Phase Behaviour and Physical Properties of Alkane Solvent(s)/CO2/N2/DME/Water/Heavy Oil Systems under Reservoir Conditions
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [1]
  • | | | |
  • Comments
    Abstract:

    The hybrid steam-solvent injection has been considered as a promising technique for enhancing heavy oil/bitumen recovery,while its main mechanisms including the heat transferred and dissolution of solvents (e.g., CH4,C2H6,C3H8, C4H10,CO2,N2,and DME)into heavy oil/bitumen to reduce its viscosity and swell it are closely related to the phase behaviour of the solvents/water/heavy oil systems. To allow the seamless integration with the existing reservoir simulators, the traditional cubic equations of state(i.e.,SRK EOS and PR EOS) have been modified and improved to accurately quantify the phase behaviour and physical properties of the aforementioned systems under equilibrium and nonequilibrium conditions. Firstly,a huge database has been built to develop the corresponding alpha functions by minimizing the deviation between the measured and calculated vapour pressures for water as well as non-hydrocarbon and hydrocarbon compounds available from the public domain. Such obtained alpha functions are further validated with enthalpy of vaporization for pure substances, and then the reduced temperature has been optimized and the eccentric factor has been redefined. Finally,a pressure-implicit strategy has been developed to optimize the binary interaction parameters(BIPs)by treating heavy oil as one pseudocomponent (PC) or multiple PCs. Also,the contributions of each solvent to the aforementioned systems have been compared and analyzed within a consistent and unified framework. In addition to new alpha functions for hydrocarbons and water, respectively,the reduced temperature is found to have its optimum value of 0.59 for the two equations of state (EOSs),while 0.60 is recommended for practical use. Such improved EOSs have been further employed to reproduce the experimentally measured multiphase boundaries (or pseudo-bubble-point pressures), density,viscosity,(mutual)solubility,and preferential mass transfer for the aforementioned mixtures under equilibrium and nonequilibrium conditions. The swelling effect for the heavy oil can be enhanced due to the addition of C3H8 and/or C4H10 or their mixtures into the CO2 stream. Due to the existence of water,isenthalpic flash leads to more accurate quantification of multiphase boundaries and physical properties for the hybrid solvent-thermal processes. Each component of a binary or ternary gas mixture is found to diffuse preferentially into heavy oil at high pressures and elevated temperatures in the absence and presence of porous media,while each of them is found to exsolve differently from gas-saturated heavy oil under nonequilibrium conditions.

    Reference
    [1][ 1 ] Tg Othman T. R., EI Emam, M. M., Tewari R. D., Ramli A. S., Anasir N., Rahman M. Izzat A, Sulleh, S., and Ahmed, S. M. 2013. Cold Heavy Oil Development: Learn from the Past, Plan for the Future. Paper SPE-165449-MS, presented at the SPE Canada Heavy Oil Conference, Calgary, AB, 11-13 June. https://doi.org/10.2118/165449-MS. [ 2 ] Meyer R. F., Attanasi E. D., and Freeman P. A. 2007. Heavy Oil and Natural Bitumen Resources in Geological Basins of the World. Open-File Report 2007-1084, U. S. Geological Survey, Denver, CO. http://pubs.usgs.gov/of/2007/1084/. [ 3 ] Alberta Energy Regulator. 2021. Alberta Energy Resource Industries Monthly Statistics: Oil Supply & Disposition. Statistical Reports, Calgary, AB. [ 4 ] Jha R. K., Kumar M., Benson I., and Hanzlik E. 2013. New Insights into Steam/Solvent-Coinjection-Process Mechanism. SPE Journal 18 (5): 867-877. https://doi.org/10.2118/159277-PA. [ 5 ] Liu H. and Cheng L., Huang S., Jia P., and Xiong H. 2018. Heat and Mass Transfer Characteristics of Superheated Fluid for Hybrid Solvent-Steam Process in Perforated Horizontal Wellbores. International Journal of Heat and Mass Transfer 122: 557- 573. