--------|------------|--|
|   | 表1        | 常见CO <sub>2</sub> - | 地层水化学反 | 应方程式       |  |
|   |           |                     |        |            |  |

|    | Table1 Common chemical reaction equations of CO <sub>2</sub> -formation water                                                                                                                                                                    |      |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|
| 序号 | 反应方程式                                                                                                                                                                                                                                            | 次生矿物 |  |  |  |  |
| 1  | $\mathrm{CO}_2(\mathrm{g}) + \mathrm{H}_2\mathrm{O}(1) \leftrightarrow \mathrm{H}_2\mathrm{CO}_3(\mathrm{aq})$                                                                                                                                   | /    |  |  |  |  |
| 2  | $H_2CO_3(aq) \leftrightarrow H^+(aq)+HCO_3^-(aq)$                                                                                                                                                                                                | /    |  |  |  |  |
| 3  | $\text{HCO}_{3}^{-} \leftrightarrow \text{H}^{+}(\text{aq}) + \text{CO}_{3}^{-2}(\text{aq})$                                                                                                                                                     | /    |  |  |  |  |
| 4  | $\operatorname{Ca}^{2+}(\operatorname{aq})+\operatorname{CO}_3^{2-}(\operatorname{aq}) \to \operatorname{CaCO}_3(\operatorname{s})$                                                                                                              | 方解石  |  |  |  |  |
| 5  | $\operatorname{Fe}^{2+}(\operatorname{aq})+\operatorname{CO}_{3}^{2-}(\operatorname{aq}) \to \operatorname{FeCO}_{3}(\operatorname{s})$                                                                                                          | 菱铁矿  |  |  |  |  |
| 6  | $Mg^{2+}(aq)+CO_3^{2-}(aq) \rightarrow MgCO_3(s)$                                                                                                                                                                                                | 菱镁矿  |  |  |  |  |
| 7  | $Ba^{2+}(aq)+CO_3^{2-}(aq) \rightarrow BaCO_3(s)$                                                                                                                                                                                                | 毒重石  |  |  |  |  |
| 8  | $\operatorname{Ca}^{2+}(\operatorname{aq}) + \operatorname{Mg}^{2+}(\operatorname{aq}) + 2\operatorname{HCO}_3^{-}(\operatorname{aq}) \to \operatorname{CaMg}(\operatorname{CO}_3)_2(\operatorname{s}) + 2\operatorname{H}^+(\operatorname{aq})$ | 自云石  |  |  |  |  |
| 9  | $\mathrm{Na}^{*}(\mathrm{aq}) + \mathrm{Al}^{3*}(\mathrm{aq}) + 2\mathrm{H}_{2}\mathrm{O} + \mathrm{HCO}_{3}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{NaAl}(\mathrm{CO}_{3})(\mathrm{OH})_{2}(\mathrm{s}) + 3\mathrm{H}^{*}(\mathrm{aq})$        | 片钠铝石 |  |  |  |  |

# 2 CO<sub>2</sub>-水-岩相互作用对地层物性影 响规律

#### 2.1 孔隙度-渗透率

CO<sub>2</sub>-水-岩相互作用对孔隙度的影响表现为双 重作用。一方面,诸如方解石、白云石、黏土以及长 石等矿物在CO<sub>2</sub>与地层水的作用下会发生溶蚀并形 成大量溶蚀孔,甚至形成次级溶蚀通道,从而导致 岩石孔隙结构的变化以及孔喉半径与孔隙度的增 加;另一方面,CO<sub>2</sub>的注入会导致地层水中原生结垢 离子沉淀,此外,硅酸盐矿物或碳酸盐胶结物的溶 蚀同时伴随有高岭石、片钠铝石、石英等矿物晶体 的生成和黏土颗粒的释放,此类沉淀物或悬浮物随 地层流体的运动会堵塞岩石孔喉和局部孔隙,进而 影响岩石的孔隙度和渗流半径<sup>[14,32,33]</sup>。当岩石的孔 隙度、孔喉半径以及曲折度中的任意一个发生变化 时,据Kozeny-Carman渗透率公式可知<sup>[34]</sup>,岩石的渗 透率也将发生改变。 此外,CO<sub>2</sub>连续注入会使地层水发生类似的干燥作用,当地层水浓度不断增加而达到过饱和时将 产生析盐现象,析出的盐会堵塞孔隙而影响地层孔 隙度和渗透率;CO<sub>2</sub>注入导致地质体一定范围内应 力场的变化也会间接影响地层岩石的孔隙度与渗透率<sup>[12-13, 16]</sup>。

鉴于砂岩、碳酸盐岩、泥页岩3种岩石在地层中 分布的广泛性,现有文献中关于CO<sub>2</sub>-水-岩相互作用 对岩石孔隙度和渗透率的影响研究,主要聚焦于静 态溶蚀反应与动态驱替条件下砂岩、碳酸盐岩与泥 页岩的孔隙度和渗透率演化以及碳酸盐岩裂隙的 溶蚀扩展,并结合核磁共振、CT、高压压汞、扫描电 镜等分析方法对孔隙度以及孔隙微观形貌的变化 予以量化或刻画<sup>[32, 35-38]</sup>。由于实验研究的时间尺度 限制,岩石-流体地球化学反应、流体多相渗流等相 关数学模型,结合 TOUGHREACT 和 GEM 等数值 模拟软件,常被用于模拟十年、千年乃至万年时间 尺度下的岩石孔隙度与渗透率演化<sup>[13, 39-40]</sup>。

