文章编号:1009-9603(2021)03-0084-06

DOI: 10.13673/j.cnki.cn37-1359/te.2021.03.010

两类产量递减模型在预测页岩气井和 致密气井中的应用与对比

陈元千1,傅礼兵1,徐佳倩1,2

(1.中国石油勘探开发研究院,北京100083; 2.中国石油大学(北京)石油工程学院,北京102249)

摘要:产量递减模型是评价油气井与油气藏产量和可采储量的重要工具。它的有效应用不受储集类型、驱动类型、 流体类型、压裂类型和开采方式的限制。只要油气井和油气藏的产量进入递减阶段,并拥有一定的生产数据,即可 进行有效预测。多年的实际应用证实,Arps于1945年提出了指数、双曲线和调和递减模型,其中双曲线递减模型是 一种具有代表性的模型。陈元千等近年提出的泛指数递减也是一种具有实用价值的预测模型。从理论上讲双曲 线递减模型的递减指数n值为0~1,实用的有效范围为0~0.5。对于泛指数递减模型的泛指数m,理论上为0~1, 有效范围为0.5~1。应当指出,当n=0或m=1时,由两类递减模型均可得到指数递减模型。当n=0.5或m=0.5时,由 两种递减模型均可得到具有实用价值的预测模型。本文提出了预测页岩气井和致密气井产量、累积产量、可采储 量、递减率、无因次产量和无因次累积产量的关系式。通过实例应用表明,两类模型的预测结果基本上是相同的。 关键词:页岩气;致密气;两类产量递减模型;可采储量;应用;对比 中图分类号:TE32*8 文献标识码:A

Application and comparison of two production decline models in shale gas wells and tight gas wells

CHEN Yuanqian¹, FU Libing¹, XU Jiaqian^{1,2}

(1.Research Institute of Petroleum Exploration and Development, PetroChina, Beijing City, 100083, China;
2.College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing City, 102249, China)

Abstract: The production decline model is of vital importance to predicting the production rates and recoverable reserves of oil-gas wells and reservoirs. Its effective application is not limited by the ways it is reserved, driven, fractured, and recovered as well as the fluid in it. In the decline stage of production rates, the production rates and recoverable reserves can be predicted with enough production data. After years of application, Arps, in 1945, created the exponential decline model, the harmonic decline model, and, more importantly, the representative hyperbolic decline model. Moreover, the pan exponential decline model is practically valuable. Theoretically, the decline exponent *n* of the hyperbolic decline model ranges from 0 to 1 and the model is practical when *n* falls between 0 and 0.5. However, the pan exponent *m* of the pan exponential decline model can be valued at, in theory, between 0 and 1. The model is feasible when *m* ranges from 0.5 to 1. For *n*=0 or *m*=1 of the corresponding models, the exponential decline model can be obtained. For both *n*=0.5 and *m*=0.5, practical models can be built. The formulas of production rates, cumulative productions, recoverable reserves, decline rates, dimensionless production rates, and dimensionless cumulative productions of shale gas wells and tight gas wells, and dimensionless cumulative productions are proposed. According to application cases, the two models made similar predictions.

Key words: shale gas; tight gas; two production decline model; recoverable reserve; application; comparison

众所周知,产量递减阶段是油气井和油气藏开

采的主要阶段,它将伴随生产达到经济极限产量而

收稿日期:2020-09-15。

作者简介:陈元千(1933—),男,河南兰考人,教授级高级工程师,1952年考入清华大学石油工程系,1956年毕业于北京石油学院钻采系, 长期从事油气藏工程、油气田开发和油气储量评价工作。E-mail:525980269@qq.com。

停止。Arps于1945年提出的指数、双曲线和调和三 种递减模型^[1]得到了国际上的公认和应用。陈元千 等提出的广义递减模型[2-3]、线性递减模型[4]、幂函 数递减模型[5]和泛指数递减模型[6]均可对油气井和 油气藏进行有效预测。实例应用结果表明, Arps 的 n=0.5的双曲线递减模型与陈元千等建立的m=0.5 的泛指数递减模型是两类有效的产量递减预测模 型。