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.005. [ 6 ] Liu H., Cheng L., Wu K., Huang S., and Maini B. 2018. Assessment of Energy Efficiency and Solvent Retention Inside Steam Chamber of Steam- and Solvent-Assisted Gravity Drainage Process. Applied Energy 226: 287-299. https://doi. org/ 10.1016/j.apenergy.2018.06.017. [ 7 ] Li, H. and Yang, D. 2013. Phase Behaviour of C3H8/n-C4H10/ Heavy-Oil Systems at High Pressures and Elevated Temperatures. Journal of Canadian Petroleum Technology 52 (1): 30- 40. https://doi.org/10.2118/157744-PA. [ 8 ] Sheng K., Okuno R., and Wang M. 2018. Dimethyl Ether as an Additive to Steam for Improved Steam-Assisted Gravity Drainage. SPE Journal 23 (4): 1201-1222. https://doi. org/10.2118/ 184983-PA. [ 9 ] Huang D., Li R., and Yang D. 2021. Multiphase Boundaries and Physical Properties of Solvents/Heavy Oil Systems under Reservoir Conditions by Use of Isenthalpic Flash Algorithms. Fuel 298: 120508. https://doi.org/10.1016/j.fuel.2021.120508. [10] Huang D., Li R., and Yang D. 2021. Phase Behaviour and Physical Properties of Dimethyl Ether (DME)/Water/Heavy Oil Systems under Reservoir Conditions. SPE Journal 26 (4): 2380- 2396. SPE-205353-PA. https://doi.org/10.2118/205353-PA. [11] Zargar Z. and Farouq Ali S. F. 2021. Solvent Co-injection with Steam-Assisted Gravity Drainage Process Performance Evaluation-New Analytical Treatment in Relation to Constant Injection Rate. International Journal of Heat and Mass Transfer 165: 120679. https://doi. org/10.1016/j. ijheatmasstransfer. 2020. 120679. [12] Zhao M., Yang S., and Yang D. 2022. Performance Evaluation of Hybrid Steam-Solvent Processes in a Post-CHOPS Reservoir with Consideration of Wormhole Network. Journal of Energy Resources Technology 144 (4): 043001. https://doi. org/10.1115/ 1.4051552. [13] Maini B., Sarma H. K., and George A. E. 1993. Significance of Foamy-Oil Behaviour in Primary Production of Heavy Oils. Journal of Canadian Petroleum Technology 32 (9): 50-54. https://doi.org/10.2118/93-09-07. [14] Maini B. 1996. Foamy Oil Flow in Heavy Oil Production. Journal of Canadian Petroleum Technology 35 (6): 21-24. https:// doi.org/10.2118/96-06-01. [15] Maini B. 2001. Foamy-Oil Flow. Journal of Canadian Petroleum Technology 53 (10): 54-64. https://doi.org/10.2118/68885-JPT. [16] Mehrotra A. K. and Svrcek W. Y. 1998. Properties of Cold Lake Bitumen Saturated with Pure Gases and Gas Mixtures. The Canadian Journal of Chemical Engineering 66 (4): 656-665. https:// doi.org/10.1002/cjce.5450660419. [17] Nourozieh H., Kariznovi M., and Abedi J. 2016. Measurement and Evaluation of Bitumen/Toluene-Mixture Properties at Temperatures up to 190°C and Pressures up to 10 MPa. SPE Journal 21 (5): 1705-1720. https://doi.org/10.2118/180922-PA. [18] Nourozieh H., Kariznovi M., and Abedi J. 2016. Measurement and Modeling of Solubility and Saturated-Liquid Density and Viscosity for Methane/Athabasca-Bitumen Mixtures. SPE Journal 21 (1): 180-189. https://doi.org/10.2118/174558-PA. [19] Amani M. J., Gray M. R., and Shaw J. M. 2014. The Phase Behavior of Athabasca Bitumen + Toluene + Water Ternary Mixtures. Fluid Phase Equilibria 370: 75-84. https://doi. org/ 10.1016/j.fluid.2014.02.028. [20] Gao J., Okuno R., and Li H. 2018. A Phase-Behavior for nhexane/ Bitumen and n-octane/Bitumen Mixtures. SPE Journal 23 (1): 128-144. https://doi.org/10.2118/186097-PA. [21] Li H., Zheng S., and Yang D. 2013. Enhanced Swelling Effect and Viscosity Reduction of Solvent(s)/CO2/Heavy-Oil Systems. SPE Journal 18( 4): 695-707. https://doi.org/10.2118/150168-PA. [22] Li, X. and Yang, D. 2013. Determination of Mutual Solubility between CO2 and Water by Using the Peng-Robinson Equation of State with Modified Alpha Function and Binary Interaction Parameter. Industrial & Engineering Chemistry Research 52 (38): 13829-13838. https://doi.org/10.1021/ie401365n. [23] Nourozieh H., Kariznovi M., and Abedi J. 2015. Density and Viscosity of Athabasca Bitumen Samples at temperatures up to 200°C and Pressures up to 10 MPa. SPE Reservoir Evaluation & Engineering 18( 3): 375-386. https://doi.org/10.2118/176026-PA. [24] Nourozieh H., Kariznovi M., and Abedi J. 2015. Experimental and Modeling Studies of Phase Behavior for Propane/Athabasca Bitumen Mixtures. Fluid Phase Equilibria 397: 37-43. https:// doi.org/10.1016/j.fluid.2015.03.047. [25] Nourozieh H., Kariznovi M., and Abedi J. 2015. Modeling and Measurement of Thermo-Physical Properties for Athabasca Bitumen and n-Heptane Mixtures. Fuel 157: 73-81. https://doi.org/ 10.1016/j.fuel.2015.04.032. [26] Nourozieh H., Kariznovi M., and Abedi J. 2017. Solubility of nbutane in Athabasca Bitumen and Saturated Densities and Viscosities at Temperatures up to 200°C. SPE Journal 22 (1): 94- 102. https://doi.org/10.2118/180927-PA. [27] Gao J., Okuno R., and Li H. 2017. An Experimental Study of Multiphase Behavior for n-butane/Bitumen/Water Mixtures. SPE Journal 22 (3): 