文章编号:1009-9603(2020)01-0126-08

DOI:10.13673/j.cnki.cn37-1359/te.2020.01.019

低渗透油藏 CO2驱油数值模拟方法与应用

鞠斌山¹,于金彪²,吕广忠²,曹伟东²
(1.中国地质大学(北京)能源学院,北京 100083;
2.中国石化胜利油田分公司勘探开发研究院,山东东营 257015)

摘要:为弄清正理庄油田樊142块CO2驱油前缘特征和驱油效果,开展CO2驱油数值模拟方法和采油井开井顺序研究。利用多相渗流理论和数值求解技术,研制全隐式CO2驱油油藏数值模拟器。运用地质和生产资料分析和数值 模拟相结合的手段,研究了压力恢复阶段连续注入CO2油层中CO2的分布和前缘推进情况。发现CO2前缘存在明显 指进,注入2a后,前缘已到达樊142-6-2井,前缘距樊142-6-3井和樊141-1-1井的最短距离分别为52和45m。低 压区的樊142-8-3和樊142-7-3井先开井,生产1a后其余4口井再开井生产为最佳方案,该方案比同时开井累积 生产5a的采收率高1.34%,增产油量为5407t。通过采出程度、CO2埋存率和换油率对比可以看出开井顺序对驱油 效果影响显著。

关键词:CO₂驱油;驱油前缘;数值模拟;采收率;开井顺序优化;低渗透油藏
 中图分类号:TE357.45
 文献标识码:A

Numerical simulation method and application of CO₂ flooding in low permeability reservoirs

JU Binshan¹, YU Jinbiao², LÜ Guangzhong², CAO Weidong²

(1.School of Energy Resources, China University of Geosciences (Beijing), Beijing City, 100083, China; 2.Exploration and Development Research Institute, Shengli Oilfield Company, SINOPEC, Dongying City, Shandong Province, 257015, China)

Abstract: In order to clarify the characteristics of front and displacement efficiency of CO_2 flooding in Fan142 Block, Zhenglizhuang Oilfield, a numerical simulation method for CO_2 flooding and the optimization for well open sequence for oil wells are studied. A fully-implicit reservoir numerical simulator for CO_2 flooding is developed by using the multiphase percolation theory and the numerical solution technique. Combining the geological/production data analysis and oil reservoir simulation, the distribution of CO_2 and the displacement front of the block are studied during the pressure build-up stage by continuous CO_2 injection. It is found that an obvious fingering phenomenon occurs at the CO_2 flooding front. After 2 years of injection, the front has reached Well F142-6-2. The shortest distances from the front to Well F142-6-3 and F141-1-1 are 52 m and 45 m, respectively. The best scheme is that wells F142-8-3 and F142-7-3 in the low pressure area are first opened and the remaining 4 wells are opened for production after 1 year. The cumulative production for 5 years of this scheme is 1.34% higher than that of the scheme that the wells are opened at the same time, and the increase of oil production is 5 407 t. By comparing the oil recoveries, geological sequestration rates and replacement rates of CO_2 , it is indicated that the sequence of well opening have an significant effect on the displacement efficiency.

Key words: CO₂ flooding; oil displacement front; numerical simulation; oil recovery; optimization for well open sequence; low permeability reservoirs

近年来CO,驱油在理论研究和矿场实践方面取

得了较快发展^[1-3],前人研究表明CO,驱油可较大幅

收稿日期:2019-11-29。

作者简介:鞠斌山(1972—),男,山东潍坊人,教授,博士,从事油气田开发工程领域的研究。E-mail:jubs2936@163.com。

基金项目:国家科技重大专项"大型油气田及煤层气开发"(2016ZX05011),中国石化重大项目"低渗透油藏地质建模及CO₂驱数值模拟技术研究"(P18088-1)。

