文章编号:1009-9603(2023)02-0001-17

DOI:10.13673/j.cnki.cn37-1359/te.202112048

中国CCUS-EOR技术研究进展及发展前景

向 勇¹,侯 力^{1,2},杜 猛^{1,2},贾宁洪²,吕伟峰² (1.中国石油大学(北京)机械与储运工程学院,北京 102249; 2.中国石油勘探开发研究院提高采收率国家重点实验室,北京 100083)

摘要:碳捕集、利用与封存技术(CCUS)是减少碳排放的有效手段之一,是实现中国双碳目标的重要技术保障。CO2 驱油(CCUS-EOR)是其中最主要的CO2利用方式。梳理了CCUS-EOR整个流程,系统阐述了捕集技术、输送方式和驱油封存过程的发展现状及发展前景。针对捕集过程,着重分析了不同CO2捕集技术的优缺点、成本及其发展趋势,指出了中国在大规模碳捕集成本和捕集工艺方面存在的问题;针对输送过程,着重分析了超临界管道输送面临的挑战如管道建设、管输工艺和管输设备等方面;针对CO2驱油过程,着重分析了中国在CCUS-EOR技术上的技术水平、应用规模及生产效果方面存在的问题;针对CO2封存过程,侧重对埋存的安全性进行分析,列举了可能的CO2泄漏监测方法。中国的双碳政策指引、主要产油盆地周边源汇匹配、储量丰富的低渗透油藏都为CCUS-EOR的发展奠定了良好的基础,但在大规模低浓度捕集技术、长距离超临界管道输送技术、规模化驱油埋存、智能化监测技术等方面与国外较为成熟的工业化CCUS相比还存在一定差距。针对这些差距,从政策引导、技术攻关和配套基础设施建设上提出了相关建议,对于中国大规模CCUS技术的发展具有一定参考意义。 关键词:CO2捕集;CO2运输;提高采收率;CO2封存;CO2监测;发展前景

中图分类号:TE357.45 文献标识码:A

Research progress and development prospect of CCUS-EOR technologies in China

XIANG Yong1, HOU Li1,2, DU Meng1,2, JIA Ninghong2, LÜ Weifeng2

(1.College of Mechanical and Transportation Engineering, China University of Petroleum (Beijing), Beijing City, 102249, China; 2.State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration & Development, PetroChina, Beijing City, 100083, China)

Abstract: The carbon capture, utilization and storage (CCUS) technology is an effective means of reducing carbon emissions and an important supporting technology for achieving China's carbon peaking and carbon neutrality goals. The carbon dioxide(CO_2) flooding, namely the application of CCUS for enhanced oil recovery(CCUS-EOR), is one of the main CO_2 utilization methods in this regard. This paper summarizes the whole process of CCUS-EOR and systematically describes the development status and prospects of capture technologies, transport methods, and flooding and storage processes. For the capture process, emphasis is laid on analyzing the advantages and disadvantages, costs, and development trends of different CO_2 capture technologies, and China's problems in large-scale carbon capture costs and capture processes are exposed. In terms of the transport process, the challenges, such as pipeline construction, pipeline transport processes, and pipeline transport equipment, faced by supercritical pipeline transport are highlighted. As for the CO_2 flooding process, the deficiencies in the technical level, application scale, and production effect of the CCUS-EOR technologies in China are examined. As far as the CO_2 storage process is concerned, storage safety is analyzed, and the methods of monitoring possible CO_2 leakage are listed. The guidance of the carbon peaking and carbon neutrality policy, the source-sink matching around major oil-

作者简介:向勇(1983—),男,四川彭山人,副教授,博士,从事 CCUS、油气腐蚀与防护方面的研究工作。E-mail:xiangy@cup.edu.cn。 基金项目:北京市自然科学基金面上专项"X80钢焊接接头在多介质耦合的液态/近临界区 CO₂体系中的腐蚀机理研究"(2222074),内蒙 古自治区科学技术重大专项"中低压纯氢与掺氢燃气管道输送及其应用关键技术研发"(2021ZD0038),中国石油大学(北京)科研基金项 目"复杂环境下油气储运设施腐蚀机理与防护技术研究"(ZX20200128)。

收稿日期:2021-12-28。

producing basins, and the low-permeability reservoirs with abundant reserves have laid a solid foundation for the development of CCUS-EOR technologies in China. Nevertheless, China's large-scale low-concentration capture technology, longdistance supercritical pipeline transport technology, large-scale flooding and storage technology, and intelligent monitoring technology still lag behind the more well-established industrial CCUS technologies abroad. In response, this paper puts forward suggestions from the perspectives of policy guidance, technological breakthrough, and supporting infrastructure construction, and they can provide a reference for the development of large-scale CCUS technologies in China.

Key words: carbon dioxide capture; carbon dioxide transport; enhanced oil recovery; carbon dioxide storage; carbon dioxide monitoring; development prospect

全球气候变化问题已引起了国际社会的普遍 关注,减少温室气体 CO₂的排放以此来应对气候挑 战已经逐渐成为国际共识。研究表明,CO₂排放是造 成全球气候变暖的主要原因^[1]。从1750年到2020 年,全球大气中的 CO₂体积分数已经从0.027 7% 增 至 0.041 6%^[2]。BP世界能源统计年鉴 2020显示, 2019年中国 CO₂排放量为98.99×10⁸ t,约占全球 CO₂ 排放总量的31%。2020年9月,习近平在第75届联 合国大会上承诺中国 CO₂排放力争于 2030年达到 峰值,努力争取2060年实现碳中和。为实现这个目 标,中国需要采取一系列措施来减少碳排放,例如 大力发展低碳能源,发展节能技术,同时使用碳捕 集、利用与封存技术(CCUS)。CCUS 技术被认为是 减缓全球气候变化的有效手段之一^[3]。

当今世界,煤炭、石油、天然气约占全球一次能 源需求的70%,而这些化石燃料的燃烧贡献了全球 约三分之二的温室气体排放,另外三分之一的排放 量由农业、林业与土地利用以及工业过程产生[2]。 2020年,全球化石燃料燃烧产生的CO₂排放量超过 340×10⁸ t^[4]。2019年中国能源消费中煤炭、石油、天 然气所占比例分别为57.7%,18.9%和8.1%。中国 要实现碳中和的目标,到21世纪中叶,化石能源占 中国能源消费比例约降至10%~15%,而CCUS将是 实现该部分化石能源近零排放的唯一技术选择。 根据国际能源署的估算,CCUS对实现CO2净零排放 的贡献率能达到15%~20%[4]。中国石油经济技术 研究院的预测结果显示,到2050年85%以上的煤电 和气电将配备CCUS。蔡博峰等通过测算发现,在 现有技术发展条件下,要实现碳中和的目标,到 2050年和2060年需要通过CCUS技术实现的CO,减 排量分别为6×10⁸~14×10⁸t和10×10⁸~18×10⁸t,而 中国源汇匹配的情况和CCUS技术潜力基本可以满 足这一目标^[5]。由于油气和CO,聚集所需要的条件 非常接近,CO2捕集、提高采收率(CO2-EOR)及埋存 作为一项既能提高石油采收率又能达到CO,减排的 技术,具有非常广阔的前景,能同时获得社会和经