|    |      | Table2         Common chemical reaction equations of CO2-formation water-rock minerals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
|----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 序号 | 矿物名称 | 反应方程式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 次生矿物            |
| 1  | 方解石  | $CaCO_3+H^+\rightarrow Ca^{2+}+HCO_3^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 完全溶解            |
| 2  | 白云石  | $CaMg(CO_3)_2 + 2H^+ \rightarrow Ca^{2+} + Mg^{2+} + 2HCO_3^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 完全溶解            |
| 3  | 铁白云石 | $Ca(Fe_{0.7}Mg_{0.3})(CO_3)_2 + 2H^+ \rightarrow Ca^{2+} + 0.7Fe^{2+} + 0.3Mg^{2+} + 2HCO_3^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 完全溶解            |
| 4  | 铁云母  | $\mathrm{KFe_3(AlSi_3)O_{10}(OH)_2 + 10H^+ \rightarrow Al^{3+} + K^+ + 3Fe^{2+} + 3SiO_2 + 6H_2O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 石英              |
| 5  | 钾长石  | $2\mathrm{KAlSi_3O_8} + 9\mathrm{H_2O} + 2\mathrm{H^+} \rightarrow 2\mathrm{K^+} + \mathrm{Al_2Si_2O_5(OH)_4} + 4\mathrm{H_4SiO_4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 高岭石             |
| 6  | はレブ  | $2\mathrm{NaAlSi_3O_8} + \mathrm{H_2O} + \mathrm{CO_2} \rightarrow 2\mathrm{Na^+} + 2\mathrm{HCO_3^-} + \mathrm{Al_2Si_2O_5}(\mathrm{OH})_4 + 4\mathrm{SiO_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 高岭石、石英          |
| 7  | 钠长石  | $NaAlSi_{3}O_{8} + H_{2}O + CO_{2} \rightarrow NaAlCO_{3}(OH)_{2} + 3SiO_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 片钠铝石、石英         |
| 8  | 钠沸石  | $NaAl_{3}Si_{3}O_{10}(OH)_{2}+H_{2}O+CO_{2} \rightarrow NaAlCO_{3}(OH)_{2}+Al_{2}Si_{2}O_{5}(OH)_{4}+SiO_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 片钠铝石、石英、<br>高岭石 |
| 9  |      | $CaAl_2Si_2O_8 + H_2CO_3 + H_2O \rightarrow CaCO_3 + Al_2Si_2O_5(OH)_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 高岭石、方解石         |
| 10 | 钙长石  | $\text{CaAl}_2\text{Si}_2\text{O}_8 + 2\text{Na}^+ + 2\text{CO}_2 + 3\text{H}_2\text{O} \rightarrow 2\text{NaAlCO}_3\text{(OH)}_2 + 3\text{CaCO}_3 + 2\text{SiO}_2 + 2\text{H}^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 片钠铝石、石英、<br>方解石 |
| 11 | 高岭石  | $\mathrm{Al_2Si_2O_5(OH)_4} + \mathrm{H_2O} + 2\mathrm{CO_2} + 2\mathrm{Na^+} \rightarrow \mathrm{NaAlCO_3(OH)_2} + 2\mathrm{SiO_2} + 2\mathrm{H^+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 片钠铝石,石英         |
| 12 | 伊利石  | $K_{0.85}Mg_{0.25}Al_{2.35}Si_{3.4}O_{10}(OH)_2 + 8.4H^+ \rightarrow 2.35Al^{3+} + 0.85K^+ + 0.25Mg^{2+} + 5.2H_2O + 3.4SiO_2O_2 + 0.25Mg^{2+} + 0.25Mg$       | 石英              |
| 13 | 蒙脱石  | $\mathrm{Ca_{0.17}Mg_{0.34}Al_{1.66}Si_4O_{10}(OH)_2 + 6H^+ \rightarrow 1.66Al^{3+} + 0.16Ca^{2+} + 0.34Mg^{2+} + 4SiO_2 + 4H_2O_2 + 2H_2O_2 $ | 石英              |
| 14 | 绿泥石  | $(\text{Fe, Mg})_{5}\text{Al}_{2}\text{Si}_{3}\text{O}_{10}(\text{OH})_{8}+8\text{H}^{+}\rightarrow 3\text{SiO}_{2}+2.5\text{Fe}^{2+}+2.5\text{Mg}^{2+}+8\text{H}_{2}\text{O}+2\text{AlO}_{2}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 石英              |
| 15 | 橄榄石  | $2\mathrm{Mg}_{2}\mathrm{SiO}_{4}+\mathrm{CO}_{2}+2\mathrm{H}_{2}\mathrm{O}{\rightarrow}\mathrm{Mg}_{3}\mathrm{Si}_{2}\mathrm{O}_{5}(\mathrm{OH})_{4}+\mathrm{Mg}\mathrm{CO}_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 蛇纹石、菱镁矿         |
| 16 | 蛇纹石  | $2\mathrm{Mg_3Si_2O_5(OH)_4} + 3\mathrm{CO_2} \rightarrow 3\mathrm{MgCO_3} + \mathrm{Mg_3Si_4O_{10}(OH)_2} + 3\mathrm{H_2O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 菱镁矿、滑石          |
| 17 | 滑石   | $Mg_3Si_4O_{10}(OH)_2+3CO_2 \rightarrow 3MgCO_3+4SiO_2+H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 菱镁矿、石英          |

表 2 常见 CO<sub>2</sub>-地层水-岩石矿物化学反应方程式

#### 2.1.1 砂岩

砂岩储层主要由石英、长石组成,含部分碳酸 盐矿物和少量黏土矿物。当CO,注入后,矿物的溶 解与次生矿物的生成、迁移对砂岩的孔渗特征具有 显著影响<sup>[33]</sup>。部分学者通过开展CO<sub>2</sub>-水-砂岩静态 相互作用实验或饱和碳酸水砂岩渗流实验或CO,驱 替实验并结合核磁共振分析表明,由于方解石与黏 土等矿物的溶蚀,砂岩的孔隙度和渗透率均有所增 加,增加幅度与CO,注入压力、CO,注入速率、实验 温度等相关<sup>[32, 38, 41]</sup>。例如,LIN等研究发现,当CO, 注入压力从15 MPa增至25 MPa时,由于地层水中 的CO,溶解度增加,矿物溶蚀作用加剧,CO,-水-岩 相互作用后砂岩孔隙度增幅从3%增至6.2%,渗透 率增幅从 25.5% 增至 34.4%; 当 CO, 注入压力为 15 MPa,温度从44 ℃增至64 ℃,由于CO,溶解度降 低,矿物溶蚀变缓,砂岩孔隙度增幅从3.0%降至 1.7%,渗透率增幅先减小后增大,总体增幅介于 20.3%~35%<sup>[38]</sup>。另一方面,CO,-水-岩相互作用引 发的次生矿物沉淀和黏土颗粒运移而堵塞孔喉也 可能导致砂岩渗透率下降[32, 36, 42]。于志超等基于动 态驱替实验的研究结果表明,在历经约151h的饱 和CO,水驱实验后,由于高岭石等次生矿物和碳酸 盐胶结物溶解释放的黏土颗粒堵塞了孔隙,致使岩 心孔隙体积、孔隙度和气测渗透率分别下降 3%, 2.5%和4%<sup>[36]</sup>。ZHAO等研究了不同压力(15~25 MPa)、不同温度(50,100 ℃)条件下 CO<sub>2</sub>-水-岩相互 作用对砂岩孔隙度、孔隙结构和渗透率的影响,发 现在120h的反应后,砂岩孔隙度、平均孔隙直径和 渗透率均有不同程度降低,分析表明,方解石、铁白 云石、赤铁矿等矿物的沉淀,减少了岩石小孔喉与 大孔喉的分布,继而使得渗透率降低,且压力越大、 温度越高,渗透率下降幅度越大<sup>[32]</sup>。

从文献分析结果来看,CO<sub>2</sub>注入砂岩储层引发的原生矿物溶蚀、次生矿物沉淀与迁移是导致变化的根本原因,影响因素包括但不限于初始孔渗特征、矿物组成、地层水成分、实验温度以及CO<sub>2</sub>注入 压力。储层岩石渗透率下降将影响CO<sub>2</sub>的注入能力和封存潜力,反之孔隙度和渗透率提高将有助于增强CO<sub>2</sub>注入能力和封存潜力<sup>[43]</sup>。

#### 2.1.2 碳酸盐岩

全球很多大型油气藏、深部咸水层的储层岩性 为碳酸盐岩,通常具有分布广泛、层厚、孔隙度大、 渗透率高等特点,是实施CO<sub>2</sub>地质封存的理想地 层<sup>[44]</sup>。碳酸盐岩以灰岩和白云岩为主,灰岩以方解 石为主要成分,含少量白云石、石英等碎屑矿物和 黏土矿物;白云岩以白云石为主要矿物,含部分石 英、长石、方解石和黏土矿物。由表2可知,碳酸盐 岩中的方解石、白云石遇酸性水将发生全等溶解, 强烈的水-岩相互作用将改变碳酸盐岩的孔隙度和 渗透率。

与砂岩类似,CO,-水-碳酸盐岩相互作用对孔隙 度和渗透率的影响也表现为两种趋势,增大或减小 均有可能发生,其变化幅度与孔隙结构、地层水组 成、温度、润湿性等因素有关。IZGEC等结合CT研 究了CO,注入碳酸盐岩岩心后的孔隙度、渗透率变 化,并探讨了渗流方向、流速、盐度、温度、CO,-盐水 同注和非均质性的影响,分析表明,岩心的渗透率 增加和减小均有发生,其变化趋势取决于岩心孔隙 分布、盐水组成以及热动力学条件,当盐水浓度降 低时,孔隙度和渗透率下降不明显<sup>[35]</sup>。LUQUOT等 通过开展富含CO,流体在灰岩样品中的反应渗流实 验,建立了方解石溶蚀条件下的灰岩孔隙度随时间 变化方程,并提出了考虑灰岩溶蚀下的渗透率-孔隙 度的经验关系式<sup>[45]</sup>。SEYYEDI等研究发现饱和 CO,的盐水-碳酸盐岩相互作用将会增加矿物晶粒 的粗糙度以及小孔与大孔的比例、减小中孔的体 积。孔隙结构的变化导致岩石毛细管压力的降低, 并最终减小CO,封存潜力、增加CO,泄漏风险<sup>[46]</sup>。 WANG等研究了CO,-盐水-岩石相互作用对白云岩 孔隙结构、孔隙度和渗透率的影响,发现矿物溶解 通常发生在高渗透率通道,在小孔中发现矿物的沉 淀,但样品的孔隙度和渗透率整体只有略微增 加<sup>[47]</sup>。AL-YASERI等结合CT成像探究了亲水、亲 油两种类型的灰岩岩心样品在CO,驱替前后的孔隙 度和渗透率变化,结果表明矿物的大量溶解导致灰 岩样品在CO,驱替后孔隙度、渗透率显著增加,其中 亲水样品增幅更大<sup>[48]</sup>。