度地提高采收率^[4-8],相对于非混相驱,CO₂混相驱 具有更高的驱油效率^[9]。对于CO₂驱油提高采收率 研究领域,前人研究主要集中在提高采收率机 理^[10-12]、混相压力预测方法^[13-14]和室内实验^[15-19]。 对于实际油藏内CO₂驱后驱油前缘推进、浓度分布 和驱油指标,主要采用商业油藏模拟器开展研 究^[20-21],但是商业油藏模拟器将CO₂驱油处理为等 温渗流,未考虑CO₂在油层中的扩散作用。因此,对 于CO₂驱油数值模拟技术仍然有待于深入研究。此 外,对非均质油藏CO₂驱油过程中的"指进"现象、采 油井开关机时机和顺序优化等关键问题也缺乏系 统的研究。

正理庄油田樊142块经过天然能量开发后,平 均油层压力下降到不足20 MPa,油井产能大幅度降 低,为了改善该区块的开发效果,于2013年7月开 始选取樊142-7-斜4注采井组的7口井进行CO,驱 油矿场试验。为了实现混相,将注入井周围的6口 井关闭,经过2a的CO,注入,生产井压力监测和数 值模拟结果表明,该井组90%的油层区域达到混相 驱条件(最小混相压力为31.0 MPa)。但是由于油层 非均质性和注采井间压力梯度差异,出现了CO,驱 油指进现象,如果所有生产井同时开井生产,势必 造成个别井气窜严重,降低波及系数和驱油效果, 影响采收率。因此非常有必要进行开井顺序优化, 达到提高驱油效果的目的。为了实现最佳开井顺 序,实现最大的驱油效果的目标,建立多组分CO2驱 油数学模型,编制多组分气驱油藏数值模拟软件。 利用该软件跟踪模拟该井组CO,驱油注入过程,根 据CO,在储层中的分布特征和注采井对应关系,制 定6个开发方案,并应用所研制软件,进行模拟与预 测,得出最佳的开井顺序,预测CO,驱油指标。

1 CO₂驱油多组分渗流模拟数学模型

1.1 假设条件

数学模型假设条件包括:①CO₂驱油为多组分 渗流,其组成为CO₂,H₂O和n个原油拟组分。②考 虑CO₂在岩石孔隙表面上的吸附,可以更加准确地 描述CO₂在油层孔隙中起到驱油作用的比例。③考 虑CO₂在原油中的溶解作用,以便定量预测溶解量 对原油物性的影响。④考虑油藏中流体动态相变, 通过最小混相压力和溶解度参数判定驱油过程中 的相变及相数。⑤考虑温度、原油组成对动态最小 混相压力的影响,通过动态最小混相压力判别混相 驱油还是非混相驱油,提高驱油相态的预测精度。 ⑥考虑非等温渗流,以便更加准确地预测注入井附 近储层温度变化对渗流过程的影响。⑦在焖井或 停注阶段,CO₂扩散作用有助于扩大波及系数,因此 需考虑CO₂在油层中的扩散作用。

1.2 模型建立

根据质量和能量守恒定律,多相渗流的质量和 能量守恒的数学描述通式为^[22]:

$$\frac{\partial A^k}{\partial t} = F^k + q^k \tag{1}$$

1.2.1 质量项

质量项的表达式为:

$$A^{k} = \phi \sum_{\beta} \left(\rho_{\beta} S_{\beta} X_{\beta}^{k} \right) + R_{s}^{k}$$

$$k = 1, 2, 3, \cdots, N_{c}$$
(2)

其中:

$$R_{\rm s}^{k} = (1 - \phi) \rho_{\rm s} \rho_{\beta} X_{\beta}^{k} K_{\rm d}^{k}$$

$$k = 1, 2, 3, \cdots, N_{\rm c}$$
(3)

1.2.2 质量交换速度

质量交换速度的表达式为[23]:

$$F^{k} = -\sum_{\beta} \nabla \left(\rho_{\beta} X_{\beta}^{k} v_{\beta} \right) + \sum_{\beta} \nabla \left[\underline{D}_{\beta}^{k} \nabla \left(\rho_{\beta} X_{\beta}^{k} \right) \right]$$
$$k = 1, 2, 3, \cdots, N_{c}$$
(4)

考虑温度和原油性质的最小混相压力关系式 为:

$$p_{\rm mm} = 0.006 \ 895 \left[2 \ 947.9 - 3.404 M_{\rm C_7^*} + 1.8 \left(1.700 \times 10^{-9} M_{\rm C_7^*}^{3.73} e^{786.3 M_{\rm C_7^*}^{-1.058}} \right) \left(T_{\rm RC} + 32 \right) - 121.2 f_{\rm RF} \right]$$
(5)