济效益。

1990年,国际上提出了CCUS-EOR相关概念。 挪威的Sleipner天然气田、加拿大的Weyburn油田以 及阿尔及利亚的 In Salah 天然气田是世界上具有代 表性的三个工业规模的CO2封存项目^[6]。截至2020 年,美国运行中的CCUS项目共计38个^[5]。同国外 相比,中国于2005年前后开始形成CCUS相关概念, 累计开展30多个CO2驱油与封存项目^[7]。截至2020 年,吉林油田建成了中国第一个CCUS全流程项目; 大庆油田建立了中国产油规模最大的CCUS系统; 胜利油田建成了中国首个燃煤电厂烟气捕集 CO,用 于驱油封存的系统;中原油田建成了中国首个水驱 废弃油藏利用石油化工尾气CO,驱油与封存系统。 2021年7月,中国首个百万吨级CCUS项目(齐鲁石 化-胜利油田CCUS项目)正式启动建设。2021年10 月,中国石油重大科技专项"二氧化碳规模化捕集、 驱油与埋存全产业链关键技术研究及示范"进入开 题论证阶段。

在公开发表的文献中,已有许多关于中国 CCUS的综述,但是关于CCUS-EOR的综述较少,尤 其是同时涉及捕集、运输、提高采收率和封存过程 相关技术的前景展望、成本估算和安全问题分析的 综述文献更少。笔者将对以上方面进行整体梳理 和分析,并对中国CCUS-EOR技术的前景和面临的 挑战展开分析和讨论。

1 CO₂捕集技术

CO₂捕集技术按照在发电体系中的工艺顺序分为燃烧后捕集、燃烧前捕集和富氧燃烧捕集技术^[8],此外还有化学链燃烧捕集技术。不同的CO₂捕集技术有各自的技术路线(图1)^[9]。

1.1 燃烧后捕集技术

燃烧后捕集技术是将化石燃料燃烧后烟气中的 CO₂进行捕集分离的技术,是目前最成熟的捕集 技术,可以从锅炉、水泥窑和工业炉等大规模化石

燃料燃烧产生的烟气中分离 CO₂^[3],可用于火电厂 的脱碳改造。但是烟气中 CO₂含量较低、杂质较多, 另外工作中的泵、鼓风机、压缩机和再沸器加热过 程需要大量能量,这会造成效率损失,对电厂效益 造成一定的负面影响^[10]。国华锦界电厂开展的15× 10⁴ t/a 的碳捕集与封存示范项目正在建设当中,是 目前中国规模最大的燃煤电厂燃烧后碳捕集与封 存全流程示范项目^[5]。将 CO₂从烟气或者燃料气中 分离出来的方法有吸收分离法、吸附分离法、膜分 离法、低温蒸馏法和水合物分离法。

1.1.1 吸收分离法

按照不同的吸收原理吸收分离法可分为化学 吸收法和物理吸收法。化学吸收法是利用CO₂与吸 收剂发生化学反应从而将CO₂从烟气里分离出来。 该项技术比较成熟,气体回收率和纯度较高,但也 存在吸收剂再生能耗大、溶剂损失、设备腐蚀等问 题^[11-13]。工业上主要采用醇胺法和热碳酸钾法两种 化学吸收法。醇胺类吸收剂主要有一乙醇胺 (MEA)、二乙醇胺(DEA)、N-甲基二乙醇胺(MDEA) 以及位阻胺(AMP),其中MEA溶液对CO₂的吸收率 最高,超过90%。其他的新型化学吸收剂还包括氨 水、离子液体和固态胺。氨水对CO₂的捕集性能优 于传统的醇胺溶液,但是氨水具有高挥发性,运行 过程中会大量挥发,易造成环境污染且溶剂损耗较 大^[14]。离子液体具有良好的催化性能、蒸气压较 低、热稳定性较好且可引入功能官能团,但是价格 昂贵,要实现工业化应用还有很长一段距离^[15]。二 氧化硅固态胺化学吸附剂拥有良好的再生性能、弱 腐蚀性、低能耗等特点,具有较好的发展前景。中 空纤维固态胺可实现节能、高效、低成本吸附,有望 应用于燃煤电厂CO₂捕集。另外针对传统的胺液解 吸过程能耗过大和设备腐蚀问题,提出了相变吸收 剂,与胺液相比,能够实现富相和贫相的分相,仅在 富相中就能实现溶剂再生循环,以此降低解吸能 耗^[16],如氨基酸盐溶液与质量分数为 30% 的 MEA 溶液相比,总能耗降低15%^[17],发展前景良好。

物理吸收法是通过交替改变 CO₂和吸收剂的操 作压力或者操作温度来实现 CO₂吸收和分离, CO₂和 吸收剂之间不发生化学反应。物理吸收 CO₂的溶解 过程符合亨利定律,故只适用于 CO₂分压较高、纯度 要求不是很高的场景。目前常用的物理吸收法包 括:N-甲基吡咯烷酮法(NMP)、聚乙二醇二甲醚法 (NHD)、碳酸丙烯脂法(PC)、塞勒克索尔法 (Selexol)和低温甲醇洗等。低温甲醇洗工艺能一起 脱除原料气中的硫化物和水分,回收可用物质。同 时由于甲醇沸点低,使得热再生温度低,系统冷量 消耗少,是一种比较有发展前景的方法。

1.1.2 吸附分离法

吸附分离法是通过气体或液体与固体吸附剂 表面活性点之间的分子引力来实现的。流动的气 体或者液体中一个或者多个组分被吸附剂固体表 面吸附,随后通过降低压力或者升高温度来解吸被 吸附的CO₂,通常被称为变压吸附(PSA)或者变温吸 附(TSA)^[3]。

变压吸附是通过不同分压下吸附剂对混合气体的选择吸附性达到分离 CO₂的目的。目前变压吸附主要有两种:一种是高压下吸附,减压脱附;另一种是高压或常压吸附,真空脱附。常用的物理吸附剂包括活性炭、沸石石子筛、二氧化硅膜和金属有机骨架材料(MOF);化学吸附剂包括金属氧化物如氧化钙、金属锂以及固体胺^[18]。变压吸附的优点是工艺过程简单、能耗低、经济性好,但是存在吸附容量有限、吸附解吸操作频繁、对自动化要求高等缺点。变温吸附是通过改变吸附剂的温度达到吸附和解吸,在较低温度下吸附,较高温度下解吸。变温吸附的吸附剂再生时间比变压吸附长,且能耗较大。当CO₂分压较高时,选择变压吸附;当CO₂浓度较低时,选择变温吸附。

现阶段变压吸附的研究重点集中在新型吸附 剂的开发上,比如超级活性炭、锂盐吸附剂、介孔材 料和金属有机骨架类(MOF)^[19]等。快速变温吸附/ 解吸技术(RTSA)由于循环稳定性优异、能省去管道 气进入CO₂捕集装置中的预冷却和预干燥步骤、能 耗低等特点,也是一种具有较大潜力的技术。