783-798. https://doi.org/10.2118/180736-PA. [28] Baek K. H., Sheng K., Argüelles-Vivas F. J., and Okuno R. 2019. Comparative Study of Oil-Dilution Capability of Dimethyl Ether and Hexane as Steam Additives for Steam-Assisted Gravity Drainage. SPE Reservoir Evaluation & Engineering 22 (3): 1030-1048. https://doi.org/10.2118/187182-PA. [29] Ratnakar R. R., Dindoruk B., and Wilson L. 2016. Experimental Investigation of DME-Water-Crude Oil Phase Behavior and PVT Modeling for the Application of DME-Enhanced Waterflooding. Fuel 182 (15): 188-197. https://doi. org/10.1016/j. fuel.2016.05.096. [30] Ratnakar R. R., Dindoruk B., and Wilson L. C. 2017. Development of Empirical Correlation for DME-Partitioning Between Brine and Crudes for Enhanced Waterflooding Applications. Journal of Petroleum Science and Engineering 157: 264-272. https://doi.org/10.1016/j.petrol.2017.07.029. [31] Ratnakar R. R., Dindoruk B., and Wilson L. C. 2017. Phase Behavior Experiments and PVT Modeling of DME-Brine-Crude Oil Mixtures Based on Huron-Vidal Mixing Rules for EOR Applications. Fluid Phase Equilibria 434 (25): 49-62. https://doi. org/10.1016/j.fluid.2016.11.021. [32] Shu, W. R. and Hartman, K. J. 1988. Effect of Solvent on Steam Recovery of Heavy Oil. SPE Reservoir Engineering 3 (2): 457-465. https://doi.org/10.2118/14223-PA. [33] Glandt C. A. and Chapman W. G. 1995. The Effect of Water Dissolution on Oil Viscosity. SPE Reservoir Evaluation & Engineering 10 (1): 59-64. https://doi.org/10.2118/24631-PA. [34] Luo, S. and Barrufet, M. A. 2005. Reservoir Simulation Study of Water-in-Oil Solubility Effect on Oil Recovery in Steam Injection Process. SPE Reservoir Evaluation & Engineering 8 (6): 528-533. https://doi.org/10.2118/89407-PA. [35] Amani M. J., Gray M. R., and Shaw J. M. 2013. Phase Behavior of Athabasca Bitumen + Water Mixtures at High Temperature and Pressure. The Journal of Supercritical Fluids 77: 142-152. https://doi.org/10.1016/j.supflu.2013.03.007. [36] Li X., Han H., Yang D., Liu X., and Qin J. 2017. Phase Behavior of C3H8-CO2-Heavy Oil Systems in the Presence of Aqueous Phase under Reservoir Conditions. Fuel 209: 358-370. https:// doi.org/10.1016/j.fuel.2017.08.010. [37] Li X., Yang D., and Fan Z. 2017. Vapor-Liquid Phase Boundaries and Swelling Factors of C3H8-n-C4H10-CO2-Heavy Oil Systems under Reservoir Conditions. Fluid Phase Equilibria 434: 211-221. https://doi.org/10.1016/j.fluid.2016.12.004 [38] Chen Z. and Yang D. 2018. Quantification of Phase Behaviour of Solvents-Heavy Oil Systems in the Presence of Water at High Pressures and Elevated Temperatures. Fuel 232: 803-816. https://doi.org/10.1016/j.fuel.2018.05.116. [39] Li H., Yang D., and Li X. 2012. Determination of Three-Phase Boundaries of Solvent(s)-CO2-Heavy Oil Systems under Reservoir Conditions. Energy & Fuels 27 (1): 145-153. https://doi. org/10.1021/ef301549a. [40] Chen Z. and Yang D. 2020. A Tangent-Line Approach for Effective Density Used in Ideal Mixing Rule: Part I-Prediction of Density for Heavy Oil/Bitumen Associated Systems. SPE Journal 25 (3): 1140-1154. https://doi.org/10.2118/199340-PA. [41] Chen Z., Zhao Z., and Yang D. 2020. Quantification of Phase Behaviour for Solvent/Heavy-Oil/Water Systems at High Pressures and Elevated Temperatures with Dynamic Volume Analysis. SPE Journal 25 (6): 2915-2931. https://doi. org/10.2118/ 201240-PA. [42] Pina-Martinez A., Privat R., Jaubert J., and Peng D. 2019. Updated Versions of the Generalized Soave α-Function Suitable for the Redlich-Kwong and Peng-Robinson Equations of State. Fluid Phase Equilibria 485: 264-269. https://doi. org/10.1016/j. fluid.2018.12.007. [43] Peng D. Y. and Robinson D. B. 1976. A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals 15 (1): 59-64. https://doi.org/10.1021/i160057a011. [44] Soave G. 1972. Equilibrium Constants from a Modified Redlich- Kwong Equation of State. Chemical Engineering Science 27 (6): 1197-1203. https://doi.org/10.1016/0009-2509(72)80096-4. [45] Trebble M. A. and Bishnoi P. R. 1987. Development of a New Four-Parameter Cubic Equation of State. Fluid Phase Equilibria 35 (1): 1-18. https://doi.org/10.1016/0378-3812(87)80001-8. [46] Twu C. H., Bluck D., Cunningham J. R., and Coon J. E.1991. A Cubic Equation of State with a New Alpha Function and a New Mixing Rule. Fluid Phase Equilibria 69 (10): 33-50. https://doi.org/10.1016/0378-3812(91)90024-2. [47] Twu C. H., Coon J. E., and Cunningham J. R. 1995. A New Generalized Alpha Function for a Cubic Equation of