Experiment of nitrogen compound huff and puff for fault-block reservoirs with shallow edge water
Author:
Affiliation:

Clc Number:

TE357.46+3

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The strong heterogeneity and high viscosity of crude oil in shallow fault-block reservoirs with small oil content lead to a rapid edge water coning problem during the production. The N2 huff and puff has the potential of controlling edge water coning since the N2 can supply the power of the reservoir. Therefore,the feasibility of N2/N2-surfactan/N2-CO2 huff and puff for controlling the edge water coning and enhancing oil recovery was studied in laboratory by the radial flow model with edge water at high temperature and high pressure. The factors including maximum reduction of water cut,water control duration,and increase of oil recovery were selected to evaluate and compare the effect of controlling the water coning and improving oil production and to analyze the mechanism of controlling edge water coning and improving oil production at different pressures. The results show that:N2/N2-surfactant/N2-CO2 huff and puff all have the ability of controlling edge water coning;the N2 huff and puff has the best ability of controlling water coning,but has the least ability of improving oil production with a low displacement efficiency;the N2 compound huff and puff has the ability of controlling edge water coning,and has the better ability of improving oil production than N2 huff and puff with the surfactant and CO2 to improve the oil displacement efficiency.

    Reference
    Related
    Cited by
Get Citation

ZHAO Fenglan, SONG Liguang, HOU Jirui, LI Wenfeng, WANG Peng, HAO Hongda. Experiment of nitrogen compound huff and puff for fault-block reservoirs with shallow edge water[J]. Petroleum Geology and Recovery Efficiency,2019,26(3):85~91

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: July 23,2019
  • Published: