Abandoned gas reservoirs are ideal sites for carrying out carbon dioxide(CO2)storage projects. However,impurities in gas reservoirs can affect the CO2 dissolution in saline aquifers. To this end,a fugacity-activity thermodynamic model is constructed to capture the features of impurities,CO2,and saline aquifers. On this basis,the operator-based linearization approach is implemented to solve the mass conservation equations accurately and efficiently. Then the effects of gas mixtures on CO2 diffusion-convection are studied. With the Pernis gas reservoir in the Netherlands as an example,the storage potential of abandoned gas reservoirs is evaluated. The results show that the CO2 solubility in saline aquifers increases with the rising pressure while decreases with higher temperature and salinity. At the same pressure,the CO2 solubility at 25 ℃ is about twice that at 90 ℃. In addition,different impurities have different effects on CO2 dissolution,and CH4 reduces the CO2 solubility by around 12%. 2D simulation results show that the fingering rate of CO2 plume in saline aquifers is limited by the impurities. Meanwhile,the onset time of convection is extended due to the impurities. The onset time of CO2 mixture with 5% methane is around 2.5 times that of pure CO2. Considering the long timescale,the final dissolution is not affected by the impurities significantly. Through the studies of the Pernis gas reservoir,abandoned gas reservoirs have a large potential for CO2 storage. In the short run,CO2 exists in porous media as free gas and residual gas,while the amount of dissolved gas is relatively small. In 30 years after shutting the wells,the free gas accounts for 74.2%,and residual gas is 19.1%,while only 6.7% gas is dissolved into the aquifer.
Reference
Related
Cited by
Get Citation
Lü Xiaocong, LIU Huiqing, WANG Jing, DONG Xiaohu, BAI Jie, SHEN Xudong. Effect of impurities on CO2 sequestration in saline aquifers in abandoned gas reservoirs[J]. Petroleum Geology and Recovery Efficiency,2023,30(2):153~161