鉴于碳酸盐岩地层广泛发育裂隙,CO<sub>2</sub>注入后 碳酸盐岩裂隙溶蚀扩展规律吸引了众多学者的研 充<sup>[49]</sup>。DENG等开展了CO<sub>2</sub>酸化的盐溶液反应渗流 前后白云质灰岩裂隙宽度变化规律研究,并结合CT 扫描重构裂隙三维模型,结果发现裂隙的宽度显著 增加,局部增幅达1~3倍,裂隙水力性质的改变受 矿物溶解体积和裂隙几何特征发展的限制<sup>[50]</sup>。 DENG等以灰岩样品为例,研究了不同CO<sub>2</sub>分压下 形成的酸化盐水在注入灰岩裂隙后因地球化学反 应导致的裂隙水动力学性质变化,对于反应性强的 流体,裂隙的通道化会加快,溶蚀导致的裂隙渗透 率演化更快,对应裂隙渗透率将大幅增加<sup>[51]</sup>。 WANG等以柴达木盆地灰岩为例,研究了CO<sub>2</sub>地质 封存条件下,灰岩裂隙在不同温度、CO<sub>2</sub>分压以及注 入速度下注入饱和CO<sub>2</sub>水溶液后的溶解扩展过程, 建立了灰岩裂隙水力裂隙张开宽度与反应溶蚀时 间的函数关系式<sup>[52]</sup>。此外,矿物溶蚀除了引起碳酸 盐岩裂隙接触面积、几何形态、水动力学性质发生 变化外,还会影响裂隙的机械强度<sup>[49,53]</sup>。

2.1.3 泥页岩

泥质岩是地壳表层分布最广的岩石,约为沉积 岩总量的三分之二,其中,泥页岩完整度高、厚度 大,常作为CO<sub>2</sub>地质封存的盖层并决定了封存的长 期安全稳定性<sup>[24,54]</sup>。CO<sub>2</sub>-水-岩之间的地球化学反 应引起的泥页岩孔渗特征、裂隙扩展等变化,将改 变CO<sub>2</sub>在盖层中的扩散能力与突破压力,并最终影 响CO<sub>2</sub>地质封存工程的长期稳定性。

泥页岩孔隙度低,渗透率低,黏土矿物含量高, CO<sub>2</sub>-水-岩相互作用引发的孔隙度和渗透率变化同 样呈现两种趋势,绿泥石、伊利石等黏土矿物的溶 蚀会增加孔隙度和渗透率,而方解石、铁白云石等 矿物的沉淀会减小孔隙度与渗透率。

基于 TOUCHREACT 数值模拟软件, 董建兴等 探究了CO,进入泥岩盖层后,CO,-水-岩相互作用对 泥岩渗透率的影响,模拟结果表明,CO,溶解致使地 层水pH值降低,导致泥岩矿物组分和渗透率发生 改变[55]。当模拟时间尺度为5000a时,泥岩盖层底 部和顶部渗透率分别增加10%和6.7%,而中部渗透 率降低了约6.7%。结合室内实验与数值模拟,田海 龙研究表明CO,-咸水-岩石相互作用下奥长石、绿泥 石和伊利石的溶解会导致泥岩盖层孔隙度增加,而 方解石、铁白云石和菱铁矿的沉淀则会使盖层孔隙 度小幅度减小,此外,盖层渗透率和孔隙度的非均 质分布会促进CO,在盖层内的垂向迁移<sup>[56-57]</sup>。徐永 强等开展了90 ℃,10 MPa条件下的CO,-模拟压裂 液-页岩相互作用实验,研究发现,超临界CO,的存 在会使页岩矿物溶蚀作用加剧,促使孔隙变大并产 生更多的微孔,导致页岩样品孔隙度增大<sup>[58]</sup>。CO,-水-岩导致的孔隙度和渗透率变化也与矿物组成、反 应时间相关,对于孔隙度、渗透率相对较高且富含 碳酸盐矿物的页岩,随着反应时间的增加,CO,-水-岩反应更加强烈,矿物溶蚀会产生大量溶蚀孔,对 优先渗流通道的溶蚀和扩展起积极作用,并导致页 岩的孔隙度和渗透率显著增加[59-61]。此外,结合封 存场地地质数据,XIAO等建立了盖层反应-运移-地 质力学耦合模型,探究CO,侵入非均质盖层时的化 学-力学响应,表明矿物沉淀导致储层-盖层交界面 处岩石孔隙度最高下降约25%,盖层的密封性进一步提高<sup>[62]</sup>。SORAI结合方解石溶解对CO<sub>2</sub>地质封存盖层密封性能的影响进行研究,提出了方解石溶蚀量与渗透率的定量关系式<sup>[63]</sup>。

#### 2.2 润湿性

岩石润湿性指液体在分子间作用力、静电力等的作用下在岩石表面的扩散现象,是岩石-流体界面相互作用的宏观表现。润湿性与岩石矿物组成及表面粗糙度、流体性质以及温度、压力等条件密切相关,并决定了多相流体在岩石孔隙中的微观分布、相对渗透率、毛细管压力和突破压力以及储层CO<sub>2</sub>残余封存和构造封存的潜力,进而影响CO<sub>2</sub>地质封存的长期安全性<sup>[53,64-65]</sup>。多孔介质的毛细管压力或突破压力可用拉普拉斯方程表示<sup>[66-67]</sup>。

岩石润湿性的强弱通常用接触角和黏附功表征,鉴于黏附功可通过接触角和气-液界面张力计算得到,故而常用平衡接触角测量法来测定岩石的润湿性<sup>[68-70]</sup>。此外,部分学者也采用岩石自吸法、岩心驱替法、Amott润湿指数和USBM润湿指数法、核磁共振等方法来研究表征岩石的润湿性<sup>[67,71]</sup>。

平衡接触角测量法研究 CO<sub>2</sub>-水-岩相互作用对 岩石润湿性影响通常分为两种情形。

第一种是CO,-水-岩体系在高温高压反应釜中 反应特定时间后,取出岩石在室温常压环境下测定 反应前后空气-水-岩石接触角变化。例如,周佩等 测定了不同温度、压力条件下油藏砂岩-CO,-水相互 作用前后的接触角变化,表明岩心片在与CO,作用 后,接触角降低,变得更加亲水[69]。唐博文以鄂尔 多斯盆地页岩为例,探究了不同温度、压力下超临 界CO,作用后页岩润湿性变化规律,表明在超临界 CO2作用后页岩表面水润湿性均有所减小[72]。 FATAH等研究了不同时间、压力、温度、矿物组成条 件下超临界CO,-页岩相互作用对空气-水-页岩接触 角的影响,研究发现,富含石英页岩在超临界CO,作 用后,仍能维持强亲水性,而富含黏土页岩在超临 界CO,作用,其润湿性由水湿转变为CO,润湿<sup>[73]</sup>。 温度的升高加速了CO<sub>2</sub>-页岩相互作用,但整体对页 岩的润湿性影响很小。CO,-水-页岩相互作用对润 湿性的影响主要源于页岩表面黏土矿物和碳酸盐 矿物减少[67]。