State: Part 1. Peng-Robinson Equation. Fluid Phase Equilibria 105 (1): 49- 59. https://doi.org/10.1016/0378-3812(94)02601-V. [48] Twu C. H., Coon J. E., and Cunningham J. R. 1995. A New Generalized Alpha Function for a Cubic Equation of State: Part 2. Redlich-Kwong Equation. Fluid Phase Equilibria 105 (1): 61- 69. https://doi.org/10.1016/0378-3812(94)02602-W. [49] Li, H. and Yang, D. 2011. Modified α Function for Peng- Robinson Equation of State to Improve Vapour Pressure Prediction of Non-hydrocarbon and Hydrocarbon Compounds. Energy & Fuels 25 (1): 215-223. https://doi.org/10.1021/ef100927z. [50] Mathias P. M. 1983. A Versatile Phase Equilibrium Equation of State. Industrial and Engineering Chemistry Product Research and Development 22 (3): 385-391. https://doi. org/10.1021/ i200022a008. [51] Mathias P. M. and Copeman T. W. 1983. Extension of the Peng- Robinson Equation of State to Complex Mixtures: Evaluation of the Various Forms of the Local Composition Concept. Fluid Phase Equilibria 13: 91-108. https://doi.org/10.1016/0378-3812 (83)80084-3. [52] Stryjek R. and Vera J. H. 1986. PRSV: An Improved Peng- Robinson Equation of State for Pure Compounds and Mixtures. The Canadian Journal of Chemical Engineering 64 (2): 323- 333. https://doi.org/10.1002/cjce.5450640224. [53] Melhem G. A., Saini R., and Goodwin B. M. 1989. A Modified Peng-Robinson Equation of State. Fluid Phase Equilibria 47 (2- 3): 189-237. https://doi.org/10.1016/0378-3812(89)80176-1. [54] Hernández-Garduza O., García-Sánchez F., ápam-Martínez D., and Va?zquez-Roma?n R. 2002. Vapor Pressures of Pure Compounds Using the Peng-Robinson Equation of State with Three Different Attractive Terms. Fluid Phase Equilibria 198 (2): 195- 228. https://doi.org/10.1016/S0378-3812(01)00765-8. [55] Neau E., Hernández-Garduza O., Escandell J., Nicolas C., and Raspo I. 2009. The Soave, Twu and Boston-Mathias Alpha Functions in Cubic Equations of State: Part I. Theoretical Analysis of their Variations According to Temperature. Fluid Phase Equilibria 276 (2): 87-93. https://doi.org/10.1016/j. fluid.2008. 09.023. [56] Neau E., Raspo I., Escandell J., Nicolas C., and Hernández- Garduza O. 2009. The Soave, Twu and Boston-Mathias Alpha Functions in Cubic Equations of State: Part II. Modeling of Thermodynamic Properties of Pure Compounds. Fluid Phase Equilibria 276( 2): 156-164. https://doi.org/10.1016/j.fluid.2008. 10.010. [57] Heyen G. 1981. A Cubic Equation of State with Extended Range of Application. Proceedings of the 2nd World Congress of Chemical Engineering, Montreal, QC, 4-9 October. [58] Peng D. Y. and Robinson D. B. 1976. Two and Three Phase Equilibrium Calculations for Systems Containing Water. The Canadian Journal of Chemical Engineering 54 (5): 595-599. https:// doi.org/10.1002/cjce.5450540541 [59] Peng D. Y. and Robinson D. B. 1980. Two- and Three-Phase Equilibrium Calculations for Coal Gasification and Related Processes. Thermodynamics of Aqueous Systems with Industrial Applications. ACS Symposium Series, American Chemical Society, Washington, DC. https://doi. org/ 10.1021/bk-1980-0133. ch020. [60] S?reide, I. Whitson, C. H. 1992. Peng-Robinson Prediction for Hydrocarbons, CO2, N2, and H2S with Pure Water and NaCl Brine. Fluid Phase Equilibria 77(15): 217-240. https://doi.org/ 10.1016/0378-3812(92)85105-H. [61] Zhao W., Xia L., Sun X., and Xiang S. 2019. A Review of the Alpha Functions of Cubic Equations of State for Different Research Systems. International Journal of Thermophysics 40 (12). https://doi.org/10.1007/s10765-019-2567-4. [62] Pitzer K. S. 1955. The Volumetric and Thermodynamic Properties of Fluids: I. Theoretical Basis and Virial Coefficients. Journal of the American Chemical Society 77 (13): 3427-3433. https://doi.org/10.1021/ja01618a001. [63] Graboski M. S. and Daubert T. E. 1978. A Modified Soave Equation of State for Phase Equilibrium Calculations. 