1.1.3 膜分离法

膜分离法遵循克努森扩散原理和菲克分子扩 散原理^[20],依据混合气体中不同成分通过膜的速率 不同,以此达到分离的目的,常见的膜材料有无机 膜、有机膜和金属膜等。膜分离法具有高接触面 积、模块性好、操作灵活等优点^[21],但同时膜系统性 能受废气中CO,浓度和压力影响较大,膜材料价格 较高,高温下膜的稳定性、选择性和渗透性还有待 提高。膜分离法多用于从天然气和沼气中分离 CO₂,或者用于强化采油(EOR)所用的CO₂回收^[22]。 现阶段以离子液体和聚离子液体为材料制备的气 体分离膜具有较为广阔的前景,DAI等提出了将膜 分离法与离子液体相结合来捕集CO₂的方法,在解 决膜分离耐热性问题的同时又提高了CO₂的吸收能 力^[23];GIN等认为聚离子液体是CO₂分离领域极具 前景的下一代膜材料^[24]。

1.1.4 低温蒸馏法

低温蒸馏法是利用各组分相对挥发度的不同, 通过气体透平膨胀制冷,在低温下将各组分冷凝下 来,然后利用精馏的方法将其中各类物质依靠蒸发 温度的不同逐步加以分离,技术流程如图2所示^[25]。 含 CO₂的烟气被冷却到-135~-100 ℃,然后固化 CO₂以达到和其他轻质气体分离的目的,经过多次 压缩和冷却,CO₂体积分数能达到90%~95%^[26]。 低温蒸馏法对于高浓度(体积分数为60%)CO₂的捕 集经济性较高,多用于油田现场。然而,其需要消 耗较多的能量来压缩和冷凝CO₂,设备投资较大。 1.1.5 水合物分离法

水合物分离法是利用不同气体组分的水合物

生成条件不同,使混合气体中某一组分形成水合物,另一组分仍以气态形式存在,从而实现混合气体分离^[27]。这种分离原理是基于CO₂与其他气体的相平衡差异,CO₂和N₂比其他气体更容易形成水合物^[28]。水合物分离法具有原料简单、分离效率高、可循环利用等优势,同时能耗低,通过水合物捕获CO₂的单位能耗可低至0.57 kW·h/kg,美国能源部认为该技术是目前确定的最有前途的长期CO₂分离技术,可用于天然气脱碳、低浓度瓦斯高效利用等,具

图 2 CO_2 低温蒸馏技术流程^[25] Fig.2 Flowchart of CO_2 low-temperature distillation technology^[25]

有广阔的前景^[29-30]。

1.2 燃烧前捕集技术

燃烧前捕集技术是化石燃料、氧气、水蒸气等 一起在气化炉反应生成合成气(主要成分是H₂和 CO),然后经过水煤气转换,将CO转化为CO₂和H₂, 在燃料掺混空气进行彻底燃烧之前将CO₂分离出 来^[31]。燃烧前捕集技术多用于整体煤气化联合循 环发电系统(IGCC),将煤气化技术和联合循环结 合,进行燃气-蒸汽联合循环发电,能够实现发电的 高效率和污染物的低排放。

1984年美国在加州成功试运行第一座 IGCC 电 站,2011年中国连云港清洁煤能源动力系统研究设 施投运,CO₂捕集量为3×10⁴ t/a。2012年中国华能天 津IGCC项目投产,CO₂捕集量为10×10⁴ t/a,是全世 界连续运行时间最长的IGCC 机组,其捕集 CO₂工艺 流程如图3所示^[32]。燃烧前捕集技术多用于IGCC 项目,现阶段捕集成本和能耗均较高,以华能天津 IGCC项目为例,其捕集 CO₂的单位能耗为0.53 kW· h/kg^[32],而这会造成7%~8%的电厂效率损失^[9]。 另外,中外建成的IGCC项目较少,运行经验不多, 系统可靠性不足。

1.3 富氧燃烧捕集技术

富氧燃烧捕集技术是利用高纯度的O₂代替空 气,与化石燃料以及燃烧后返回的部分高浓度CO₂ 一起进入燃烧室燃烧,生成以水蒸气,CO₂,SO₂,NO₂

和颗粒物为主的烟气,颗粒物和SO2可分别通过传 统的静电除尘器和烟气脱硫方法去除,剩余烟气中 的CO,浓度很高,体积分数一般为80%~98%,易于 捕集^[33]。富氧燃烧捕集技术具有相对成本低、易于 现有机组改造、烟气中没有氮氧化合物等优势,被 认为是最有可能大规模推广和商业应用的CO。捕集 技术之一。然而,使用空气分离设备制备0,的时候 会消耗大量能量,造成成本上升,并且烟气中的SO, 会加剧系统腐蚀问题^[31]。1982年, ABRAHAM 等首 次提出利用富氧燃烧技术生成纯度较高的CO,来提 高石油采收率[34],1988年,王俊等首次对富氧燃烧 技术进行了实验研究^[35]。中国的华中科技大学、神 华国华电力研究院也相继开展了富氧燃烧烟气压 缩净化工艺探索^[36]。华中科技大学自1995年开始 在实验室进行微型实验,2014年在湖北应城建成 10×10⁴ t/a的捕集装置,2016年完成了100×10⁴ t/a CO₂捕集的可行性研究。

1.4 化学链燃烧捕集技术

化学链燃烧捕集技术通过固体金属燃料的氧 化还原过程,以金属氧化物作为载氧体,在还原反 应器中,金属氧化物被还原成金属,而燃料被氧化 成 CO₂和H₂O。金属在另一个阶段被氧化,并在该 过程中循环使用^[37]。常用的载氧体包括铜基载氧 体、镍基载氧体、铁基载氧体、钴基载氧体、锰基载 氧体和非金属载氧体^[38],常用的化学链燃烧反应器

包括热重分析仪(TGA)、固定床、批次流化床、小型 流化床和接近工程示范流化床^[39]。RUBEL等通过 热重分析仪得到了铜基载氧体、镍基载氧体、铁基 载氧体和钴基载氧体等的氧化还原性能^[40];XIAO 等通过固定床反应器测试了非金属载氧体的还原 反应动力学^[41];LEION 等利用批次流化床测试了铁 基载氧体的反应性[42]:郭磊等用铁基载氧体在小型 流化床进行化学链燃烧实验,比较了不同制备载氧 体方法对其性能的影响^[43]。化学链燃烧接近工程 示范的必由之路是流化床反应器的逐渐放大, SHEN 等通过铝基和镍基载氧体在1kW_t级的双流 化床上进行了化学链燃烧试验,研究了温度对CO, 捕集效率的影响^[44]。郝建刚等通过铁基载氧体在 10 kW"级的串行流化床上进行了化学链燃烧试验, 发现水蒸气的增加有利于 CO₂的捕集^[45]。BISCHI 等在150 kW_{*}级的双流化床上进行了模型试验,得 到了流化床内部的固体浓度和气体压力分布规 律^[46]。化学链燃烧捕集技术作为一种新的能源利 用形式,具有燃料高效转化、CO2内分离和产物低氮 氧化合物的特点。经历了载氧剂选择、测试、开发、 化学链燃烧的小型固定床和流化床实验,现阶段处 于化学链燃烧反应器系统中等试验规模验证及系 统分析阶段。