第二种则是通过高温高压接触角测定仪直接测定地层温压条件下 CO<sub>2</sub>-溶液-岩石接触角,并探究 温度、CO<sub>2</sub>相态、CO<sub>2</sub>注入压力、盐水浓度、矿物组成 等因素对润湿性的影响<sup>[66,74]</sup>。WANG等测量了不 同相态CO<sub>2</sub>-盐水-不同矿物接触角,研究发现当CO<sub>2</sub> 相态从超临界态或液态过渡至气态时,接触角减 小<sup>[75]</sup>。IGLAUER等测定了不同温度、压力条件下 的 CO,-盐水-页岩接触角,当温度从 50 ℃ 增至 70 ℃,接触角增加约15°;当温度为70 ℃时,CO,-盐 水-页岩接触角随CO,注入压力的增加而显著增加, 当压力为20 MPa时,接触角达70°<sup>[64]</sup>。肖娜等采用 高温高压界面张力/接触角测定仪研究了35℃条件 下CO,注入压力对水在石英表面接触角的影响,发 现当CO,注入压力从0.1 MPa增至7.2 MPa时,水在 石英表面的接触角从22.4°升至44.6°,但随着CO,注 入压力从 7.2 MPa 升至 15 MPa 时,接触角略有减 小,仍大于5.4 MPa时的接触角<sup>[68]</sup>。美合日阿依•穆 太力普测量了水/盐水在不同相态 CO,下在不同岩 石表面的接触角,发现当CO2从气态或液态转变为 超临界态时,岩石润湿性由亲水向疏水转变[76]。此 外,BABAN等利用耦合核磁共振的动态驱替实验 装置,采用润湿指数法,测量了砂岩-CO,-盐水系统 的润湿性,表明CO,的存在,无论是溶解态还是作为 独立的超临界态,会显著降低砂岩的亲水性,使其 从强亲水(润湿指数约为1)变为弱亲水(润湿指数 为0.26)[71]。

故此,CO<sub>2</sub>-水-岩相互作用对岩石润湿性的影响 主要源于岩石表面矿物组成变化,变化规律与影响 程度取决于岩石初始润湿特征以及CO<sub>2</sub>相态、压力、 温度、溶液组成和作用时间<sup>[77]</sup>。对于亲水岩石, CO<sub>2</sub>-水-岩相互作用通常会降低其润湿性,表现为接 触角增大,而对于疏水亲油岩石,CO<sub>2</sub>-水-岩相互作 用通常会增强其水润湿性,表现为接触角减小。

#### 2.3 岩石力学性质

CO<sub>2</sub>-水-岩相互作用背景下的岩石力学行为是 CO<sub>2</sub>地质封存的关键科学问题之一<sup>[78]</sup>。储盖层岩石 力学稳定性关系 CO<sub>2</sub>长期封存的安全性,当CO<sub>2</sub>注 入地层后,CO<sub>2</sub>聚集压力下或 CO<sub>2</sub>-水-岩相互作用导 致的矿物溶蚀与沉淀、孔隙结构变化而引发的岩石 力学损伤、岩石变形规律以及岩石力学特性演化机 理等科学问题受到广泛关注。

从文献来看,CO<sub>2</sub>-水-岩相互作用对岩石力学性 质的影响聚焦于相态、压力、温度、溶液、浸泡时间 等不同影响因素下CO<sub>2</sub>-水-岩相互作用前后岩石单 轴/三轴抗压强度、抗拉强度、残余强度等强度性质 以及弹性模量、泊松比等变形性质的变化规律。李 四海等探究了CO<sub>2</sub>-水-岩相互作用对致密砂岩抗张 强度的影响,研究表明,当砂岩在地层水、CO<sub>2</sub>注入 压力为20 MPa、温度为80 ℃的反应罐中浸泡24 h 后,由于碳酸盐矿物和长石等发生溶蚀,岩石胶结 程度降低,导致砂岩垂直层理方向抗张强度降幅为 3.95%, 而平行层理方向抗张强度降幅达 21%<sup>[79]</sup>。 FOROUTAN等研究了两块砂岩样品在不同环压、 孔隙压力下经富CO。盐溶液动态驱替后的力学性质 和水力学性质变化,研究发现,以8.8×10<sup>-5</sup> cm<sup>3</sup>/s 的恒 定流速驱替2d后,由于矿物的溶蚀,两块砂岩样品 的力学性质均出现了不同程度的弱化,其中环压为 40 MPa时的动态驱替实验后,力学性质变化最为明 显,两块砂岩样品的平均杨氏模量分别下降31.3% 和15.3%,平均体积模量分别降低26.8%和22.7%, 而平均泊松比分别增加19.5%和25.3%[80]。 ZHANG 等将直接 CT 扫描与离散元法相结合研究 了CO,注入后灰岩的力学性质变化,发现通入超临 界CO,后,岩石样品的最大压应力将从饱和盐水时 的17.2 MPa降至14.8 MPa,表明向碳酸盐岩储层注 入CO<sub>2</sub>会影响基质岩石的机械强度<sup>[81]</sup>。AN等基于 超临界 CO,注入后引起岩石力学损伤的蚀变动力学 实验,提出岩石弱化系数并建立动力学方程,基于 岩石蚀变指数和损伤程度之间的正相关关系,结合 动力学方程计算得到的理论蚀变指数分析了不同 条件下的岩石力学损伤规律<sup>[82]</sup>。WANG等采用多 场耦合数值模拟软件 TOUGH2, 探讨了 CO, 注入砂 岩含水层产生的力学响应对 CO,地质封存效率的 影响<sup>[83]</sup>。

相比于砂岩与灰岩,CO2-水-页岩相互作用对页 岩力学性质的影响更显著。ZHANG等研究了温度 为45℃时页岩与不同流体相互作用持续7d后的力 学性质变化,结果表明页岩与单轴抗压强度相比初 始值下降5%~32%,其中CO,-盐水-页岩相互作用 导致的单轴抗压强度降幅最大<sup>[84]</sup>。ZOU等测试了 温度为80℃、CO,注入压力为20 MPa时不同时间 下CO,-盐溶液-页岩相互作用后岩石抗拉强度的变 化,研究发现,矿物溶蚀形成了大量的溶蚀孔使岩 石产生了力学损伤,对于龙马溪组页岩,反应0.5h 后层理面抗拉强度降低7.9%,168h后降低71.3%, 而对于方解石填充的裂隙页岩,反应0.5h后层理面 抗拉强度降低 3.9%, 168 h 后降低 48.2%<sup>[59]</sup>。卢义玉 等研究了不同相态 CO2-页岩、不同相态 CO2-水-页 岩相互作用对页岩力学特性和变形规律的影响,发 现相比于CO,作用前的样品,CO,作用后的页岩单 轴抗压强度和弹性模量均有不同程度降低,且超临 界CO,作用后的页岩单轴抗压强度的降幅比气态 CO<sub>2</sub>更明显<sup>[77]</sup>。当水存在时,由于矿物溶解、溶蚀加剧,CO<sub>2</sub>-水的耦合作用对页岩力学性质的弱化更显著。

综合分析可知,CO<sub>2</sub>-水-岩相互作用会使岩石抗 压强度、抗拉强度等力学性质产生不同程度的下 降,其原因主要归因于以下几个方面:①矿物溶蚀 或沉淀导致岩石胶结程度降低;②矿物溶蚀形成溶 蚀孔导致岩石力学损伤;③产生伴生裂纹;④黏土 矿物的膨胀或收缩影响岩石力学性质<sup>[42, 59, 79, 85]</sup>。

### 3 研究展望

不同条件下CO<sub>2</sub>-水-岩相互作用对岩石孔隙度、 渗透率、润湿性和力学性质的影响研究主要是基于 岩心尺度的动态驱替实验和静态溶蚀实验,并结合 矿物组成分析、孔隙结构分析、CT扫描、接触角测 试、三轴力学实验等,应用场景包括了不同地质体、 不同地层温度与压力、不同注入工艺等,研究方法 与表征技术趋于成熟。结合CO<sub>2</sub>地质封存规模化、 效益化发展需求,后续CO<sub>2</sub>-水-岩相互作用及岩石物 性响应研究需聚焦于尺度的延伸和场景的拓展。