2 数值离散与求解

2.1 差分离散

物质和能量守恒方程的数值离散形式为:

$$\{A_{i}^{k,n+1} - A_{i}^{k,n}\}\frac{V_{i}}{\Delta t} = \sum_{j \in \eta_{i}} flow_{ij}^{k,n+1} + Q_{i}^{k,n+1}$$

$$k = 1, 2, 3, \dots, N_{c}, N_{c} + 1$$

$$i = 1, 2, 3, \dots, N$$
(6)

其中:

$$flow_{ij}^{k,n+1} = F_{A,ij}^{k,n+1} + F_{D,ij}^{k,n+1}$$

$$k = 1, 2, 3, \dots, N_{c}$$
(7)

$$F_{A,ij}^{k,n+1} = \sum_{\beta} \left(X_{\beta}^{k,n+1} \right)_{ij+\frac{1}{2}} F_{\beta,ij}$$
(8)

$$F_{D,ij}^{k,n+1} = -\boldsymbol{n}_{ij} A_{ij} \sum_{\beta} \underline{\underline{D}}_{\beta}^{k,n+1} \nabla \left(\rho_{\beta} X_{\beta}^{k,n+1} \right)$$
(9)

(8)式中,各相的质量流量可用达西定律进行描述:

$$F_{\beta,ij} = \lambda_{\beta,ij+\frac{1}{2}} \gamma_{ij} | \Psi_{\beta j} - \Psi_{\beta i} | \qquad (10)$$

其中:

$$\lambda_{\beta,ij+\frac{1}{2}} = \left(\frac{\rho_{\beta}K_{\beta}}{\mu_{\beta}}\right)_{ij+\frac{1}{2}}$$
(11)

(10)式中的γ_{ii}定义为:

$$\gamma_{ij} = \frac{A_{ij}K_{ij+\frac{1}{2}}}{D_i + D_i}$$
(12)

2.2 数值求解

采用全隐式差分离散格式,通常采用牛顿迭代 方法求解,将(6)式写成余量^[23]的形式为:

$$R_{i}^{k,n+1} = \left\{A_{i}^{k,n+1} - A_{i}^{k,n}\right\} \frac{V_{i}}{\Delta t} - \sum_{j \in \eta_{i}} flow_{ij}^{k,n+1} - Q_{i}^{k,n+1}$$

$$k = 1, 2, 3, \dots, N_{c}, N_{c} + 1$$

$$i = 1, 2, 3, \dots, N \qquad (13)$$

N个节点有 $(N_{e}+1)$ ×N个非线性方程,每个节点 有 $N_{e}+1$ 个变量,需要用牛顿迭代方法求解 $N_{e}+1$ 个方 程^[23]。

3 樊142-7-斜4井组注CO2压力恢 复过程数值模拟

采用所建立的CO₂驱油数学模型和数值离散求 解方法,在Windows操作系统下,利用Visual Fortran 语言编制的组分油藏数值模拟软件,对正理庄油田 樊142-7-X4井组进行数值模拟。

3.1 樊142块概况

正理庄油田樊142块油层的平均孔隙度为12.5%,平均渗透率为1.89 mD。地面原油密度为0.8771kg/L,地层原油密度为0.7463kg/L;地面原油黏度为20.4 mPa·s,地层原油黏度为1.18 mPa·s。原始油层压力为44.87 MPa,含油饱和度为0.72。樊142-7-斜4井组为CO2驱油矿场试验井组,包括1口注气井(樊142-7-斜4井),6口采油井,井位见图1。该井组于2013年7月至2015年8月注入CO2,日注入量达10~20 t/d。

3.2 樊142-7-斜4井组数值模拟模型

目的层自下而上划分为4个模拟层,第1—4层 命名为12层、13层、14层和38层,运用Petrol软件进 行地质建模,x,y方向网格尺寸均为30m,z方向网

格厚度不同,其平均值为0.92 m;网格数为66×35×4 共9240个。樊142-6-2井、樊141-1井及樊142-6-3井附近有效厚度较大,樊142-8-斜4井有效厚度 最小。