1 两类递减模型的对比

1.1 双曲线递减模型及求解方法

双曲线递减模型的产量、累积产量、可采储量、 递减率、无因次产量和无因次累积产量的公式[1-3]分 别表示为:

$$q = \frac{q_i}{\left(1 + nD_i t\right)^{\frac{1}{n}}} \tag{1}$$

$$G_{p} = \frac{q_{i}}{(1-n)D_{i}} \left[1 - \left(\frac{1}{1+nD_{i}t}\right)^{\frac{1-n}{n}} \right]$$
(2)

$$G_R = \frac{q_i}{(1-n)D_i} \tag{3}$$

$$D = \frac{D_i}{1 + nD_i t} \tag{4}$$

$$q_D = \frac{1}{\left(1 + nt_D\right)^{\frac{1}{n}}} \tag{5}$$

$$G_{pD} = 1 - \left(\frac{1}{1 + nt_D}\right)^{\frac{1 - n}{n}}$$
 (6)

为了利用线性迭代试差法求解双曲线递减模 型,将(1)式代入(2)式得到的直线关系式为:

$$q^{1-n} = A - BG_p \tag{7}$$

其中:

$$A = q_i^{1-n} \tag{8}$$

$$B = \frac{(1-n)D_i}{q_i^{1-n}}$$
(9)

选用n=0.05的步长,由(7)式进行线性迭代试 差,求解双曲线递减模型,能形成最佳直线关系(相 关系数最高)的n值,即为欲求的正确值。对该直线 进行线性回归求得直线的截距和斜率后,通过(8) 式和(9)式改写的下式确定qi和Di值:

$$q_i = A^{\frac{1}{1-n}} \tag{10}$$

$D_i = \frac{AB}{1 - n}$ (11)

1.2 泛指数递减模型及求解方法

泛指数递减模型的产量、累积产量、可采储量、 递减率、无因次产量和无因次累积产量公式[6-7]分别 为:

$$q = q_i \mathrm{e}^{\frac{-t^{\prime\prime}}{c}} \tag{12}$$

$$G_{p} = \frac{q_{i}c^{\frac{1}{m}}}{m} \left[1 - \Gamma\left(\frac{1}{m}, \frac{t^{m}}{c}\right) \right]$$
(13)

$$G_{R} = \frac{q_{i}c^{\frac{1}{m}}}{m}\Gamma\left(\frac{1}{m}\right) \tag{14}$$

$$D = \frac{m}{ct^{1-m}} \tag{15}$$

$$q_D = e^{\frac{-t_D^m}{c^{1-m}}}$$
(16)

$$G_{pD} = 1 - \Gamma\left(\frac{1}{m}, \frac{t_D^{\ m}}{c^{1-m}}\right)$$
 (17)

应当指出,在(13)式和(14)式中的完全伽马函 数和上不完全伽马函数值,可查用伽马函数表或采 用数值计算方法确定。

为了利用线性迭代试差法,求解泛指数递减模 型常数q.和m及c值,将(12)式改写为下式:

$$\ln q = \alpha - \beta t^m \tag{18}$$

其中:

$$\alpha = \ln q_i \tag{19}$$

$$\beta = \frac{1}{c} \tag{20}$$

选用m=0.05的步长,由(18)式进行线性迭代试 差法,求解泛指数递减模型时,对干能够形成最佳 直线(相关系数最高)的m值,即为欲求的正确值。 在对该直线进行线性回归求解直线的截距和斜率 后,通过变形(19)式和(20)式分别确定q和c的计算 式为:

 q_i

$$= e^{\alpha}$$
 (21)

$$e = \frac{1}{\beta} \tag{22}$$

2 实例应用与对比

2.1 页岩气井的应用和对比

美国宾州 Marcellus 页岩气藏^[8]M₁井于 2011 年 8 月投产,投产后第2个月该气井产量最大,此后进入 递减阶段。该阶段不同时间的产量和累积产量的 数据列于表1,并分别绘于图1和图2。

	Table1	le1 Production data of Well M_1^{101}					
t	q	G_{p}	t	q	G_p		
(mon)	$(10^4 \text{ m}^3/\text{mon})$	(10^4 m^3)	(mon)	$(10^4 \text{ m}^3/\text{mon})$	(10^4 m^3)		
1	490	490	21	179	5 794		
2	410	901	22	170	5 964		
3	404	1 305	23	169	6 133		
4	382	1 687	24	160	6 292		
5	353	2 041	25	154	6 447		
6	313	2 354	26	153	6 599		
7	313	2 667	27	147	6 747		
8	266	2 933	28	148	6 894		
9	288	3 221	29	143	7 037		
10	259	3 480	30	127	7 164		
11	256	3 736	31	137	7 301		
12	245	3 981	32	127	7 429		
13	231	4 211	33	125	7 554		
14	229	4 440	34	125	7 678		
15	213	4 653	35	126	7 805		
16	212	4 865	36	123	7 928		
17	202	5 067	37	117	8 044		
18	176	5 243	38	118	8 162		
19	192	5 435	39	112	8 275		
20	180	5 615					