目前,多数CO<sub>2</sub>-水-岩相互作用的研究集中在体 相溶液,对于低渗透或致密储层以及盖层岩石,孔 径可低至10 nm以下,地层水通常受限在微纳米尺 度孔隙、晶界和裂隙中。研究表明,在固定温度下, 微米级和纳米级孔隙中纯组分的饱和压力显著降 低,临界温度和临界压力会发生偏移。微纳米孔隙 对流体物性的影响必然会导致在其中的物理和化 学反应的改变。在CO,地质封存过程中,微纳米尺 度多孔介质中的流体热力学性质、界面性质和化学 反应差异使得CO,溶解、矿物溶蚀/沉淀导致的孔隙 度和渗透率变化、流体在岩石壁面的润湿性和毛细 管力变化等均与常规认识不同。微纳米尺度 CO,-水-岩长时间相互作用对以扩散为主导的低渗透盖 层和以对流为主的高渗透储层的孔隙度-渗透率、润 湿性以及岩石力学性质的影响仍是后续研究需深 入探讨的方向。此外,鉴于CO<sub>2</sub>地质封存工程的区 域性和长周期性,CO,注入-运移-封存全周期过程中 地层尺度下的储层、盖层物性演化仍有待深入 研究。

为降低 CO<sub>2</sub>捕集成本,非纯 CO<sub>2</sub>地质封存或工 业尾气地质封存已引起众多学者的研究兴趣。二 氧化硫、氮氧氧化物、氮气、氧气等杂质气体的存 在,将不同程度影响 CO<sub>2</sub>的溶解、扩散和运移,非纯 CO<sub>2</sub>或工业尾气注入情景下储盖层岩石孔隙度-渗透率与润湿性演化、杂质气体组分及含量对储层注入性与盖层岩体封闭性影响规律有待深入开展研究。此外,鉴于CO<sub>2</sub>地质封存项目的复杂地层环境以及地质体中广泛存在的微生物,深地微生物介导下的微生物-CO<sub>2</sub>-水-岩多界面反应对岩石物性影响、温度-渗流-地球化学反应-地质力学四场耦合作用下储层、盖层岩石力学损伤变形规律等也是后续CO<sub>2</sub>地质封存理论研究的重点攻关方向。

## 4 结论

CO<sub>2</sub>-水-岩相互作用引发的原生矿物溶蚀会增 大岩石孔隙度、渗透率,而次生矿物的沉淀与迁移 引起的孔喉堵塞会降低岩石孔隙度与渗透率,变化 幅度与岩石初始物性、地层条件以及CO<sub>2</sub>注入压力 等因素密切相关。岩石润湿性变化主要取决于岩 石初始润湿性。对于疏水岩石,CO<sub>2</sub>-水-岩相互作用 将增强其水润湿性,而对于亲水岩石,CO<sub>2</sub>-水-岩相 互作用引起的表面矿物组成与表面电势变化将减 弱其水润湿性。

CO<sub>2</sub>-水-岩相互作用对岩石的抗压强度、抗拉强 度、弹性模量等力学性质影响集中表现为弱化或损 伤,其变化程度与注入的 CO<sub>2</sub>相态与压力、溶液组 成、反应温度及时间等因素相关。微纳米尺度孔 隙、深地微生物介导、非纯 CO<sub>2</sub>或工业尾气注入、封 存全周期、多场耦合等情景下的 CO<sub>2</sub>-水-岩相互作用 及其对地层岩石物性影响将是后续重要研究方向。

#### 参考文献

 [1]张凯,陈掌星,兰海帆,等.碳捕集、利用与封存技术的现状及 前景[J].特种油气藏,2023,30(2):1-9.
 ZHANG Kai, CHEN Zhangxing, LAN Haifan, et al. Status and prospects of carbon capture, utilization and storage technology

[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 1-9.

- [2] 孟新.中国 CCUS-EOR项目经济效果及其提升手段研究[J]. 油气地质与采收率, 2023, 30(2):181-186.
   MENG Xin. Research on economic effect of China's CCUS-EOR projects and its improvement methods [J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2):181-186.
- [3] 蔡博峰,李琦,张贤,等.中国二氧化碳捕集利用与封存
   (CCUS) 年度报告(2021)一中国 CCUS 路径研究[R].北京:
   生态环境部环境规划院,等,2021.

CAI Bofeng, LI Qi, ZHANG Xian, et al. Annual report on carbon dioxide capture, utilization and storage (CCUS) in China (2021)-Study on the path of CCUS in China [R]. Beijing: Chinese Academy of Environmental Planning, et al, 2021. [4] 胥蕊娜,吉天成,陆韬杰,等.二氧化碳地质封存与增产油/气/ 热利用技术中关键热质传递问题研究进展[J].清华大学学报: 自然科学版, 2022, 62(4):634-654.

XU Ruina, JI Tiancheng, LU Taojie, et al. Research progress on heat and mass transfer in carbon geological storage and enhanced oil/gas/geothermal recovery technology [J]. Journal of Tsinghua University: Science & Technology, 2022, 62 (4): 634-654.

[5] 王焰新,毛绪美, DONALD Depaolo. CO<sub>2</sub>地质储存的纳米尺 度流体-岩石相互作用研究[J].地球科学:中国地质大学学报, 2011,31(1): 163-171.
WANG Yanxin, MAO Xumei, DONALD Depaolo. Nanoscale fluid-rock interaction in CO<sub>2</sub> geological storage [J]. Earth Sci-

ence: Journal of China University of Geosciences, 2011, 31 (1): 163-171. 1 任告 王士喜 赵今温 笙 磋酚姿灿对劲姿孙是健冒运动性征

[6]任岚,于志豪,赵金洲,等.碳酸溶蚀对致密砂岩储层流动特征 的影响——以鄂尔多斯盆地长6致密砂岩为例[J].大庆石油 地质与开发,2023,42(2):50-58.REN Lan, YU Zhihao, ZHAO Jinzhou, et al. Impact of car-

bonic acid dissolution on flow characteristics of tight sand-stone reservoir: Taking Chang 6 tight sandstone in Ordos Basin as an example [J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(20): 50-58.

- [7] 刁玉杰,张森琦,郭建强,等.深部咸水层二氧化碳地质储存场 地选址储盖层评价[J]. 岩土力学, 2012, 33(8):2 422-2 428.
  DIAO Yujie, ZHANG Senqi, GUO Jianqiang, et al. Reservoir and caprock evaluation of CO<sub>2</sub> geological storage site selection in deep saline aquifers [J]. Rock and Soil Mechanics, 2012, 33 (8): 2 422-2 428.
- [8] 孙亮,陈文颖. CO<sub>2</sub>地质封存选址标准研究[J]. 生态经济, 2012,(7):33-38,46.
  SUN Liang, CHEN Wenying. A review of selection criteria for the geological sequestration of CO<sub>2</sub> [J]. Ecological Economy, 2012, (7): 33-38, 46.
- [9] 曹默雷,陈建平.CO<sub>2</sub>深部咸水层封存选址的地质评价[J].地质学报,2022,96(5):1868-1882.
  CAO Molei, CHEN Jianping. The site selection geological evaluation of the CO<sub>2</sub> storage of the deep saline aquifer [J]. Acta Geological Sinica, 2022,96(5):1868-1882.
- [10] RAZA A, REZAEE R, BING C H, et al. Carbon dioxide storage in subsurface geologic medium: A review on capillary trapping mechanism [J]. Egyptian Journal of Petroleum, 2016, 25 (3): 367-373.
- [11] 刘廷,马鑫,刁玉杰,等.国内外CO<sub>2</sub>地质封存潜力评价方法研究现状[J].中国地质调查,2021,8(4):101-108.
  LIU Ting, MA Xin, DIAO Yujie, et al. Research status of CO<sub>2</sub>geological storage potential evaluation methods at home and abroad [J].Geological Survey of China, 2021, 8(4): 101-108.
- [12] 郭会荣,陈颖,吕万军,等.二氧化碳注入地下咸水层析盐现象研究进展[J].地质科技情报,2013,32(6):144-149.
  GUO Huirong, CHEN Ying, LÜ Wanjun, et al. Advance in salt precipitation during the injection of CO<sub>2</sub> into saline aquifers [J].
  Geological Science and Technology Information, 2013, 32(6):

·88·

144-149.