2. Systems Containing CO2, H2S, N2, and CO. Industrial and Engineering Chemistry Process Design and Development 17 (4): 448-454. https://doi.org/10.1021/i260068a010. [64] Soave G. 1993. Improving the Treatment of Heavy Hydrocarbons by the SRK EOS. Fluid Phase Equilibria 84: 339-342. https://doi.org/10.1016/0378-3812(93)85131-5. [65] Lee, B. Kesler, M. 1975. A Generalized Thermodynamic Correlation based on Three-Parameter Corresponding States. American Institute of Chemical Engineers 21 (3): 510-527. https:// doi.org/10.1002/aic.690210313. [66] Pitzer K. S., Lippmann D. Z., Curl R. F., Huggins C. M., and Petersen D. E. 1955. The Volumetric and Thermodynamic Properties of Fluids: II. Compressibility Factor, Vapor Pressure and Entropy of Vaporization. Journal of the American Chemical Society 77 (13): 3433-3440. https://doi.org/10.1021/ja01618a002. [67] Twu C.H., Coon J. E., and Cunningham J. R. 1994. A Generalized Vapor Pressure Equation for Heavy Hydrocarbons. Fluid Phase Equilibria 96 (10): 19-31. https://doi.org/10.1016/0378- 3812(94)80085-5. [68] Nji G. N., Svrcek W. Y., Yarranton H., and Satyro M. A.2009. Characterization of Heavy Oils and Bitumens 2. Improving the Prediction of Vapor Pressures for Heavy Hydrocarbons at Low Reduced Temperatures Using the Peng-Robinson Equation of State. Energy & Fuels 23 (1): 366-373. https://doi.org/10.1021/ ef8006855. [69] Chen Z. and Yang D. 2017. Optimization of the Reduced Temperature Associated with Peng-Robinson Equation of State and Soave-Redlich-Kwong Equation of State to Improve Vapor Pressure Prediction for Heavy Hydrocarbon Compounds. Journal of Chemical and Engineering Data 62 (10): 3488-3500. https:// doi.org/10.1021/acs.jced.7b00496. [70] Gao W., Robinson R. L., and Gasem K. A. M. 2003. Alternate Equation of State Combining Rules and Interaction Parameter Generalizations for Asymmetric Mixtures. Fluid Phase Equilibria 213 (1-2): 19-37. https://doi.org/10.1016/S0378-3812(03) 00123-7. [71] Valderrama J. O. and Zavaleta J. 2005. Generalized Binary Interaction Parameters in the Wong-Sandler Mixing Rules for Mixtures Containing n-alkanols and Carbon Dioxide. Fluid Phase Equilibria 234 (1-2) : 136-143. https://doi. org/10.1016/j. fluid.2005.05.020. [72] Fateen S. E. K., Khalil M. M., and Elnabawy A. O. 2013. Semi- Empirical Correlation for Binary Interaction Parameters of the Peng-Robinson Equation of State with the van der Waals Mixing Rules for the Prediction of High-Pressure Vapor-Liquid Equilibrium. Journal of Advanced Research 4 (2): 137-145. https://doi. org/10.1016/j.jare.2012.03.004. [73] Xu X., Chen H., Liu C., and Dang C. 2019. Prediction of the Binary Interaction Parameter of Carbon Dioxide/Alkanes Mixtures in the Pseudocritical Region. ACS Omega 4 (8): 13279- 13294. https://doi.org/10.1021/acsomega.9b01450. [74] Pedersen K. S., Christensen P. L., and Shaikh J. A. 2014. Phase Behavior of Petroleum Reservoir Fluids (2nd Edition). Boca Raton, FL: CRC Press. [75] Cismondi M., Rodríguez-Reartes S.B., Milanesio J.M., and Zabaloy M. S. 2012. Phase Equilibria of CO2 + n-Alkane Binary Systems in Wide Ranges of Conditions: Development of Predictive Correlations Based on Cubic Mixing Rules. Industrial & Engineering Chemistry Research 51 (17): 6232-6250. https://doi. org/10.1021/ie2018806. [76] Kato K., Nagahama K., and Hirata M. 1981. Generalized Interaction Parameters for the Peng-Robinson Equation of State: Carbon Dioxide-n-Paraffin Binary Systems. Fluid Phase Equilibria 7 (3-4): 219-231. https://doi.org/10.1016/0378-3812(81)80009-X. [77] Bae H. K., Nagahama K., and Hirata M. 1981. Measurement and Correlation of High Pressure Vapor-Liquid Equilibria for the Systems Ethylene-1-Butene and Ethylene-Propylene. Journal of Chemical Engineering of Japan 14 (1): 1-6. https://doi. org/ 10.1252/jcej.14.1. [78] Elliott Daubert, T. E. Jr, 1985. Revised Procedures for Phase Equilibrium Calculations with the Soave Equation of State. Industrial & Engineering Chemistry Process Design and Development, 24(3), 743-748. [79] Valderrama J. O., Obaid-Ur-Rehman S., and Cisternas L. A. 1988. Generalized Interaction Parameters in Cubic Equations of State for CO2-n-alkane Mixtures. Fluid Phase Equilibria 40 (3): 217-233. https://doi.org/10.1016/0378-3812(88)87019-5. [80] Gao G., Daridon J., Saint Guirons H., Xans P., and Montel F. 1992. A Simple Correlation to Evaluate Binary Interaction Parameters of the Peng-Robinson Equation of State: Binary Light Hydrocarbon Systems. Fluid Phase Equilibria 74 (15): 85-93. https://doi.org/10.1016/0378-3812(92)85054-C. [81] Kordas A., Tsoutsouras K., Stamataki S., and Tassios D. 1994. A Generalized Correlation for the Interaction Coefficients of CO2-Hydrocarbon Binary Mixtures. Fluid Phase Equilibria 93: 141-166. https://doi.org/10.1016/0378-3812(94)87006-3. [82] Lee, M. J. Sun, H. C. 1992. Thermodynamic Property Predic‐ tions for Refrigerant Mixtures. Industrial & Engineering Chemistry Research 31: 1212-1216. https://doi.org/10.1021/ie00004a036. [83] Jaubert J. N. and Mutelet F. 2004. VLE Predictions with the Peng-Robinson