3.3 注CO,压力恢复阶段数值模拟结果

由于CO₂混相驱效果明显好于非混相驱,为了 达到CO₂混相驱的目的,采取只注不采的方式,提高 油层压力,以便油层压力高于最小混相压力。在该 阶段,最关注的问题是压力分布特征是否具备混相 驱油条件与前缘推进特征。平面压力分布(图2)表 明:压力恢复阶段末期,樊142-8-3井与樊142-7-3 井附近区域受储层连通性差等因素影响,油层压力 低于最小混相压力(31 MPa),未能达到混相条件, 其余4口井所在油藏的压力均高于31 MPa,达到混 相驱油条件。CO₂浓度前缘出现明显指进现象,驱 油前缘向樊142-8-3井、樊142-7-3井与樊142-8-斜4井方向推进速度较慢。CO₂浓度前缘已经到达 樊142-6-2井,接近樊142-6-3井和樊141-1-1井, 如果同时开井或开井顺序不当,则会在这3口井造 成气窜,降低整体波及系数和驱油效果。

4 6口井采油方案设计及开井组合顺 序优化

4.1 方案设计

为了获得最佳开井时机和开井顺序,根据6口 井的油层压力高低(表1),设计6种开井顺序方案 (表2),对于油层压力高于最小混相压力31 MPa的, 设定井底流压为31 MPa,以保证混相驱,各井井底 流压设定和压力恢复阶段末各井对应的油层压力 见表1。模拟生产5a,对不同预测方案进行数值模 拟计算,得到各网格压力、CO₂浓度及各生产开发指 标等数据。根据综合前缘推进特征与CO₂驱油效果 评价对比,优选出最佳开井顺序方案。

Fig.2 Fronts of CO₂ concentration and pressure at the end of pressure building stage for F142-7-X4 well group

表1 各井井底流压与压力恢复阶段末油层压力 Table1 Pressures of wellbore flow and formation pressure of each well at the and of pressure building steere

each wen at the end of pressure building stage							
井号	井底流 压(MPa)	油层压 力(MPa)	油层压力由 高到低排序				
樊 142-6-2	31	40.1	1				
樊 141-1	31	36.3	2				
樊 142-6-3	31	35.3	3				
樊142-8-斜4	31	35.1	4				
樊 142-7-3	26	28.6	5				
樊 142-8-3	24.1	27.2	6				

4.2 注采5a后CO₂浓度及前缘对比

开发至第1800d时,方案二的CO₂浓度前缘波 及范围明显比其他方案的更大(图3)。结合CO₂浓 度分布及前缘推进特征可知,在相同开井数量下, 优先开低压井(指井所在的油层压力低)比先开高 压井CO₂浓度前缘波及面积大,开发效果好。其中 方案二与方案四波及面积分别排第1和2,可以作为 推荐候选方案,最优方案的确定还需从各方案的驱 油效果分析上做出最终评价。

4.3 驱油效果评价

为了对6个开井顺序方案的驱油效果进行评价 和优选,对6个开井顺序方案和1个同时开井生产 方案进行数值模拟,所有方案的CO₂日注入量为15 t/d,连续注入5 a。将模拟计算得到的累积产油量、 采出程度、CO₂埋存率和换油率4个指标进行综合对 比分析,确定最佳的开井生产方案。

累积产油量 在CO2注入速度和累积注入量相

表 2 6 种开井顺序方案 Table 2 Open sequence schemes of six wells

种类	方案名称	开井时间	开井顺序
第一 类 2+4	方案一 (2-4high first)	先开井, 生后其余有生。 子为产再井井, 4 a。 方为 1 a+4 a	先开獎142-6-2和獎141-1井,1а 后再开獎142-6-3、獎142-8-斜4、 獎142-7-3和獎142-8-3井
	方案二 (2-4low first)		先开部 分井
第二 类 3+3	方案三 (3-3high first)		先开樊142-6-2、樊141-1和樊 142-6-3井,1a后再开樊142-8- 斜4、樊142-7-3和樊142-8-3井
	方案四 (3-3low first)		
第三 类 4+2	方案五 (4-2high first)		
	方案六 (4-2low first)		先开獎142-6-3、獎142-8-斜4、 獎142-7-3和獎142-8-3井,1а 后再开獎142-6-2和獎141-1井