[13] 崔国栋,潘众,杨昌华,等.盐水层CO<sub>2</sub>埋存时岩石流体综合作用及对选址影响[J]. 高校化学工程学报,2018,32(3): 696-707.

CUI Guodong, PAN Zhong, YANG Changhua, et al. Rock-fluid interactions and their effects on site selection of  $CO_2$  storage in saline aquifer [J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(3): 696-707.

- [14] 朱子涵,李明远,林梅钦,等.储层中CO<sub>2</sub>-水-岩石相互作用研究进展[J].矿物岩石地球化学通报,2011,30(1):104-112.
  ZHU Zihan, LI Mingyuan, LIN Meiqin, et al. Review of the CO<sub>2</sub>-water-rock interaction in reservoir [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 104-112.
- [15] 李义曼, 庞忠和. 二氧化碳地质封存中的水-岩反应动力学模 拟:进展及问题[J]. 吉林大学学报:地球科学版, 2012, 42 (S2): 352-360.

LI Yiman, PANG Zhonghe. Development and Issue on Kinetic Model of Water-Rock Interaction in  $CO_2$  Geological Sequestration [J]. Journal of Jilin University: Earth Science Edition, 2012, 42(S2): 352-360.

- [16] 李小春,袁维,白冰.CO<sub>2</sub>地质封存力学问题的数值模拟方法综述[J].岩土力学, 2016,37(6):1762-1772.
  LI Xiaochun, YUAN Wei, BAI Bing. A review of numerical simulation methods for geomechanical problems induced by CO<sub>2</sub> geological storage [J]. Rock and Soil Mechanics, 2016, 37 (6): 1762-1772.
- [17] 李琦,蔡博峰,陈帆,等.二氧化碳地质封存的环境风险评价方法研究综述[J].环境工程,2019,37(2):13-21.
  LI Qi, CAI Bofeng, CHEN Fan, et al. Review of environmental risk assessment methods for carbon dioxide geological storage [J]. Environmental Engineering, 2019, 37(2): 13-21.
- [18] 田宝卿,徐佩芬,庞忠和,等.CO<sub>2</sub>封存及其地球物理监测技术研究进展[J].地球物理学进展,2014,29(3):1431-1438.
  TIAN Baoqing, XU Peifen, PANG Zhonghe, et al. Research progress of carbon dioxide capture and store technique and geophysical monitoring research [J]. Progress in Geophysics, 2014, 29(3): 1431-1438.
- [19] 白云云,师洋阳,卢美娟,等.双碳目标下 CO<sub>2</sub>地质封存泄露途
   径及监测方法研究进展[J].榆林学院学报,2021,31(6):
   43-46.

BAI Yunyun, SHI Yangyang, LU Meijuan, et al. Research progress of  $CO_2$  geological storage leakage path and monitoring method under Dual Carbon Targets [J]. Journal of Yulin University, 2021, 31(6): 43-46.

- [20] 赵兴雷,崔倩,王保登,等.CO<sub>2</sub>地质封存项目环境监测评估体系初步研究[J].环境工程,2018,36(2):15-20.
  ZHAO Xinglei, CUI Qian, WANG Baodeng, et al. Preliminary study on environmental monitoring assessment system for CO<sub>2</sub> storage projects [J]. Environmental Engineering, 2018, 36(2): 15-20.
- [21] DE SILVA G P D, RANJITH P G, PERERA M S A. Geochemical aspects of CO<sub>2</sub> sequestration in deep saline aquifers: A review [J]. Fuel, 2015, 155(1): 128-143.

- [22] 张舟,张宏福.基性、超基性岩:二氧化碳地质封存的新途径
  [J].地球科学:中国地质大学学报,2012,37(1):156-162.
  ZHANG Zhou, ZHANG Hongfu. Carbonation of Mafic-Ultramafic rocks: A new approach to carbon dioxide geological sequestration [J]. Earth Science: Journal of China University of Geosciences, 2012, 37(1): 156-162.
- [23] 李万伦,徐佳佳,贾凌霄,等.玄武岩封存CO<sub>2</sub>技术方法及其进展[J].水文地质工程地质, 2022, 49(3):164-173.
  LI Wanlun, XU Jiajia, JIA Lingxiao, et al. Research progress on key technologies of CO<sub>2</sub> storage in basalts [J]. Hydrogeology & Engineering Geology, 2022, 49(3): 164-173.
- [24] 周银邦,王锐,何应付,等.咸水层CO<sub>2</sub>地质封存典型案例分析及对比[J].油气地质与采收率, 2023, 30(2):162-167.
  ZHOU Yinbang, WANG Rui, HE Yingfu, et al. Analysis and comparison of typical cases of CO<sub>2</sub> geological storage in saline aquifer [J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 162-167.
- [25] 王紫剑,唐玄,荆铁亚,等.中国年封存量百万吨级CO<sub>2</sub>地质封存选址策略[J].现代地质,2022,36(5):1414-1431.
  WANG Zijian, TANG Xuan, JING Tieya, et al. Site selection strategy for an annual million-ton scale CO<sub>2</sub> geological storage in China [J]. Geoscience, 2022, 36(5): 1414-1431.
- [26] 许志刚,陈代钊,曾荣树,等.CO<sub>2</sub>地下地质埋存原理和条件[J]. 西南石油大学学报:自然科学版,2009,31(1):91-97, 192-193.

XU Zhigang, CHEN Daizhao, ZENG Rongshu, et al. The theory and conditions of geological storage of CO<sub>2</sub> [J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2009, 31(1): 91-97, 192-193.

- [27] LIU Y, HOU M, YANG G, et al. Solubility of CO<sub>2</sub> in aqueous solutions of NaCl, KCl, CaCl<sub>2</sub> and their mixed salts at different temperatures and pressures [J]. The Journal of Supercritical Fluids, 2011, 56(2): 125-129.
- [28] 林元华,邓宽海,宁华中,等.二氧化碳在地层水中的溶解度测 定及预测模型[J].中国石油大学学报:自然科学版,2021,45 (1):117-126.

LIN Yuanhua, DENG Kuanhai, NING Huazhong, et al. CO<sub>2</sub> solubility test in formation water and prediction model [J]. Journal of China University of Petroleum: Edition of Natural Science, 2021, 45(1): 117-126.

- [29] WANG Y, ZAN N, CAO X, et al. Geologic CO<sub>2</sub> storage in arkosic sandstones with CaCl<sub>2</sub>-rich formation water [J]. Chemical Geology, 2020, 558(6): 119867.
- [30] XU T, APPS J A, PRUESS K. Mineral sequestration of carbon dioxide in a sandstone-shale system [J]. Chemical Geology, 2005, 217(3/4): 295-318.
- [31] 王广华,赵静,张凤君,等.砂岩储层中CO<sub>2</sub>-地层水-岩石的相互作用[J].中南大学学报:自然科学版,2013,44(3):1167-1173.

WANG Guanghua, ZHAO Jing, ZHANG Fengjun, et al. Interactions of  $CO_2$ -brine-rock in sandstone reservoir [J]. Journal of Central South University: Science and Technology, 2013, 44 (3): 1 167-1 173.