1.5 不同捕集技术的应用场景和成本

在整个CCUS-EOR 流程中,捕集过程是能耗和

成本最高的环节,约占整个流程的70%,一般高浓度的CO₂排放源捕集成本要低于低浓度的CO₂排放源包括煤化工、炼化、天然气净化;低浓度的CO₂排放源包括燃煤电厂、钢铁厂、水泥厂等,预计到2030年和2060年,CO₂捕集成本分别为90~390和20~130元*h*^[5]。美国用于CCUS-EOR的CO₂来源于纯CO₂气藏、含CO₂的天然气藏分离、人工捕集的工业CO₂排放,其比例分别为80%,15%和5%^[47]。而中国的天然CO₂气源少,主要来源于工业排放。不同的CO₂捕集技术具有不同的特点,其适用场景及捕集成本等也不尽相同(表1)^[5,7,48-54]。

1.6 中国CO₂捕集面临的挑战

与国外相比,现阶段中国CO₂捕集面临的主要 问题是捕集成本居高不下,尤其是低浓度CO₂的规 模化捕集还面临着许多挑战,主要体现在溶剂性 能、关键的吸收/解吸设备、大型综合工艺优化经验、 关键配套技术保障四个方面。低浓度化学胺捕集 CO₂技术在国外已经实现百万吨级商业化5a以上, 中国尚处于示范运行阶段,且蒸汽消耗较国外多 40%以上。在关键设备方面(如吸收塔和再生塔), 国内单系列规模与国外相比差距在10倍左右,国外 已经具备百万吨级水泥吸收塔设计和建造能力,中 国尚处在十万吨级传统钢结构压力塔器设计和建 造阶段。在大型综合工艺优化方面,国外已经实现

	Table1 Comparison among different CO2 capture technologies						
捕集	技术	优点	缺点	应用领域	捕集成本		
燃烧后捕集	化学吸收	工艺成熟、 改造工艺简单	能耗高、腐蚀严重、吸收 剂损失大、运行成本高	CO₂分压低, 如火电厂烟气	醇胺法为 150~400元/t ^[54]		
	物理吸收 吸收能力大、 能耗低、不腐蚀设备		CO2去除程度不高	CO ₂ 分压高, 如煤化工、合成氨	低温甲醇洗 为100元/t ^[7]		
	吸附分离 工艺简单、 能耗低、产品纯度高		吸附解吸频繁,自动化要 求程度高,需要吸附剂量大	适合体积分数为20%~80%的工业 气,如石灰窑、烟气、合成氨变换气	$200 \sim 400 \!$		
	膜分离	能耗低、设备尺寸小、 操作维护简单	膜材料易被污染、不容易清洗,对耐高温和腐蚀性要求高	多用于天然气处理	500元/t (广东华润海丰) ^[54]		
	低温蒸馏法 能产生高纯度、 液态CO2		设备庞大、能耗高、 分离效果差	适合高浓度CO ₂ 回收, 如油田现场	284元/t ^[7]		
	水合物分离	装置简单、操作方便、 设备投资较少	工艺仍在研究中, 大规模运行管理经验不足	在沼气分离、低浓度瓦斯分离、 天然气脱碳领域具有广阔前景			
燃烧前捕集		污染物脱除率高、 含水量少	运行成本高、建设周期长、 运行经验少、系统可靠性低	IGCC	239元/t ^[32]		
富氧燃烧捕集		排烟损失少、锅炉效 率高、可改造存量机组	制氧和CO ₂ 压缩耗能大, 影响电站效率	现处于工艺验证阶段	$780 \sim 900 \vec{\pi} / t^{[54]}$		
化学链炼	然烧捕集	燃料转化效率高、 产物氮氧化合物含量低	工艺仍在研究中, 大规模运行管理经验不足	现处于化学链燃烧 反应器系统中等试验阶段			

表1 不同CO2捕集技术比较

百万吨级碳捕集商业化工艺包,中国尚无商业化标 准工艺包可以提供;国外已具备集成热回收的复合 胺液净化技术,中国只具备局部工艺技术集成;国 外拥有较为完善的装置改造适应性优化与解决方 案,中国尚处在研究起步阶段。在配套技术保障方 面,国外烟气痕量污染物分析与预处理技术较为成 熟,吸收剂回收净化处于商业化应用阶段,中国在 这些方面还有一定差距。在应用层面,国外大型的 CO₂捕集项目如2016年开始运行的加拿大Boundary Dam项目,实现了低浓度烟气CO₂捕集百万吨级 商业化应用,捕集成本为280~320元*h*。而中国正 处于10×10⁴ t级试验阶段,中国最大的捕集项目为 神华锦界项目,捕集规模为15×10⁴ t/a,捕集成本为 450~500元*h*,尚未实现稳定运行。中国与国外捕集 规模相差一个数量级,捕集成本相差170元*h*左右。

2 CO2运输技术

2.1 CO2运输方式

CO₂的运输主要有公路运输、铁路运输、船舶运输以及管道输送4种方式,在大多数情况下管道输送是最经济性的运输方式;船舶运输是由运输液化天然气(LNG)衍生出的技术,在运输距离超过1000 km或者运输过程需要经过大片水域时,船舶运输是较为经济和理想的选择;公路和铁路运输一般适用于小规模的CO₂运输^[55]。为了选择可靠、安全、经济的运输方式,需要对CO₂的运输数量、运输距离、运输过程的地形等进行综合考量。

在CO₂管道输送过程中,CO₂主要以气态、液态 和超临界状态存在。气相输送时,一般管道所占空 间较大;液相输送时,相态易发生变化,且黏度较 大;超临界状态输送时(压力 > 7.38 MPa,温度 > 31.1 ℃),CO₂密度大、黏度小、压缩系数小且比热 小,有利于在输送过程中保持单一相态,故长距离 CO₂输送多采用超临界状态输送^[56]。国外的CO₂注 入点多以超临界状态注入,且大规模CO₂输送绝大 多数都采用超临界输送,因此在长距离管道输送中 超临界状态输送具有光明的前景。

根据研究,当CO₂管道长度为250 km,年输送量 为500×10⁴ t/a时,管道的运输成本约为2.1美元/t;年 输送量为2000×10⁴ t/a时,管道的运输成本约为1.0 美元/t^[57]。对船舶运输而言,当CO₂年输送量为 600×10⁴ t/a,运输距离为500 km时,运输成本为10 美元/t;运输量不变,运输距离为1250 km时,运输 成本为15美元/t。中国CO₂罐车运输每公里成本约 为0.9~1.4元/t,管输每公里成本约为0.35~0.40元/ t^[54]。因此从成本的角度出发,超临界管道输送是后 续中国 CCUS-EOR 项目中较为合理的长距离输送 方式。

2.2 中国超临界CO2管道输送面临的挑战

中国的超临界 CO₂管道输送与国外相比,主要 在管道建设、输送标准、输送工艺、管输设备、管道 材料、输送安全保障等方面存在一定的差距,技术 储备较为薄弱、关键设备不能自主生产、缺乏工程 经验、没有建成相应的超临界 CO₂管输技术体系。