Equation of State and Temperature Dependent kij Calculated through a Group Contribution Method. Fluid Phase Equilibria 224 (2): 285-304. https://doi. org/10.1016/j. fluid.2004.06.059. [84] Pedersen K. S., Milter J., and S?rensen H. 2004. Cubic Equations of State Applied to HT/HP and Highly Aromatic Fluids. SPE Journal 9 (2): 186-192. https://doi.org/10.2118/88364-PA. [85] Whitson C. H. and Brulé M. R. 2000. Phase Behavior (2nd Edition). SPE Monograph Series, Vol. 20, Richardson, TX. [86] Li X., Yang D., Zhang X., Zhang G., and Gao J., 2016. Binary Interaction Parameters of CO2-Heavy-n-Alkanes Systems by Using Peng-Robinson Equation of State with Modified Alpha Function. Fluid Phase Equilibria, 417, 77-86. https://doi. org/ 10.1016/j.fluid.2016.02.016. [87] Huang D., Li X., and Yang D. 2020. Determination of Multiphase Boundaries for Pressure-Temperature (P-T) and Enthalpy- Temperature (H-T) Phase Diagrams of C3H8/CO2/Water/Heavy Oil Systems at High Pressures and Elevated Temperatures. Industrial & Engineering Chemistry Research 59( 1): 423-436. https:// doi.org/10.1021/acs.iecr.9b05519. [88] Li X., Li H., and Yang D. 2013. Determination of Multiphase Boundaries and Swelling Factors of Solvent(s)-CO2-Heavy Oil Systems at High Pressures and Elevated Temperatures. Energy & Fuels 27 (3): 1293-1306. https://doi.org/10.1021/ef301866e. [89] Chen Z. and Yang D. 2020. A Tangent-Line Approach for Effective Density Used in Ideal Mixing Rule: Part II-Evaluation of Mixing Characteristics of Oil/Gas Systems and Application Criteria. SPE Journal 25 (6): 3160-3185. https://doi.org/10.2118/ 200490-PA. [90] Svrcek W. Y. and Mehrotra A. K. 1982. Gas Solubility, Viscosity, and Density Measurements for Athabasca Bitumen. Journal of Canadian Petroleum Technology 21 (4): 31-38. https://doi. org/10.2118/82-04-02. [91] Haddadnia A., Zirrahi M., Hassanzadeh H., and Abedi J. 2017. Solubility and Thermo-Physical Properties Measurement of CO2- and N2-Athabasca Bitumen Systems. Journal of Petroleum Science and Engineering 154: 277-283. https://doi.org/10.1016/ j.petrol.2017.04.035. [92] Kariznovi M. 2013. Phase Behaviour Study and Physical Properties Measurement for Athabasca Bitumen/Solvent Systems Applicable for Thermal and Hybrid Solvent Recovery Processes. Ph. D. Dissertation, University of Calgary, Calgary, AB. [93] Zirrahi M., Hassanzadeh H., and Abedi J. 2017. Experimental and Modeling Studies of Water, Light n-alkanes and MacKay River Bitumen Ternary Systems. Fuel 196: 1-12. https://doi.org/ 10.1016/j.fuel.2017.01.078. [94] Ramos-Pallares F., Schoeggl F. F., Taylor S. D., Satyro M. A., and Yarranton H. W. 2015. Predicting the Viscosity of Hydrocarbon Mixtures and Diluted Heavy Oils Using the Expanded Fluid Model. Energy & Fuels 30 (3): 3575-3595. https://doi. org/ 10.1021/acs.energyfuels.5b01951. [95] Kariznovi M., Nourozieh H., and Abedi J. 2017. Vapor-Liquid Equilibrium of Bitumen-Ethane Mixtures for Three Athabasca Bitumen Samples. Journal of Chemical & Engineering Data 62 (5): 2198-2207. https://doi.org/10.1021/acs.jced.7b00322. [96] Argüelles-Vivas F. J., Babadagli T., Little L., Romaniuk N., and Ozum B. High Temperature Density, Viscosity, and Interfacial Tension Measurements of Bitumen-Pentane-Biodiesel and Process Water Mixtures. Journal of Chemical Engineering Data 2012, 57 (10): 2878-2889. https://doi.org/10.1021/je3008217. [97] Nourozieh H., Kariznovi M., and Abedi J. 2014. Measurement and Prediction of Density for the Mixture of Athabasca Bitumen and Pentane at Temperatures up to 200°C. Energy & Fuels 28 (5): 2874-2885. https://doi.org/10.1021/ef4022784. [98] Kariznovi M., Nourozieh H., and Abedi J. Volumetric Properties of Athabasca Bitumen + n-Hexane Mixtures. Energy & Fuels 2014, 28 (12): 7418-7425. https://doi.org/10.1021/ef5019884. [99] Haddadnia A., Zirrahi M., Hassanzadeh H., and Abedi J. 2018. Thermo-Physical Properties of n-Pentane/Bitumen and n- Pentane/Bitumen Mixture Systems. The Canadian Journal of Chemical Engineering 96 (1): 339-351. https://doi.org/10.1002/ cjce.22873. [100] Haddadnia A., Azinfar B., Zirrahi M., Hassanzadeh H., and Abedi J. 2018. Thermophysical Properties of Dimethyl Ether/ Athabasca Bitumen System. The Canadian Journal of Chemical Engineering 96( 2): 597-604. https://doi.org/10.1002/cjce.23009. [101] Freitag N. P. and Kristoff B. J. 1998. Comparison of Carbon Dioxide and Methane as Additives at Steamflood Conditions. SPE Journal 3 (1): 14-18. https://doi.org/10.2118/30297-PA. [102] Maczynski