表 1 M_1 井的生产数据^[8] able 1 Production data of Well $M_1^{[8]}$

2.1.1 双曲线递减模型的应用 将表1中的数据按(7)式进行线性迭代试差法

求解,得到*n*=0.5时的最佳直线关系绘于图3。该直线的截距*A*=21.289,斜率*B*=1.348×10⁻³,相关系数 *R*²=0.9782。将*A*和*n*值代入(8)式,得页岩气井的初始理论产量为:

将A,B和n值代入(4)式,得页岩气井的初始递 减率为:

$$D_i = \frac{21.289 \times 1.348 \times 10^{-3}}{1 - 0.5} = 0.0574 \,\mathrm{mon}^{-1}(24)$$

再将q_i,D_i和n值代入(3)式,得由n=0.5的双曲 线递减模型预测页岩气井的可采储量为:

 $G_{R} = \frac{453.22}{(1 - 0.5) \times 0.0574} =$

 $15\,792 \times 10^4 \text{ m}^3 = 1.579\,2 \times 10^8 \text{ m}^3$ (25)

将q_i,D_i和n值,分别代入(1)式、(2)式和(4)式, 得预测页岩气井产量、累积产量和递减率表达式 为:

$$q = \frac{453.22}{\left(1 + 0.028\,7t\right)^2} \tag{26}$$

$$G_p = 15\,792 \left(1 - \frac{1}{1 + 0.028\,7t} \right) \tag{27}$$

$$D = \frac{0.0574}{1+0.0287t} \tag{28}$$

将由(26)式、(27)式和(28)式预测得到的页岩 气井的q,G,和D值分别绘于图1、图2和图4。

2.1.2 泛指数递减模型的应用

将表1中数据按(18)式进行线性迭代试差法求 解,当m=0.5时得最佳直线的截距 $\alpha=6.4606$,斜率 $\beta=0.2805$,相关系数 $R^2=0.9930$ (图5)。

将α值代入(21)式,得页岩气井t=0时的初始理 论产量为:

$$q_i = e^{6.46} = 638.63 \times 10^4 \text{ m}^3/\text{mon}$$
 (29)

图 5 M₁井 lnq 与 t^m的最佳直线关系(m=0.5) Fig.5 Optimal linear relation between lnq and t^m of Well M₁(m=0.5)

再将β值代人(22)式得c值为: $c = \frac{1}{0.28} = 3.57$ (30)

当m=0.5时,查伽马函数表得 $\Gamma(1/m)=\Gamma(2)=1$, 若将 q_i,c,m 和 $\Gamma(1/m)$ 的数值代入(14)式,得由泛指 数递减模型预测 M_i 井的可采储量为:

$$G_R = \frac{638.63 \times 1 \times 3.57^{\frac{1}{0.5}}}{0.5} =$$

$$16\,279 \times 10^4 \text{ m}^3 = 1.627\,9 \times 10^8 \text{ m}^3$$
 (31)

将q_i, c和m值分别代入(12)式、(13)式和(15) 式,得泛指数递减模型预测页岩气井的q,G_p和D的 表达式为:

$$q = 638.63 \mathrm{e}^{-0.28t^{0.5}} \tag{32}$$

$$G_p = 16\,279 \Big[1 - \Gamma \big(2, 0.28t^{0.5} \big) \Big] \tag{33}$$

$$D = \frac{0.14}{t^{0.5}} \tag{34}$$

由(32)式、(33)式和(34)式分别预测页岩气井 q,G_p和D值,并分别绘于图1、图2和图4。由图1和 图2可以看出,泛指数递减模型预测的结果比双曲 线递减模型预测的结果更接近于实际值,两类递减 模型预测的可采储量基本相同。由图4看出,当t约 大于10 mon时泛指数递减模型预测的递减率低于 双曲线递减模型。