2.2.1 超临界CO2管道建设和输送标准

在超临界 CO₂管道建设方面,全球 CO₂输送管 道近 10 000 km,年总输送量达到 150×10⁶ t/a,设计 压力为 10~20 MPa,多采用超临界输送工艺(表 2), 如 Canyon Reef Carriers 公司 1972年建成世界上第一 条运输 CO₂的管道,全长 272 km; 1983年开始运行 的 Cortez 是现存世界上最长的 CO₂输送管道,长度 为 803 km,年输送量达到 1 930×10⁴ t/a^[58],这些管道 均为超临界 CO₂输送管道。而中国建成的 CO₂管道 均为气相管道,无超临界输送管道(表 3)。2021年7

表 2 国外部分典型的超临界 CO₂输送管道 Table 2 Some typical supercritical CO₂ transport

pipelines abroad

项 目	长度/km	年输送量/(10 ⁴ t • a ⁻¹)
Cortez	803	1 930
Sheep Mountain	653	1 100
Bravo	349	750
Canyon Reef Carriers	272	400
Central Basin	181	400
Green pipeline	502	1 800
Delta	173	1 100
NEJD	293	700
Greencore	368	1 400
Bati Raman	90	110
Snohvit	160	100
Val Verde	130	250
Weyburn	328	500

表 3 中国现有的 CO₂ 输送管道

Tables	Existing ($_{2}O_{2}$ trans	sport p	opennes	in China

项	目	长度/km	年输送量/(10 ⁴ t·a ⁻¹)
中国石化华	东局CO ₂ 管道	52	50
中国石油吉林	™田CO₂管道	53	35
正理庄油田高	89块CO2管道	20	8.7
长深4至黑59	区块CO2管道	8	50
徐深9至树10	1区块CO ₂ 管道	15	10
徐深9至树16	区块CO2管道	20	4.8

月,齐鲁石化-胜利油田 CCUS 项目正式开工建设, 设计 CO_2 年输送量为 100×10^4 t/a,管道长度约为 80 km^[59-60]。

在 CO₂管道输送标准方面,国外制定了相关的 规范和标准,如挪威船级社(DNV)专门编制了针对 CO₂运输的设计运行指南《CO₂的管道设计与操作》, 以及针对海底超临界 CO₂运输的标准《海底管道系 统》;国际标准化组织(ISO)发布了针对 CO₂运输的 标准《CO₂捕获、运输和地质储存-管道运输系统》; 其他国家发布的相关管道规范中也包含了部分 CO₂ 管道输送的标准(表4)。中国仅有一部于 2018 年施 行的《二氧化碳输送管道工程设计标准》SH/T 3202。

表4 国外部分涉及 CO₂管道输送的标准 Table4 Some foreign standards involving CO₂ pipelines transport

		8	
序号	国家	采用标准	标准名称
1	美国	ASME B31.4	液化烃和其他液体用管道输送系统
2	美国	ASME B31.8	输气和配气管道系统
3	美国	US.49 CFR Part195	通过管道运输危险液体
4	英国	BS EN14161	石油和天然气工业-管道输送系统
5	英国	BS PD8010	管道的操作规程
7	挪威	DNV-RP-J202	CO ₂ 的管道设计与操作
8	挪威	DNV-OS-F101	海底管道系统
9	国际	ISO27913	CO2捕获、运输和地质储存-管道运输系统
10	国际	IS013623	石油和天然气工业-管道输送系统

2.2.2 含杂质超临界CO2管道输送工艺

不同的 CO₂气源和捕集技术会导致 CO₂中含有 不同的杂质气体(表5)^[61],而这些杂质气体很难彻 底净化,在超临界 CO₂管道输送过程中可能会对 CO₂ 性质和相态产生影响,同时杂质气体的存在也会增 加 CO₂体系的腐蚀性,甚至引起管道失效^[62],对超临 界 CO₂管道输送工艺造成很大的挑战,中外针对杂 质对管道输送工艺的影响开展了大量研究。

表5 不同 CO₂气源和捕集技术中所含杂质最大含量^[61] Table5 Maximum content of impurities in different CO₂ gas sources and capture technologies^[61] %

	0	1	0
杂质	燃烧前捕集	燃烧后捕集	富氧燃烧捕集
SO_x	0	< 0.001	< 2.5
NO_x	0	< 0.005	< 0.25
H_2S	< 3.4	微量	0
CO	< 0.4	< 0.001	微量
CH_4	< 0.035	< 0.01	0
H_2	< 3	微量	微量
$N_2/Ar/O_2$	< 0.6	< 0.01	< 3.7
H_2O	< 0.14	< 0.14	< 0.14

杂质对 CO₂物理性质和管道输送特性的影 响 CO₂在超临界状态时,密度和其液态相近,黏度 和其气态相近,因此有利于输送。杂质的存在会影 响 CO₂的临界参数、黏度和密度等物理性质,也会影 响超临界输送过程的温降和压降等性质。杂质气 体会改变 CO₂的临界压力和临界温度,SO₂,NO₂,H₂S 会使 CO₂混合物临界压力和温度增大,但H₂,N₂,O₂, CO,Ar,CH₄会使得 CO₂混合物临界压力增加,临界 温度降低。H₂,N₂,NO₂会使 CO₂混合物相图与纯 CO₂相图相比,两相区域增加,从而增加超临界管道 输送过程中出现两相流的风险,为了维持超临界状 态输送,需要增加运行压力^[63-65]。除 SO₂外,多数杂 质气体会使超临界 CO₂运输压降增加,尤其是H₂,而 对输送过程温降影响不大^[66-67]。国外对含杂质超临 界 CO₂的相态和管道输送特性在实验和数值模拟方 面都进行了大量研究,而中国主要以数值模拟为 主。

含杂质的超临界 CO₂输送管道的内腐蚀 在 CO₂管道输送过程中,通常使用管线钢(X52,X65, X70)作为管道材料,而这些管线钢可能会因为运输 过程中杂质的存在而产生腐蚀,从而严重影响 CO₂ 管道输送的完整性和安全性^[68]。中外已经对杂质 及其在超临界 CO₂运输过程的内腐蚀问题进行了大 量的研究(表6)。许多研究表明水是造成超临界 CO₂管道内腐蚀的重要杂质,水的存在会导致碳酸 的形成,使 pH 值达到 3~4,具有较强腐蚀性^[69-70]。 在超临界状态下,水在纯 CO₂中的溶解度极限为 0.002 6 kg/m³,如果管道中含水量少于饱和溶解度 的 60% (0.001 5 kg/m³),碳钢 不会发生严重腐 蚀^[71-72]。但当含水量高于溶解度极限,多余的水分 子将聚集在一起形成自由水相,杂质中的 NO_x, SO_x, H₂S 等被吸收,就会提供电化学反应所需要的水环