同的情况下,方案二的累积产油量最高,5a累积产 油量为49900×10⁴t,与全部同时开井相比增产油量 为5407t,其次是方案四(表3)。

采出程度 由各方案的采出程度随时间变化 (图4)可见,在第1a结束时方案六采出程度最高; 然而1a后,各方案的采出程度排序发生了明显变 化,方案二和方案四在第600d时,采出程度均超过

图 3 生产 5 a 后第 14 层 CO₂浓度前缘 Fig.3 Fronts of CO₂ concentration of Layer 14th after 5 years

	表3 累积产油量对比
Table3	Comparison of cumulative oil productions

I			I · · · · · ·
方案名称	5 a 累积 产油量(t)	累积产 油量排序	与全部同时开井相 比的增产油量(t)
全部开井方案	44 493	7	0
方案一(2-4high first)	45 000	5	507
方案二(2-4low first)	49 900	1	5 407
方案三(3-3high first)	44 663	6	170
方案四(3-3low first)	48 200	2	3 707
方案五(4-2high first)	45 200	4	707
方案六(4-2low first)	46 500	3	2 007

方案六,从第3a开始方案二采出程度始终保持最高(图4)。

CO₂埋存率 埋存率可间接地反映驱替效率。 在CO₂突破到生产井之间,埋存率为1,意味着注入 的全部CO₂占据油藏的孔隙空间,这部分空间的原 油被驱替走;突破气窜之后,部分CO₂从生产井采 出,采出的这部分CO₂没有留存在油藏内,埋存率降 低,也意味着气窜程度加剧,因此埋存率越高越好。 由所有方案的埋存率随时间变化(图5)可见,在第 1 a内,埋存率为0.68~1.0,埋存率较高,随着生产时 间延长,气窜导致埋存率下降。其中方案二在600 d

后的埋存率最高,表明注入CO₂利用率和驱油效率高,与该方案的累积产油量和采收率最高的结论吻合。

累积换油率 换油率从侧面反映CO₂驱油的置 换率,换油率随着时间是变化的(图6),在生产720 d后,方案二累积换油率最高,其次是方案四。

4.4 最佳开井顺序优选

最佳开井顺序需要综合考虑2个方面:①在前 缘推进特征方面,同时满足CO₂波及范围大,而且地 层压力较高的方案为优选标准。从以上分析得知, 方案二和方案四2个方案较好,可作为候选方案。 ②在驱油效果方面,兼顾采出程度、累积产油量、埋 存率、增油量和累积换油率较高(表3,图4—图6), 方案二为推荐的最佳方案。

Fig.6 Comparison of oil replacement rates of CO₂

4.5 矿场实施效果

根据坝砂3口井的试采结果,注CO₂后开井求 产期单井自喷日产油量为5.6~7.6 t/d,平均单井日 产油量为6.5 t/d;周期注采阶段平均单井日产油量 为5.8 t/d,产能远大于注气前泵抽的1.8 t/d,较试验 前提升2.8~5.1倍,平均增产3.5倍,自喷累积产油 量为961 t。为了更加客观地反映注入CO₂后油井增 产能力,采用采油指数进行效果评价(表4)。注CO₂ 后开井,3口井采油指数明显增大,平均为原来的 4.76倍,其中樊141-1井的采油指数为原来的6.93 倍,表明注CO₂后,采油能力大幅度提高。

5 结论

利用多相多组分渗流理论,建立了CO₂驱油渗 流模型,进行了全隐式离散,并采用牛顿迭代方法 实现了求解。

樊142块樊142-7-斜4注采井组由于油层非均 质性和注采井间压力梯度差异导致了CO₂在油层注 入过程中出现了明显的指进现象,预测结果表明 CO₂首先在樊142-6-2井突破,其次是樊141-1井和 樊142-6-3井。