A., Shaw D., Goral M., Wisniewska-Goclowska B., Skrzecz A., Maczynska Z., Owczarek I., Blazej K., Haulait-Pirson M. C., Kapuku F., Hefter G. T., and Szafranski A. 2005. IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater-Revised and Updated. Part 1. C5 Hydrocarbons with Water. Journal of Physical and Chemical Reference Data 34 (2): 441-476. https://doi.org/10.1063/1.1790005. [103] Maczynski A., Shaw D., Goral M., Wisniewska-Goclowska B., Skrzecz A., Owczarek I., Blazej K., Haulait-Pirson M. C., Hefter G. T., Maczynska Z., Szafranski A., Tsonopoulos C., and Young C. L. 2005. IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater-Revised and Updated. Part 2. Benzene with Water and Heavy Water. Journal of Physical and Chemical Reference Data 34 (2): 477-542. https://doi. org/10.1063/1.1790006. [104] Maczynski A., Shaw D., Goral M., Wisniewska-Goclowska B., Skrzecz A., Owczarek I., Blazej K., Haulait-Pirson M. C., Hefter G. T., Maczynska Z., Szafranski A., and Young C. L. 2005. IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater Revised and Updated. Part 3. C6H8- C6H12 Hydrocarbons with Water and Heavy Water. Journal of Physical and Chemical Reference Data 34 (2): 657-708. https:// doi.org/10.1063/1.1796631. [105] Maczynski A., Shaw D., Goral M., Wisniewska-Goclowska B., Skrzecz A., Owczarek I., Blazej K., Haulait-Pirson M. C., Hefter G. T., Kapuku F., Maczynska Z., and Young C. L. 2005. IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater Revised and Updated. Part 4. C6H14 Hydrocarbons with Water. Journal of Physical and Chemical Reference Data 34 (2): 709-713. https://doi.org/10.1063/1.1796651. [106] Maczynski A., Shaw D., Goral M., Wisniewska-Goclowska B., Skrzecz A., Owczarek I., Blazej K., Haulait-Pirson M. C., Hefter G. T., Kapuku F., Maczynska Z., and Young C. L. 2005. IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater-Revised and Updated. Part 5. C7 Hydrocarbons with Water and Heavy Water. Journal of Physical and Chemical Reference Data 34 (3): 1399-1487. https://doi. org/10.1063/ 1.1840737. [107] Shaw D., Maczynski A., Goral M., Wisniewska-Goclowska B., Skrzecz A., Owczarek I., Blazej K., Haulait-Pirson M. C., Hefter G. T., Kapuku F., Maczynska Z., and Szafranski A. 2006. IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with water and seawater-Revised and Updated. Part 10. C11 and C12 hydrocarbons with water. Journal of Physical and Chemical Reference Data 35 (1): 153-203. https://doi. org/10.1063/ 1.2134730. [108] Shaw D., Maczynski A., Goral M., Wisniewska-Goclowska B., Skrzecz A., Owczarek I., Blazej K., Haulait-Pirson M. C., Hefter G. T., Huyskens P. L., Kapuku F., Maczynska Z., and Szafranski A. 2006. IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater-Revised and Updated. Part 9. C10 Hydrocarbons with Water. Journal of Physical and Chemical Reference Data 35 (1): 93-151. https://doi. org/10.1063/ 1.2131103. [109] Shaw D., Maczynski A., Goral M., Wisniewska-Goclowska B., Skrzecz A., Owczarek I., Blazej K., Haulait-Pirson M. C., Hefter G. T., Kapuku F., Maczynska Z., and Szafranski A. 2006. IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater-Revised and Updated. Part 11. C13-C36 Hydrocarbons with Water. Journal of Physical and Chemical Reference Data 35( 2): 687-784. https://doi.org/10.1063/1.2132315. [110] Shaw D., Maczynski A., Goral M., Wisniewska-Goclowska B., Skrzecz A., Owczarek I., Blazej K., Haulait-Pirson M. C., Hefter G. T., Maczynska Z., and Szafranski A. 2005. IUPACNIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater Revised and Updated. Part 6. C8H8-C8H10 Hydrocarbons with Water. Journal of Physical and Chemical Reference Data 34 (3): 1489-1553. https://doi.org/10.1063/1.1839880. [111] Shaw D., Maczynski A., Goral M., Wisniewska-Goclowska B., Skrzecz A., Owczarek I., Blazej K., Haulait-Pirson M. C., Hefter G. T., Kapuku F., Maczynska Z., and Szafranski A. 2005. IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater Revised and Updated. Part 7. C8H12- C8H18 Hydrocarbons with Water. Journal of Physical and Chemical Reference Data 34 (4): 2261-2298. https://doi.org/10.1063/ 1.1842097. [112] Shaw D., Maczynski A., Goral M., Wisniewska-Goclowska B., Skrzecz A., Owczarek I., Blazej K., Haulait-Pirson M. C., Hefter G. T., Kapuku F., Maczynska Z., and Szafranski A. 2005. IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater-Revised and Updated. Part 8. C9 Hydrocarbons with Water. Journal of Physical