境[73]。SO,通过与H,O反应,并进一步与O,反应,在 水相中形成H₂SO₄,从而降低pH值,并且提供了更 多的H⁺来增强析氢阴极反应^[71,74]。NO_x在自由水相 中容易形成HNO3,比HCl和H2SO4更容易在超临界 CO,管道内表面引起严重的腐蚀^[75]。H,S溶解在水 中通过影响阴极和阳极过程来促进腐蚀[76],少量的 H_sS通过反应生成FeS形成保护膜,附着在管壁内表 面可以在一定程度上降低腐蚀速率^[77],但H₂S的存 在可能会导致硫化物应力开裂问题(SSC)^[78]。通常 认为0,会增加腐蚀速率,但有研究表明,0,体积分 数从0增加到0.1%的过程中,X65和5Cr钢在水饱 和的超临界CO,环境中局部腐蚀会加剧,但均匀腐 蚀速率会逐渐降低^[79]。也有研究表明,02对管道腐 蚀的影响与管道内CO2的压力和含水量有关,当压 力超过10 MPa时,O2在水饱和的超临界CO2环境中 会对管线钢造成明显的腐蚀[80]。一定条件下,杂质 还可能形成水合物,引起管道堵塞和设备损坏。

杂质含量 从燃烧后、燃烧前、富氧燃烧等过 程中捕集的CO₂不可避免的会含有杂质,杂质的种 类和含量受到捕集技术和捕集过程的影响。这些 杂质会对压缩机、管道、储罐等设备产生影响,但是 现阶段还没有对运输过程中杂质的含量达成共识, 国外各超临界 CO₂管道项目都有各自的组分含量规 定(表7)^[90]。以H₂S为例,从安全的角度应该限制 H₂S的含量,但是H₂S能够提高 CO₂和油气的互溶, 在进行 CO₂-EOR 的过程中有效降低最小混相压力, 有利于提高采收率,因此 Weybum 项目中 H₂S 含量 达0.9%^[82]。同样对于输送过程中的自由水含量(不 能溶解于 CO₂的水)也有很多不同的看法,现有的文 献中关于 CO₂管道输送中含水量最严格的是 Weyburn 项目的 0.002% (0.000 015 kg/m³)^[91],挪威船级 社(DNV)在其 CO₂管道相关规范中没有对含水量的 限值做出规定,但 Kinder Morgan 公司规定自由水含 量不超过 0.06%^[92]。因此对于输送过程的杂质含 量,应该从安全、成本、最终用途等角度充分考虑。 2.2.3 超临界 CO₂管道输送设备和管道材料

在超临界 CO₂管道输送关键设备方面如超临界 CO₂压缩机,国外相关工艺成熟,单台规模达100×10⁴ t/a,压力达35 MPa。中国的超临界 CO₂压缩机应 用较少,规模较小,没有百万吨级大功率超临界 CO₂压缩机相关技术工艺。2021年4月,中科院工程热 物理研究所兆瓦级超临界 CO₂压缩机测试成功,设

	表6	部分杂质在超临界 CO	。环境中对管道材料腐蚀速率影响的研究 ^[68,81-82]
--	----	-------------	--

Table6 Studies of effects of some impurities on corrosion rates of pipeline materials in supercritical CO ₂ environment ^[68,81-82]								
材料	温度/℃	压力/MPa	杂质	文献来源				
X65和13Cr	50	8	SO ₂ /O ₂ /H ₂ O	CHOI, et al ^[71]				
X65	35	8	SO ₂ /O ₂ /H ₂ O	HUA, et al ^[83]				
X65	25	10	H ₂ O/SO ₂ /NO ₂	DUGSTAD, et al ^[84]				
X42	60	10	H ₂ O/HNO ₃ /H ₂ SO4/HCl	RUHL, et al ^[75]				
Carbon steel	40	8	H_2O	SIM, et al ^[85]				
X70	50	10	SO ₂ /O ₂ /H ₂ O	XIANG, et al ^[86]				
X65	50	10	$O_2/H_2O/H_2S$	SUM, et al ^[87]				
X65	80	10	H_2O/SO_2	WEI, et al ^[88]				
X80	60	8	H ₂ O/SO ₂ /NO ₂ /O ₂ /NaCl	LI, et al ^[89]				

表7	国外部分典型 CO.	,管道项目不同组分体积分数[90]

Table7Volume fractions of different components of some typical CO_2 pipelines abroad						%			
管道项目	CO_2	H_2O	H_2S	CO	O_2	$\rm N_2$	NO_x	SO_x	CH_4
Canyon Reef Carriers	85 ~ 98	0.012 2	< 0.026			< 0.5			2~15
Weyburn	96	< 0.002	0.9		< 0.005	< 0.03			0.7
Central Basin	98.5	0.063	< 0.002 6		< 0.001 4	1.3			0.2
Sheep Mountain	96.8 ~ 97.4	0.031 5				$0.6 \sim 0.9$			1.7
Bravo Dome	99.7					0.3			
Cortez	95	0.063	0.002		微量	4			1 ~ 5
NEJD	98.7 ~ 99.4		微量			微量			微量
Sleipner	93 ~ 96	饱和	0.015						

计压力为8 MPa。

在管道材料方面,美国的Kinder Morgan公司已 承建近8000 km的CO₂运输管道,其常用输送管为 埋弧焊钢管和高频电阻焊钢管,钢级为X65,X70; 对于小口径管道,推荐使用韧性更高、成本相对较 低的高频电阻焊钢管。

2.2.4 超临界CO2管道输送安全性

由于CO2具有较高焦耳-汤姆逊系数,在超临界 CO, 泄漏降压过程中导致温度大幅下降, 流体的温 度甚至会急速下降至-80℃[93],造成管线韧性下降, 易产生低温脆断的风险。超临界 CO,状态下的管道 一旦产生裂纹,在压差的作用下裂纹会迅速向周围 扩展,针对该问题,天然气相关行业进行了全尺寸 爆破试验、减压试验等。针对超临界 CO2 输送过程 中可能出现的裂纹扩展问题,国外进行了10多次全 尺寸爆破试验来研究超临界CO,管道止裂问题,止 裂方式包括管材自身止裂、厚壁管及止裂器止裂。 而国内相关研究刚刚起步,且未开展CO2全尺寸爆 破试验。国外对超临界CO2管道泄放及扩散模拟进 行了比较多的研究^[94],并建立了相应的模型。 ELSHAHOMI 等研究发现 CO,在泄压过程中的压力 变化和减压波速度、初始温度和减压波速度的关 系^[95]。MAHGEREFTEH等研究了超临界CO2减压 泄压行为,并建立了相关模型来预测断裂扩展^[96]。 WITLOX 等建立了相关模型来预测 CO₂持续泄漏的 浓度分布情况^[97]。中国对CO₂泄放特性和扩散规律 研究与国外相比还有一定差距,仅进行了小型的泄 放实验和模型研究。刘锋通过实验室装置模拟了 超临界CO, 泄放过程, 认为其是等焓过程^[98]。任科 建立了一维减压模型来研究超临界 CO,泄漏过程的 减压波传播特性[99]。

因此,中国超临界 CO2管道输送要实现大规模、 安全运行,需要在含杂质超临界 CO2管道输送工艺、 管道断裂及腐蚀控制、关键设备制造、安全保障技 术等方面进行更具体、更深入的研究。