数值模拟结果表明:生产井开井顺序对采出程度、CO₂埋存率、换油率和CO₂波及程度影响显著,根据CO₂驱油前缘和浓度分布特征进行开井时机和顺

液4 注口2前后西开的未通指数为比										
Fable4	Comparison	of productio	n indexes c	failn	roduction	wolle	hefore	and after (01	injection

= 4

注 (0 前斤油井的豆油指粉对比

	* *	· · ·		•	
生产井井号 -	采油指	数(t/d・MPa)	注入CO2后与注入CO2	采油指数增长 百分数(%)	
	注入CO2前	注入CO22a后开井	前的采油指数比		
樊142-6-2	0.56	0.90	1.61	60.71	
樊 141-1	0.40	2.77	6.93	592.50	
樊 142-6-3	0.38	2.18	5.74	473.68	
平均值	0.45	1.95	4.76	375.63	

序优化有助于提高CO2驱油效果。

通过6个开井顺序方案和全部开井方案的模拟 结果对比与分析,处于低压区的樊142-8-3井和樊 142-7-3井先开井,生产1a后其余4口井再开井生 产为最佳方案。生产5a情况下最佳方案比同时开 井方案的采收率高1.34%,增产油量为5407t。

符号解释

 A^k ——某单元体内组分 $k(k \le N_a)$ 的每单位体积质量项, kg/m³;或某单元体内每单位体积的热量,kJ/m³;上标 k----组 分数,当k=1,2,3,…,N。时,(1)式为每个组分(共N。个组分) 的质量守恒方程;当k=N+1时,(1)式为能量守恒方程; 热量交换速度,kJ/s;q^k——某单元体内的每单位体积的质量 源汇项,kg/(s·m³);或某单元体内的每单位体积的热量源汇 项,kJ/(s·m³); φ——孔隙度; β——相标志,其为g,w和o时 分别表示气相、水相和油相; ρ_{β} ——相密度, kg/m^3 ; S_{β} ——相 饱和度; X_{k}^{k} ——组分k在相中的摩尔分数; R_{s}^{k} ——组分k在单 位体积岩石孔隙表面的吸附量,kg/m3;下标S----固体岩石; ρ_{s} ——岩石颗粒密度, kg/m³; K_{d}^{k} —— β 相分配系数, m³/kg; v_{β} ——渗流速度,m/s; $\underline{D}_{\beta}^{k}$ ——综合扩散系数,m²s; p_{mm} ——最 小混相压力, MPa; M_{ct} —— C_7^+ 相对分子质量; T_{RC} ——油藏 组分在n+1时刻单位体积的质量,kg/m³;A^{k,n}——第i节点第k 组分在n时刻单位体积的质量,kg/m3;V,----第i节点体积, m³; 下标 *j*—— 节点个数; η*i*—— 第*i* 节点的外表面; $flow_{ii}^{k,n+1}$ ——第*i*节点第*k*组分在*n*+1时刻的流入速度,kg/s; $Q_i^{k,n+1}$ — 第*i*节点第*k*组分在*n*+1时刻的源汇项,kg/s; $F_{A,ij}^{k,n+1}$ —组分k的对流项,kg/s; $F_{D,ij}^{k,n+1}$ —组分k的扩散项, $kg/s; F_{\beta,ij} \longrightarrow \beta$ 相的对流项, kg/s; $n_{ij} \longrightarrow$ 相邻两节点 i 和 j 之 间的单位向量;A_{ii}——相邻两节点i和j之间的接触面积,m²; —β相的流度系数,(kg/(m³·Pa·s);γ_{ij}——导流系 $\lambda_{\beta,ij+\frac{1}{2}}$ 数, m³; $\Psi_{\beta i}$ — 第*i*节点 β 相的压强, Pa; $\Psi_{\beta i}$ — 第*i*节点 β 相 的压强, $Pa; K_{\mu} \longrightarrow \beta$ 相的相对渗透率; $\mu_{\beta} \longrightarrow \beta$ 相的黏度, Pa·s; K_{i_i+1} ——第i和j节点的平均渗透率, m²; D_i ——第i节 点中心到接触面的垂直距离,m;D;——第j节点中心到接触 面的垂直距离,m; $R_i^{k,n+1}$ ——余量,kg/s。

参考文献

 [1] 郭省学.高温高压条件下CO2驱稠油微观运移特征[J].油气地 质与采收率,2019,26(3):99-104.