- [32] ZHAO A, LIAO X, YIN D. An experimental study for the effect of CO<sub>2</sub>-brine-rock interaction on reservoir physical properties [J]. Journal of the Energy Institute, 2015, 88(1): 27-35.
- [33] 邹才能,吴松涛,杨智,等.碳中和战略背景下建设碳工业体系的进展、挑战及意义[J].石油勘探与开发,2022,50(1):1-16. ZOU Caineng, WU Songtao, YANG Zhi, et al. Progress, challenge and significance of building a carbon industry system in the context of carbon neutrality strategy [J]. Petroleum Exploration and Development, 2022, 50(1): 1-16.
- [34] WANG J, LIU H, WANG L, et al. Apparent permeability for gas transport in nanopores of organic shale reservoirs including multiple effects [J]. International Journal of Coal Geology, 2015, 152(3): 50-62.
- [35] IZGEC O, DEMIRAL B, BERTIN H, et al. CO<sub>2</sub> injection into saline carbonate aquifer formations I: laboratory investigation
   [J]. Transport Porous Media, 2008, 72: 1-24.
- [36] 于志超,杨思玉,刘立,等.饱和CO<sub>2</sub>地层水驱过程中的水-岩相 互作用实验[J].石油学报,2012,33(6):1 032-1 042.
  YU Zhichao, YANG Siyu, LIU Li, et al. An experimental study on water-rock interaction during water flooding in formations saturated with CO<sub>2</sub> [J]. Acta Petrolei Sinica, 2012, 33(6): 1 032-1 042.
- [37] 肖娜,李实,林梅钦.CO<sub>2</sub>-水-岩石相互作用对岩石孔渗参数及 孔隙结构的影响——以延长油田 35-3 井储层为例[J].油田化 学,2018,35(1):85-90.
  XIAO Na, LI Shi, LIN Meiqin. Effect of CO<sub>2</sub>-water-rock interaction on porosity, permeability and pore structure characters of

reservoir rock: A case study of 35-3 well in Yanchang oilfield [J]. Oilfield Chemistry, 2018, 35(1): 85-90.

- [38] LIN R, YU Z, ZHAO J, et al. Experimental evaluation of tight sandstones reservoir flow characteristics under CO<sub>2</sub>-brine-rock multiphase interactions: A case study in the Chang 6 layer, Ordos Basin, China [J]. Fuel, 2022, 309: 122167.
- [39] 沈安江,胡安平,梁峰,等.碳酸盐岩储层模拟与地球化学实验 技术进展及应用[J].中国石油勘探,2022,27(4):16-29.
  SHEN Anjiang, HU Anping, LIANG Feng, et al. Progress and application of carbonate reservoir simulation and geochemical experiment technology [J]. China Petroleum Exploration, 2022, 27(4): 16-29.
- [40] 许天福,金光荣,岳高凡,等.地下多组分反应溶质运移数值模 拟:地质资源和环境研究的新方法[J].吉林大学学报:地球科 学版,2012,42(5):1410-1425.

XU Tianfu, JIN Guangrong, YUE Gaofan, et al. Subsurface reactive transport modeling: A new research approach for georesources and environments [J]. Journal of Jinlin University: Earth Science Edition, 2012, 42(5): 1 410-1 425.

- [41] GHOLAMI R, RAZA A. CO<sub>2</sub> sequestration in sandstone reservoirs: How does reactive flow alter trapping mechanisms? [J].
   Fuel, 2022, 324: 124781.
- [42] 王英伟,伍顺伟,覃建华,等.超临界CO<sub>2</sub>浸泡对玛湖不同黏土
   矿物含量砂砾岩储层渗透率影响[J].油气藏评价与开发,
   2021,11(6):837-844.
   WANG Yingwei, WU Shunwei, QIN Jianhua, et al. Effects of

supercritical CO<sub>2</sub> immersion on permeability of sandy conglomerate reservoir with different clay mineral content in Mahu [J]. Reservoir Evaluation and Development, 2021, 11(6): 837-844.

- [43] TANG Y, HU S, HE Y, et al. Experiment on CO<sub>2</sub>-brine-rock interaction during CO<sub>2</sub> injection and storage in gas reservoirs with aquifer [J]. Chemical Engineering Journal, 2021, 413: 127567.
- [44] 王敬霞, 雷磊, 于青春. 我国碳酸盐岩储层 CO<sub>2</sub>地质储存潜力 与适宜性[J]. 中国岩溶, 2015, 34(2):101-108.
  WANG Jingxia, LEI Lei, YU Qingchun. Evaluation of capacity and suitability of CO<sub>2</sub> geological storage in carbonate formations in basins of China mainland [J]. Carsologica Sinica, 2015, 34 (2): 101-108.
- [45] LUQUOT L, GOUZE P. Experimental determination of porosity and permeability changes induced by injection of CO<sub>2</sub> into carbonate rocks [J]. Chemical Geology, 2009, 265 (1/2) : 148-159.
- [46] SEYYEDI M, GIWELLI A, WHITE C, et al. Effects of geochemical reactions on multi-phase flow in porous media during CO<sub>2</sub> injection [J]. Fuel, 2020, 269: 117421.
- [47] WANG H, ALVARADO V, BAGDONAS D A, et al. Effect of CO<sub>2</sub>-brine-rock reactions on pore architecture and permeability in dolostone: Implications for CO<sub>2</sub> storage and EOR [J]. International Journal of Greenhouse Gas Control, 2021, 107: 103283.
- [48] AL-YASERI A, YEKEEN N, AL-MUKAINAH H S, et al. Rock-wettability impact on CO<sub>2</sub>-carbonate rock interaction and the attendant effects on CO<sub>2</sub> storage in carbonate reservoirs [J]. Journal of Natural Gas Science and Engineering, 2022, 104: 104664.
- [49] ELKHOURY J E, AMELI P, DETWILER R L. Dissolution and deformation in fractured carbonates caused by flow of CO<sub>2</sub>-rich brine under reservoir conditions [J]. International Journal of Greenhouse Gas Control, 2013, 16: S203-S215.
- [50] DENG H, ELLIS B R, PETERS C A, et al. Modifications of carbonate fracture hydrodynamic properties by CO<sub>2</sub>-acidified brine flow [J]. Energy & Fuels, 2013, 27(8): 4 221-4 231.
- [51] DENG H, FITTS J P, CRANDALL D, et al. Alterations of fractures in carbonate rocks by CO<sub>2</sub>-acidified brines [J]. Environmental Science and Technology, 2015, 49: 10 226-10 234.
- [52] WANG J, YU Q. Experimental investigations of the process of carbonate fracture dissolution enlargement under reservoir temperature and pressure conditions [J]. Geofluids, 2018, 2018: 5971421.
- [53] TENG Y, WANG P, XIE H, et al. Capillary trapping characteristics of CO<sub>2</sub> sequestration in fractured carbonate rock and sandstone using MRI [J]. Journal of Natural Gas Science and Engineering, 2022, 108: 104809.
- [54] 杨术刚,张坤峰,刘双星,等.页岩渗透率测定方法及影响因素研究进展[J].油气地质与采收率,2023,30(5):31-40. YANG Shugang, ZHANG Kunfeng, LIU Shuangxing, et al. Research progress on measurement methods and influencing factors of shale permeability [J]. Petroleum Geology and Recovery Efficiency, 2023, 30(5): 31-34.

- [55] 董建兴,李义连,杨国栋,等.CO<sub>2</sub>-水-岩相互作用对盖层渗透率 影响的数值模拟[J].地质科技情报,2012,31(1):115-121.
  DONG Jianxing, LI Yilian, YANG Guodong, et al. Numerical simulation of CO<sub>2</sub>-water-rock interaction impact on caprock permeability [J]. Geological Science and Technology Information, 2012, 31(1): 115-121.
- [56] 田海龙.CO<sub>2</sub>-咸水-岩相互作用对盖层封闭性影响研究——以 鄂尔多斯盆地石千峰组泥岩盖层为例[D].长春:吉林大学, 2014.

TIAN Hailong. Impacts of  $CO_2$ -brine-rock interaction on the caprock sealing efficiency: A case study of Shiqianfeng Formation mudstone caprock in Ordos Basin [D]. Changchun: Jilin University, 2014.

- [57] DENG H, VOLTOLINI M, MOLINS S, et al. Alteration and erosion of rock matrix bordering a carbonate-rich shale fracture[J]. Environmental Science and Technology, 2017, 51 (15) : 8 861-8 868.
- [58] 徐永强,李紫晶,郭冀隆,等.页岩储层-超临界CO<sub>2</sub>-模拟压裂 液相互作用实验研究及其环境意义[J].地学前缘,2018,25 (4):245-254.