3 提高石油采收率及封存技术

捕集来的CO₂有多种利用途径,主要包括能源 生产、资源开发和化工利用三个方面。在能源生产 方面,CO₂可用于提高石油采收率、驱替煤层气、开 采地热等;在资源开发方面CO₂可用于溶浸采铀、强 化采水等;在化工利用方面,CO₂可以用来合成化工 品如聚碳酸脂、甲烷甲醇等^[52]。其中提高石油采收 率技术(CCUS-EOR)作为CCUS应用的一个方面, 不仅能实现CO₂的封存,还可以提高石油采收率,具 有较好的环境效益和经济效益。过去40多年,全球 约有 10×10⁸ t CO₂通过 CCUS-EOR 被注入到地层 中^[7],因此CCUS-EOR技术拥有非常广阔的前景,将 在减排温室气体方面扮演重要的角色。

3.1 CO₂提高采收率技术

美国于 20世纪 50 年代开始研究 CCUS-EOR 技 术,20世纪 90 年代 CCUS-EOR 相关技术成熟,1994 年 CO₂驱产油量突破 1 000×10⁴ t,到 2018 年达到 1 550×10⁴ t^[47]。目前北美 CCUS-EOR项目约占全球 总量的 40%^[100]。根据 KAPSARC 的数据,截至 2018 年,全球燃煤电厂 CO₂捕集量为 80×10⁴ t/a,其他形式 CO₂捕集量为 40×10⁴ t/a 以上的,除中国以外的处于 不同实施阶段的 CCUS-EOR项目共有 18 个^[101]。

中国从20世纪60年代开始注CO₂提高采收率 实验研究,截至2019年末,中国累积注入500×10⁴ t CO₂用于驱油,提高采收率幅度为3.0%~15%,平均 约为7.4%^[102]。其中中国石油在吉林黑79北特低渗 透砂岩油藏实现CO₂混相驱,提高采收率25%以上, 埋存CO₂达37×10⁴ t;在大庆树101特低渗透油藏实 现CO₂非混相驱,提高采收率10%以上,埋存CO₂达 20×10⁴ t。现在中国的CCUS-EOR技术正处于工业 化试验和提升应用效益阶段,属于商业应用的初级 阶段(表8)^[5]。

现阶段中国与北美 CCUS-EOR 在技术水平、应 用规模及生产效果方面都存在较大的差距(表9), 北美相关技术及配套工艺体系成熟,而中国正处于 从 CO₂驱油先导试验到 CCUS-EOR 全产业链规模化 应用的时期,面临着陆相复杂地质体 CO₂驱油储层 评价难度大、扩大波及体积技术不成熟、分层注气 工艺不完善、防腐技术成本较高等问题。因此需要 在 CO₂驱多孔介质中多相渗流机理、强非均质油藏 气驱优势通道表征技术、合理井网和开发规律、扩 大波及体积等方面进行更加深入的研究。

3.2 CO₂驱油封存技术

油藏可以作为CO₂封存的较为理想的场所,在 油田开发过程中注入CO₂,一部分气体溶解或者扩 散到原油和地层水当中,还有一部分与岩石反应沉 积在油藏中。胡永乐等研究认为CO₂在油藏中的埋 存机理主要有构造埋存、溶解埋存、游离埋存和矿 物埋存4种^[103]。CO₂注入储层后的运移过程包括对 流、溶解和扩散。开始注入时,CO₂气体在液相密度 差及浮力的作用下发生对流,使得CO₂向储层上方

Table8 CCUS-EOR Projects in China ^[5]									
项目名称	捕集技术	年捕集规模/ (10 ⁴ t·a ⁻¹)	输送 方式	输送距 离/km	处置 技术	CO ₂ 年注入量/ (10 ⁴ t·a ⁻¹)	CO ₂ 成本/ (元・t ⁻¹)		
延长石油陕北煤化工5×10 ⁴ t/a CO ₂ 捕集与示范	物理吸收	30	罐车	200	EOR	5	120		
中国石油吉林油田CO2-EOR研究与示范	化学、物理吸收	60	管道	20	EOR	25	166		
中国石化胜利油田CO2-EOR项目	化学吸收	4	罐车		EOR	4	450		
中国石化中原油田CO2-EOR项目	化学吸收	10	罐车		EOR	10	350		
克拉玛依敦华石油-新疆油田CO2-EOR项目	化学吸收	10	罐车	26	EOR	5 ~ 10	800		
长庆油田CO2-EOR项目	低温甲醇洗	5	罐车		EOR	5			
大庆油田CO2-EOR示范项目	化学、物理吸收		罐车+管道		EOR	20			
中国石化华东油气田CCUS全流程示范项目	燃烧前	10	槽车槽船	100	EOR	10			
中国石化齐鲁石油化工CCUS项目	燃烧前	35	管道		EOR				
齐鲁石化-胜利油田 CCUS 项目	低温甲醇洗	100	槽车	80	EOR	100			

表9 美国与中国CO。驱油相关情况对比

Table9	Comparison of CO ₂ flooding-related situations between the United States and China

项目	地质条件	混相能力	渗流机理	油藏描述	层系井网	开发规律	年产量/ (10 ⁴ t·a ⁻¹)	CO ₂ 成本/ (美元·t ⁻¹)
美国 情况	海相沉积 油藏为主, 物性相 对均质	混相压力 低,90% 能实现 混相驱	常规渗流机理 理论和实验手 段较成熟;多相 跨尺度渗流理论 研究多、实验少	油层厚度大、连续性 好,不重视小层细分 对比及优势通道刻画	层系单一,气驱 注采井距为 300~800 m	系统认识多种 油藏类型CO ₂ 驱开发规律	1 550	15 ~ 30
中国 情况	陆相沉积 油藏,非 均质强、 储层薄	混相压力 高,地层 压力和 混相压力 相差较小	CO2驱相态研究取得 突破,岩心驱替实验 方法较为完善;多孔 介质中多相渗流理 论和模拟研究较少	油层薄,砂体展布规 模较小,形成基于单 砂体级别油藏精细描 述技术,CO ₂ 驱优势通 道界限与刻画待明确	多层发育,注气 井距为140~300 m,CO ₂ 驱合理 井网有待认识	初步认识水驱后转 CO ₂ 驱开发规律,油 藏应用少,实验时 间短,全生命周期 开发规律待研究	20	47 ~ 55

运移,直到被盖层阻止。该过程中CO₂与地下水接触,发生部分溶解。刚开始溶解时,接触面会首先 形成饱和CO₂的盐水层,在不同盐水层密度差的作 用下,CO₂将从高浓度向低浓度方向做重力扩散,该 扩散以横向铺展为主,其动力以分子的自发扩散为 主。在分子扩散主导的运移过程中,注入CO₂将进 一步在盐水中溶解,其余的则继续横向迁移。对 流、扩散、溶解和运移依次发生、相互促进。注入 CO₂驱油的过程中,约3/5的气体留在油藏中,另外 2/5随原油一起被开采出来^[104],经过分离后再次注 入油藏循环利用,并最终被封存在油藏中。