GUO Xingxue. Study on microscopic migration characteristics of heavy oil by CO_2 flooding at high temperature and high pressure [J]. Petroleum Geology and Recovery Efficiency, 2019, 26(3): 99–104.

[2] 毕卫宇,张攀锋,章杨,等.低渗透油田用CO2气溶性泡沫体系

研发及性能评价[J].油气地质与采收率,2018,25(6):71-77. BI Weiyu, ZHANG Panfeng, ZHANG Yang, et al. Development and performance evaluation on CO₂-soluble surfactant foam system for low permeability reservoir[J].Petroleum Geology and Recovery Efficiency,2018,25(6):71-77.

- [3] 袁少民.特低渗透油藏CO2驱油调整技术界限[J].大庆石油地 质与开发,2019,38(4):117-123.
 YUAN Shaomin. Technical limits for the adjustment of the CO2 flooding in ultra-low permeability oil reservoirs[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(4):117-123.
- [4] 李向良.二氧化碳驱油藏产出气回注的可行性及其对驱油效果的影响[J].油气地质与采收率,2016,23(3):72-76.
 LI Xiangliang. Feasibility of produced gas reinjection during CO₂ flooding and its influence on displacement efficiency [J]. Petroleum Geology and Recovery Efficiency, 2016,23(3):72-76.
- [5] AL-BAYATI Duraid, SAEEDI Ali, XIE Quan.Influence of permeability heterogeneity on miscible CO₂ flooding efficiency in sandstone reservoirs: An experimental investigation [J]. Transport in Porous Media, 2018, 125(2):341–356.
- [6] 沈平平,廖新维.二氧化碳地质埋存与提高石油采收率技术
 [M].北京:石油工业出版社,2009:151-168.
 SHEN Pingping, LIAO Xinwei.The technology of CO₂ geological storage and enhanced oil recovery [M].Beijing: Petroleum Industry Press,2009:151-168.
- [7] 廖长霖,廖新维,赵晓亮,等.低渗透油藏二氧化碳驱油及埋存 可行性研究——以新疆油田八区克上组油藏为例[J].油气地 质与采收率,2013,20(5):79-83.
 LIAO Changlin, LIAO Xinwei, ZHAO Xiaoliang, et al. Feasibility of carbon dioxide flooding and realization of sequestration in low permeability oil reservoir-case study in Baqukeshangzu reservoir of Xinjiang oilfield[J].Petroleum Geology and Recovery Efficiency,2013,20(5):79-83.
- [8] 江怀友,沈平平,卢颖,等.CO₂提高世界油气资源采收率现状研究[J].特种油气藏,2010,17(2):5-10.
 JIANG Huaiyou, SHEN Pingping, LU Ying, et al.Present situation of enhancing hydrocarbon recovery factor by CO₂[J].Special Oil & Gas Reservoirs,2010,17(2):5-10.
- [9] 秦积舜,韩海水,刘晓蕾.美国CO2驱油技术应用及启示[J]. 石油勘探与开发,2015,42(2):209-216.
 QIN Jishun, HAN Haishui, LIU Xiaolei. Application and enlightenment of carbon dioxide flooding in the United States of America
 [J]. Petroleum Exploration and Development, 2015, 42(2):209-216
- [10] 蒋永平.CO₂复合驱油分子动力学模拟及微观机理研究[J].石 油实验地质,2019,41(2):274-279.

JIANG Yongping.Molecular dynamics simulation and microscopic mechanism of CO₂ composite flooding [J].Petroleum Geology & Experiment, 2019, 41(2):274–279.

 [11] 杨承志,岳清山,沈平平.混相驱提高石油采收率[M].北京:石油工业出版社,1991:25-34.
 YANG Chengzhi, YUE Qingshan, SHEN Pingping.Miscible flooding to enhance oil recovery [M]. Beijing: Petroleum Industry Press,1991:25-34.