2.2 致密气井的应用和对比

根据文献[9]的报道,某致密气井的产量和累 积产量数据列于表2,并绘于图6和图7。将表2上 数据分别按双曲线递减模型和泛指数递减模型进 行线性迭代试差求解,当n=0.5和m=0.5时均可得最 佳直线关系,见图8和图9。

表 2 致密气井的生产数据^[9] Table 2 Production data of tight gas well^[9]

t	q	G_p	t	q	G_p
(d)	$(10^4 \text{ m}^3/\text{d})$	$(10^4 m^3)$	(d)	$(10^4 \text{ m}^3/\text{d})$	$(10^4 \ m^3)$
30	1.170	38	1 170	0.736	1 065
60	1.112	72	1 200	0.721	1 076
90	1.064	103	1 320	0.706	1 179
120	1.051	135	1 410	0.669	1 209
150	1.069	172	1 500	0.672	1 298
180	1.041	201	1 620	0.652	1 367
210	1.010	228	1 710	0.635	1 439
240	0.988	256	1 800	0.621	1 504
270	1.024	299	1 980	0.566	1 570
300	0.989	322	2 070	0.572	1 630
330	0.968	348	2 190	0.556	1 702
360	0.991	390	2 280	0.537	1 773
390	0.945	404	2 310	0.539	1 800
420	0.825	418	2 400	0.520	1 837
450	0.958	477	2 580	0.499	1 922
480	0.932	497	2 700	0.482	1 990
510	0.913	520	2 880	0.407	2 047
540	0.926	561	2 910	0.442	2 081
570	0.880	566	3 000	0.438	2 103
600	0.896	609	3 400	0.395	2 241
660	0.865	653	3 600	0.391	2 366
720	0.846	703	4 000	0.349	2 496
780	0.826	750	4 200	0.341	2 589
840	0.823	813	4 800	0.298	2 779
900	0.787	841	5 000	0.279	2 825
960	0.806	927	5 480	0.258	2 962
1 020	0.784	967			

Fig.9 Optimal linear relation for pan exponential decline model of tight gas well(*m*=0.5)

2.2.1 双曲线递减模型的应用

将图 8上 n=0.5 最佳直线的数据,利用(7)式进 行线性回归得到直线的截距 A=1.054 7,斜率 B= 0.000 2 和相关系数 R²=0.991 4。由(10)式和(11)式 分别求得双曲线递减模型的初始产量 q_i=1.112×10⁴ m³/d和初始递减率为 D_i=0.000 422 d⁻¹。将 q_i, D_i和 n 值代入(4)式,得致密气井的可采储量为:

$$G_{R} = \frac{1.112 \times 10^{4}}{(1 - 0.5) \times 4.22 \times 10^{-4}} = 5\ 270 \times 10^{4}\ \mathrm{m}^{3}$$
(35)

再将 q_i , D_i 和n值分别代入(1)式、(2)式和(4)式 预测的q, G_p 和D值绘于图1、图2和图4。

2.2.2 泛指数递减模型的应用

将图 8上 m=0.5 最佳直线的数据,利用(18)式 进行回归求得直线的截距 α =0.379 3,斜率 β =0.021 8 和相关系数 R^2 =0.976 5。再利用(24)式和(25)式分 别求得泛指数递减模型的 q_i =1.461×10⁴ m³/d和 c= 45.871。当m=0.5,1/m=2时,查伽马函数表Γ(1/m)= 1。将 q_i , c, m和Γ(1/m)值代入(14)式,得泛指数递 减模型预测致密气井的可采储量为:

$$G_{R} = \frac{1.461 \times 10^{4} \times 45.875^{\overline{0.5}} \times 1}{0.5} = \frac{6.150 \times 10^{4} \text{ m}^{3}}{(36)}$$

再将q_i, c和m值分别代入(12)式、(13)式和(15)式,预测致密气井的q,G_p和D值,分别绘于图6、图7和图10。由图6和图7看出,泛指数递减模型 比双曲线递减模型的预测结果更接近于实际值,而 两类模型预测的可采储量有所不同。由图10可以 看出,当t约大于650d时泛指数递减模型预测的递 减率低于双曲线递减模型。