XU Yongqiang, LI Zijing, GUO Jilong, et al. Experimental study on the shale reservoir-supercritical  $CO_2$ -simulated fracturing fluid interaction and its environmental significance [J]. Earth Science Frontiers, 2018, 25(4): 245-254.

- [59] ZOU Y, LI S, MA X, et al. Effects of CO<sub>2</sub>-brine-rock interaction on porosity/permeability and mechanical properties during supercritical-CO<sub>2</sub> fracturing in shale reservoirs [J]. Journal of Natural Gas Science and Engineering, 2018, 49: 157-168.
- [60] ILGEN A G, AMAN M, ESPINOZA D N. Shale-brine-CO<sub>2</sub> interactions and the long-term stability of carbonate-rich shale caprock [J]. International Journal of Greenhouse Gas Control, 2018, 78: 244-253
- [61] LI S, ZHANG S, XING H, et al. CO<sub>2</sub>-brine-rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs [J]. Energy, 2022, 256: 124608.
- [62] XIAO T, XU H, MOODIE N, et al. Chemical-mechanical impacts of CO<sub>2</sub> intrusion into heterogeneous caprock [J]. Water Resources Research, 2020, 56: e2020WR027193.
- [63] SORAI M. Effects of calcite dissolution on caprock's sealing performance under geologic CO<sub>2</sub> storage [J]. Transport in Porous Media, 2021, 136(2): 569-585.
- [64] IGLAUER S, AL-YASERI A Z, REZAEE R, et al. CO<sub>2</sub> wettability of caprocks: Implications for structural storage capacity and containment security [J]. Geophysical Research Letter, 2015, 42: 9 279-9 284.
- [65] 杨术刚.页岩中水、氯化钠溶液和液体二氧化碳渗流对比研究
  [D].北京:中国地质大学(北京), 2021.
  YANG Shugang. Comparative investigation on flow characteristics of water, NaCl solution and liquid CO<sub>2</sub> in shale [D]. Beijing: China University of Geosciences (Beijing), 2021.
- [66] MUTAILIPU M, LIU Y, JIANG L, et al. Measurement and estimation of CO<sub>2</sub>-brine interfacial tension and rock wettability un-

der  $CO_2$  sub- and super-critical conditions [J]. Journal of Colloid and Interface Science, 2019, 534: 605-617.

- [67] QIN C, JIANG Y, ZHOU J, et al. Influence of supercritical CO<sub>2</sub> exposure on water wettability of shale Implications for CO<sub>2</sub> sequestration and shale gas recovery [J]. Energy, 2022, 242: 122551.
- [68] 肖娜,李实,林梅钦,等.CO<sub>2</sub>-水-岩石相互作用对砂岩储集层润湿性影响机理[J].新疆石油地质,2017,38(4):460-465.
  XIAO Na, LI Shi, LIN Meiqin, et al. Influence of CO<sub>2</sub>-waterrock interactions on wettability of sandstone reservoirs [J]. Xinxiang Petroleum Geology, 2017, 38(4): 460-465.
- [69] 周佩,周志平,李琼玮,等.长庆油田CO<sub>2</sub>驱储层溶蚀与地层水结垢规律[J].油田化学,2020,37(3):443-448.
  ZHOU Pei, ZHOU Zhiping, LI Qiongwei, et al. Reservoir corrosion and formation water scaling of CO<sub>2</sub> flooding in Changqing oilfield [J]. Oilfield Chemistry, 2020, 37(3): 443-448.
- [70] YANG S, YU Q. The role of fluid-rock interactions in permeability behavior of shale with different pore fluids [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 150A: 105023.
- [71] BABAN A, AL-YASERI A, KESHAVARZ A, et al. CO<sub>2</sub>-brinesandstone wettability evaluation at reservoir conditions via Nuclear Magnetic Resonance measurements [J]. International Journal of Greenhouse Gas Control, 2021, 111: 103435.
- [72] 唐博文.不同温压超临界CO<sub>2</sub>作用后页岩润湿性变化及影响 机理实验研究[D].重庆:重庆大学,2021.
   TANG Bowen. Experimental study on wettability changes and influence mechanism of shale after different temperature and pressure supercritical CO<sub>2</sub> treatment [D]. Chongqing: Chongqing University, 2021.
- [73] FATAH A, BENNOUR Z, MAHMUD H B, et al. Surface wettability alteration of shales exposed to CO<sub>2</sub>: Implication for longterm integrity of geological storage sites [J]. International Journal of Greenhouse Gas Control, 2021, 110: 103426.
- [74] JUNG J, WAN J. Supercritical CO<sub>2</sub> and ionic strength effects on wettability of silica surfaces: equilibrium contact angle measurements [J]. Energy & Fuels, 2012, 26(9): 6 053-6 059.
- [75] WANG S, EDWARDS I M, CLARENS A F. Wettability phenomena at the CO<sub>2</sub>-brine-mineral interface: implications for geologic carbon sequestration [J]. Environmental Science & Technology, 2013, 47(1): 234-241.
- [76] 美合日阿依·穆太力普.CO<sub>2</sub>地质封存气-液-固相界面特性及 其对渗流的影响研究[D].大连:大连理工大学,2020.
   MEIHERIAYI MUTAILIPU. Gas-liquid-solid interface properties and their effect on the seepage characteristics under CO<sub>2</sub> geological storage conditions [D]. Dalian: Dalian University of Technology, 2020.
- [77] 卢义玉,周军平,鲜学福,等.超临界CO2强化页岩气开采及地 质封存一体化研究进展与展望[J].天然气工业,2021,41(6): 60-73.

LU Yiyu, ZHOU Junping, XIAN Xuefu, et al. Research progress and prospect of the integrated supercritical CO<sub>2</sub> enhanced shale gas recovery and geological sequestration [J]. Natural Gas Industry, 2021, 41(6): 60-73.

[78] 刘明泽,白冰,李小春,等.CO<sub>2</sub>-水两相条件下砂岩致裂特征与 有效应力模型的试验研究[J].岩石力学与工程学报,2016,35 (2):250-259.

LIU Mingze, BAI Bing, LI Xiaochun, et al. Experimental study of fracturing characteristics of sandstone under  $CO_2$ -water two-phase condition and effective stress model [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 250-259.

- [79] 李四海,马新仿,张士诚,等. CO<sub>2</sub>-水-岩作用对致密砂岩性质 与裂缝扩展的影响[J].新疆石油地质,2019,40(3):312-318.
  LI Sihai, MA Xinfang, ZHANG Shicheng, et al. Experimental investigation on the influence of CO<sub>2</sub>-brine-rock interaction on tight sandstone properties and fracture propagation [J]. Xinjiang Petroleum Geology, 2019, 40(3): 312-318.
- [80] FOROUTAN M, GHAZANFARI E, AMIRLATIFI A, et al. Variation of pore-network, mechanical and hydrological characteristics of sandstone specimens through CO<sub>2</sub>-enriched brine injection [J]. Geomechanics for Energy and the Environment, 2021, 26: 100217.

- [81] ZHANG Y, ZAHNG Z, ARIF M, et al. Carbonate rock mechanical response to CO<sub>2</sub> flooding evaluated by a combined Xray computed tomography-DEM method [J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103675.
- [82] AN Q, ZHANG Q, LI X, et al. Experimental study on alteration kinetics for predicting rock mechanics damage caused by SC-CO<sub>2</sub> [J]. Energy, 2022, 259: 125026.
- [83] WANG F, PING S, YUAN Y, et al. Effects of the mechanical response of low-permeability sandstone reservoirs on CO<sub>2</sub> geological storage based on laboratory experiments and numerical simulations [J]. Science of the Total Environment, 2021, 796: 149066.
- [84] ZHANG S, XIAN X, ZHOU J, et al. Mechanical behavior of Longmaxi black shale saturated with different fluids: An experimental study [J]. RSC Advances, 2017, 7: 42 946-42 955.
- [85] BHUIYAN M H, AGOFACK N, GAWEL K M, et al. Microand Macroscale consequences of interactions between CO<sub>2</sub> and shale rocks [J]. Energies, 2020, 13(5): 1 167.

编辑 单体珍