- [12] 沈平平,江怀友.温室气体提高采收率的资源化利用及地下埋 存[J].中国工程科学,2009,11(5):54-59.
 SHEN Pingping, JIANG Huaiyou.Utilization of greenhouse gas as resource in EOR and storage it underground [J].Engineering Science,2009,11(5):54-59.
- [13] 孙业恒,吕广忠,王延芳,等.确定CO2最小混相压力的状态方程法[J].油气地质与采收率,2006,13(1):82-84.
 SUN Yeheng,LÜ Guangzhong, WANG Yanfang, et al. A method of state equation for determining minimum miscible pressure of CO2[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(1):82-84.
- [14] 鞠斌山,秦积舜,李治平,等.二氧化碳-原油体系最小混相压 力预测模型[J].石油学报,2012,33(2):274-277.
 JU Binshan, QIN Jishun, LI Zhiping, et al. A prediction model for the minimum miscibility pressure of the CO₂-crude oil system[J]. Acta Petrolei Sinica,2012,33(2):274-277.
- [15] 钱坤,杨胜来,马轩,等.超低渗透油藏CO₂吞吐利用率实验研究[J].石油钻探技术,2018,46(6):77-81.
 QIAN Kun,YANG Shenglai,MA Xuan, et al.CO₂ utilization ratio simulation during a CO₂ huff-and-puff process in ultra-low permeability oil reservoirs[J].Petroleum Drilling Techniques, 2018, 46(6):77-81.
- [16] 王雅春,赵振铎.压力对二氧化碳驱油效果影响的实验研究
 [J].特种油气藏,2017,24(4):132-135.
 WANG Yachun,ZHAO Zhenduo.Experimental research on the effect of pressure on CO₂ oil displacement efficiency[J].Special Oil

& Gas Reservoirs, 2017, 24(4):132–135.

[17] RAHIMI Vahid, BIDARIGH Mohammad, BAHRAMI Peyman.Experimental study and performance investigation of miscible wateralternating-CO₂ flooding for enhancing oil recovery in the Sarvak Formation [J]. Oil & Gas Science and Technology-Revue d'IFP Energies nouvelle, 2017, 72(6): 1-12.

- [18] 王维波,师庆三,余华贵,等.二氧化碳驱油注入方式优选实验
 [J].断块油气田,2015,22(4):497-500,504.
 WANG Weibo, SHI Qingsan, YU Huagui, et al. Optimization experiment for carbon dioxide flooding injection mode [J]. Fault-Block Oil & Gas Field, 2015, 22(4):497-500, 504.
- [19] 马力,欧阳传湘,谭钲扬,等.低渗透油藏CO₂驱中后期提效方法研究[J].岩性油气藏,2018,30(2):139-145.
 MA Li, OUYANG Chuanxiang, TAN Zhengyang, et al. Efficiency improvement of CO₂ flooding in middle and later stage for low permeability reservoirs[J].Lithologic Reservoirs, 2018, 30(2):139-145.
- [20] 王杰,谭保国,吕广忠.一种通过数值模拟手段划分 CO₂驱替相带的新方法——以高 89 块油藏为例[J].科技导报,2013,31 (9):46-49.

WANG Jie, TAN Baoguo, LÜ Guangzhong. Numerical simulation for division of phase zone displacement; with Gao89 as an example [J].Science & Technology Review, 2013, 31(9):46–49.

- [21] 王欢,廖新维,赵晓亮.特低渗透油藏注CO2驱参数优化研究
 [J].西南石油大学学报:自然科学版,2014,36(6):95-104.
 WANG Huan,LIAO Xinwei,ZHAO Xiaoliang.Research on CO2 flooding parameters optimization of extra-low permeability reservoirs [J]. Journal of Southwest Petroleum University: Science & Technology Edition,2014,36(6):95-104.
- [22] JU Binshan, WU Yushu, QIN Jishun, et al.Modeling CO₂ miscible flooding for enhanced oil recovery [J].Petroleum Science, 2012, 9 (2):192–198.
- [23] PRUESS K. ECO₂N: A TOUGH2 fluid property module for mixtures of water, NaCl, and CO₂[M]. Berkeley: Lawrence Berkeley National Laboratory, 2005:11-45.

编辑 刘北羿