3 结论

Arps于1945年利用油井产量递减数据,经统计研究,提出的指数、双曲线和调和三种递减模型,常规油气井和油气藏的实际应用结果表明,指数递减模型应用的最为广泛,双曲线递减模型应用的一般,调和递减模型应用的很少。通过本文的研究和应用表明,对于页岩气井和致密气井,n=0.5的双曲线递减模型和m=0.5的泛指数递减模型是两种重要的实用预测模型。这为页岩气井和致密气井产量、累积产量、可采储量和递减率的预测提供了实用有效方法。由页岩气井和致密气井的预测结果表明,泛指数递减模型预测的结果比双曲线递减模型更接近于实际。两类预测的可采储量基本相同,但预测的递减率相差明显。

符号解释

- A和B——双曲线递减模型最佳直线的截距和斜率;
- c——泛指数递减模型的时间常数,mon或d;
- D——t时间的递减率, mon⁻¹或 d⁻¹;
- D_i ——t=0时双曲线递减模型的初始理论递减率, mon⁻¹ 或 d⁻¹;
- G_{0} ——*t*时间的累积产量, 10⁴ m³;
- G_D 一无因次累积产量,dim;
- G_R——可采储量,10⁴ m³;
- m——泛指数递减模型的泛指数,dim;
- n——双曲线递减模型的递减指数,dim;
- q——t时间的产量,10⁴ m³/mon或10⁴ m³/d;
- q,----t=0时初始理论产量,10⁴ m³/mon或10⁴ m³/d;
- q_D ——无因次产量,dim;
- R²——相关系数,dim.
- t——生产时间,mon或d;
- t_p ——无因次时间,dim;
- α 和 β ——泛指数递减模型最佳直线的截距和斜率;
- $\Gamma(1/m)$ ——完全伽马函数;
- $\Gamma(1/m, t^m/c)$ ——上不完全伽马函数。

参考文献

- ARPS J J. Analysis of decline curves [J]. AIME, 1945, 160: 228– 247.
- [2] 陈元千,唐玮.广义递减模型的建立及应用[J].石油学报, 2016,37(11):1410-1413.

CHEN Yuanqian, TANG Wei. Establishment and application of generalized decline model [J]. Acta Petrolei Sinica, 2016, 37 (11):1410-1413.

[3] 陈元千,吕恒宇,傅礼兵,等.注水开发油田加密调整效果的评价方法[J].油气地质与采收率,2017,24(6):60-64.

CHEN Yuanqian, LÜ Hengyu, FU Libing, et al. Evaluation method of infilling adjustment effect for waterflooding development oilfields [J]. Petroleum Geology and Recovery Efficiency, 2017, 24 (6):60–64.

[4] 陈元千,周翠.线性递减类型的建立、对比与应用[J].石油学报,2015,36(8):983-987.

CHEN Yuanqian, ZHOU Cui. Establishment, comparison and application of the linear decline type[J].Acta Petrolei Sinica, 2015, 36(8):983–987.

 [5] 陈元千,傅礼兵.幂函数递减模型的建立、对比与应用[J].油气 地质与采收率,2019,26(6):87-91.
 CHEN Yuanqian, FU Libing.Establishment, comparison and ap-

plication of power function decline model[J].Petroleum Geology and Recovery Efficiency, 2019, 26(6):87–91.

[6] 陈元千,徐佳倩,傅礼兵.预测页岩气井产量和可采储量泛指数递减模型的建立及应用[J].油气地质与采收率,2021,28 (1):132-136.

CHEN Yuanqian, XU Jiaqian, FU Libing. Establishment and application of pan exponential decline model for forecasting production rate and recoverable reserves of shale gas wells[J].Petroleum Geology and Recovery Efficiency, 2021, 28(1):132–136.

- [7] VALKÓP P, LEE J W.A better way to forecast production from unconventional gas wells[C].SPE 134231,2010.
- [8] 何培,冯连勇,TOM Wilber.马塞勒斯页岩气藏单井产量递减 规律及可采储量预测[J].新疆石油地质,2015,36(2):249-252.

HE Pei, FENG Lianyong, TOM Wilber. Production decline rule and recoverable reserves prediction of Marcellus shale gas well in a production unit, Pennsylvania, US[J].Xinjiang Petroleum Geology, 2015, 36(2):249–252.

[9] LEE J W.Gas Reservoir engineering [M]. Richardson TX: Society of Petroleum Engineers, 1995:217–218.

编辑 常迎梅