and Chemical Reference Data 34( 4): 2299-2345. https://doi.org/10.1063/1.1842098. [113] Kobayashi, R. and Katz, D. 1953. Vapor-Liquid Equilibria for Binary Hydrocarbon-Water Systems. Industrial & Engineering Chemistry, 45(2), 440-446. [114] Li, H. and Yang, D. 2016. Determination of Individual Diffusion Coefficients of Solvent/CO2 Mixture in Heavy Oil Using Pressure-Decay Method. SPE Journal 21 (1): 131-143. SPE- 176032-PA. https://doi.org/10.2118/176032-PA. [115] Zheng S. and Yang D. 2017. Experimental and Theoretical Determination of Diffusion Coefficients of CO2-Heavy Oil Systems by Coupling Heat and Mass Transfer. Journal of Energy Resources Technology 139 (2): 022901. https://doi. org/10.1115/ 1.4033982. [116] Sun H., Li H., and Yang D. 2014. Coupling Heat and Mass Transfer for a Gas Mixture-Heavy Oil System at High Pressures and Elevated Temperatures. International Journal of Heat and Mass Transfer 74 (7): 173-184. https://doi.org/10.1016/j.ijheatmasstransfer. 2014.03.004. [117] Zheng S. and Yang D. 2017. Determination of Individual Diffusion Coefficients of C3H8/n-C4H10/CO2/Heavy-Oil Systems at High Pressures and Elevated Temperatures by Dynamic Volume Analysis. SPE Journal 22 (3): 799-816. https://doi.org/10.2118/ 179618-PA. [118] Schmidt T. 1989. Mass Transfer by Diffusion. AOSTRA Technical Handbook on Oil Sands, Bitumen and Heavy Oils. Edmonton, AB: Alberta Oil Sand Technologies and Research Authority. [119] Upreti S. R. and Mehrotra A. K. 2002. Diffusivity of CO2, CH4, C2H6 and N2 in Athabasca Bitumen. The Canadian Journal of Chemical Engineering 80 (1): 116-125. https://doi.org/10.1002/ cjce.5450800112. [120] Etminan S. R., Maini B. B., Chen Z., and Hassanzadeh H. 2010. Constant-Pressure Technique for Gas Diffusivity and Solubility Measurements in Heavy Oil and Bitumen. Energy & Fuels 24 (1): 533-549. https://doi.org/10.1021/ef9008955. [121] Fadaei H., Scarff B., and Sinton D. 2011. Rapid Microfluidics- Based Measurement of CO2 Diffusivity in Bitumen. Energy & Fuels 25 (10): 4829-4835. https://doi.org/10.1021/ef2009265. [122] Tharanivasan A. K., Yang C., and Gu Y. 2006. Measurements of Molecular Diffusion Coefficients of Carbon Dioxide, Methane, and Propane in Heavy Oil under Reservoir Conditions. Energy & Fuels 20 (6): 2509-2517. https://doi. org/10.1021/ ef060080d. [123] Yang C. and Gu Y. 2006. Diffusion Coefficients and Oil Swelling Factors of Carbon Dioxide, Methane, Ethane, Propane, and Their Mixtures in Heavy Oil. Fluid Phase Equilibria 243 (1- 2): 64-73. https://doi.org/10.1016/j.fluid.2006.02.020. [124] Jang H. W. and Yang D. 2020. Determination of Concentration- Dependent Gas Diffusivity in Reservoir Fluid Systems. Industrial & Engineering Chemistry Research 59 (33): 15028-15047. https://doi.org/10.1021/acs.iecr.0c01847. [125] Jang H. W. and Yang D. 2021. Determination of Individual Concentration-Dependent Diffusivity of the Binary Gas- Mixtures in Reservoir-Fluid Systems. International Journal of Heat and Mass Transfer 181: 121867. https://doi.org/10.1016/j. ijheatmasstransfer.2021.121867. [126] Jang H. W., and Yang D. 2021. Determination of Main-Term and Cross-Term Gas Diffusivities in Heavy Oil Systems Considering Local Oil Swelling Effect. Journal of Energy Resources Technology 143( 2): 023003. https://doi.org/10.1115/1.4047764. [127] Luo P., Yang C., and Gu Y. 2007. Enhanced Solvent Dissolution into In-Situ Upgraded Heavy Oil under Different Pressures. Fluid Phase Equilibria 252 (1-2): 143-151. https://doi. org/ 10.1016/j.fluid.2007.01.005. [128] Ganapathi K. 2009. Solubility and Diffusivity Study for Light Gases in Heavy Oil and Its Fractions. M.A.Sc. Thesis, University of Regina, Regina, SK. [129] Etminan S. R., Maini B. B., and Chen Z. 2014. Modeling the Diffusion Controlled Swelling and Determination of Molecular Diffusion Coefficient in Propane-Bitumen System Using a Front Tracking Moving Boundary Technique. Paper SPE-170182-MS, presented at the SPE Heavy Oil Conference, Calgary, AB, 10- 12 June. https://doi.org/10.2118/170182-MS. [130] Marufuzzaman M. 2010. Solubility
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

YANG Daoyong, LI Yunlong, HUANG Desheng. Phase Behaviour and Physical Properties of Alkane Solvent(s)/CO2/N2/DME/Water/Heavy Oil Systems under Reservoir Conditions[J]. Petroleum Geology and Recovery Efficiency,2024,31(2):175~208

Copy
Share
Article Metrics
  • Abstract:191
  • PDF: 2382
  • HTML: 9
  • Cited by: 0
History
  • Online: April 23,2024