据测算,中国共有130×10⁸ t石油可以采用 CCUS-EOR技术来提高采收率,同时埋存50×10⁸~ 60×10⁸ t CO₂在油藏中^[105]。渤海湾盆地、松辽盆地、 鄂尔多斯盆地和准噶尔盆地具有较大的CCUS-EOR潜力,油田周边CO₂年排放量约为2.45×10⁸ t/a, 可捕集量为4000×10⁴ t/a,适宜CO₂驱地质储量约为 66.6×10⁸ t,有效埋存量为29.1×10⁸ t^[7]。位于松辽盆 地的吉林油田自2009—2019年共建成4个CO₂驱油 与埋存示范区,目前累积注气量为184×10⁴ t,产油 能力为10×10⁴ t/a,埋存CO₂能力为35×10⁴ t/a,具备 工业化推广条件。鄂尔多斯盆地是中国陆上实施 CO₂地质封存最有利和最安全的地区之一^[106],其中 盆地内中国石油、中国石化、延长石油CO₂驱油技术 潜力约为37×10⁸ t,油藏封存CO₂量有望达到10×10⁸ t规模。

3.3 CO2监测技术

CCUS-EOR 能减少温室气体的排放,提高石油 采收率,实现对 CO₂的封存。但是 CO₂具有较强的 渗透性和流动性,在进行 CO₂注入、驱油、采出、回收 和回注等过程中,CO₂可能会随着井壁、地质缺陷等 泄漏到环境当中,具有潜在的泄漏风险(图4)^[107]。 相关模型显示,若每年有千分之一及以上的CO,泄 漏,由CCUS技术贡献的温室气体控制策略将失 效^[108]。同时泄漏的CO₂会污染地下水,影响土壤生 物系统和植物的根系,改变生态系统平衡;大量CO, 被注入地层可能会诱发地震,同时也会对生命安全 产生极大威胁。1984年,喀麦隆的莫瑙恩湖发生 CO,喷发灾难,造成37人遇难。1986年,喀麦隆尼 奥斯湖发生 CO, 喷发灾难, 造成 1700 多人死 亡^[109-110]。2019年,中国"金海翔"号货轮发生CO,泄 漏,造成10人死亡,19人受伤[111]。另外根据牛津大 学TYNE等于2021年发表在《Nature》杂志上的最新 文献显示[112],微生物在合适的温度条件下会将 CCUS-EOR 过程残留在地下的 CO,转变为可溶性 和压缩性更差、温室效应更强的CH,其比例高达 13%~19%。因此为了保证人身财产安全和环境, 在进行CO2驱油埋存的过程中,有必要对CO2实施 监测。

CO₂的监测包括注入前监测、注入中监测、注入 后监测,以此来保证其完整性和安全性。根据王晓 桥等的研究,针对地表以下 CO₂泄漏监测技术主要 有:对封存蓄积层压力和渗透层压力进行监测、电 阻断层扫描(ERT)、分布式热式传感器监测(DTS)、 CO₂剩余饱和度监测(RST)、偶极声纳成像系统 (DSI)、自然电位(SP)、pH测量传感器、生态系统-生物学监测、地球化学监测、监测烃类和有机物^[107]。 地表以上的 CO₂泄漏监测技术有:红外气体分析仪 检测(IRGA)、长程开放路径红外探测和调制激光检 测(LOIR)、涡量 相关监测(EC)、集聚气室检测 (AC)、测井微震监测(MSW)、激光雷达检测(LI-DAR)、示踪剂追踪监测、碳稳定同位素监测、超光 谱成像检测、无线传感器监测(WSN)、O₂/CO₂比率监测。另外还有地表上空的卫星遥感监测和无人机 监测^[113-114]。

世界上正在运行的工业规模的CO₂地质封存项 目有挪威的Sleipner项目、加拿大的Weyburn项目、 阿尔及利亚的In Salah项目。这些工业化规模项目 运行时间较长,对CO₂封存的相关监测具有丰富的 经验。其中加拿大的Weyburn油田是当前注CO₂驱 油项目中规模最大的,其用到的监测技术包括3D地 震、4D地震、垂直地震剖面、井间电磁、压力和温度 监测、示踪剂、大气和微生物监测等。中国在吉林 油田CCUS-EOR项目、神华CCS咸水层封存等也采 取了许多CO₂监测技术来跟踪CO₂在储层中的迁 移,以确保长期储存安全。其中吉林油田采用的监 测技术包括:井筒完整性检测、生产流体取样、CO₂ 气体示踪剂、自发电位测量、微地震、井间地震及环 境监测计划等^[115]。

4 展望与挑战

中国 CCUS-EOR 潜力巨大,将 CO2驱油和埋存 结合起来是未来的发展趋势。首先,全球 CO2排放 量逐年增加,温室气体减排形势严峻。而碳达峰、 碳中和是中国提出的重要战略决策,客观上也为 CCUS 技术在中国的发展起到了良好的政策指引。 其次,全球碳排放市场持续火热,2020年交易额达 到了2000多亿欧元,而随着各国政策的推动,全球 碳价将持续升高,这也将改变企业经营模式,推动 国内大型石油企业向 CCUS 靠拢。然后,中国低渗 透油藏储量较大,传统的水驱效果不佳,CCUS-EOR

图4 CO_2 地质封存潜在泄漏风险(据文献[107]修改)

Fig.4 Potential leakage risks of CO2 geological storage (Modification according to reference[107])

技术是其提质增效的现实需要。最后,中国主要的 产油区如鄂尔多斯盆地等,周围的煤化工和石油炼 化CO₂排放量巨大,源汇匹配度高,且地质条件适宜 CO₂的封存,为CCUS-EOR的发展奠定了坚实的基 础。因此,作为世界上主要的CO₂排放国之一,集 CO₂捕集、驱油和埋存于一体的CCUS-EOR技术在 中国具有广阔的前景。

要实现中国CCUS-EOR的大规模工业化应用, 还面临着诸多挑战。首先,CO₂的捕集成本居高不 下,尤其是低浓度的碳源,与国外工业化规模捕集 相比,在捕集规模、成本、技术、关键吸收/解吸设备 方面都有一定差距。其次,CO₂管道输送技术方面, 中国均为气相输送,超临界CO₂管道输送技术储备 较为薄弱,工程经验空白,关键设备如超临界CO₂压 缩机同国外也有一定差距,超临界输送工艺仍有许 多问题亟待解决,例如相变、腐蚀、管材断裂等问 题。再者,中国的CO₂驱油正处于先导性实验向全 产业链规模化转变过程中,面临防腐技术成本较 高、扩大波及体积技术不成熟、混相驱机理和渗流 规律还有待深入研究等问题。最后,针对埋存过 程,还涉及CO₂埋存机理协同机制和失效机制不明 确,以及全套监测技术不完善等问题。

因此,要实现CCUS-EOR 在中国的工业化应 用,提出以下建议:首先,从国家层面推动CCUS-EOR 相关产业发展战略,提供相应的政策支持,如 提供低利率贷款和碳减排补贴、完善和规范碳税和 碳市场、建立CCUS全产业链标准体系等。其次,加 快相应的技术攻关,解决大规模碳捕集、运输、驱油 埋存过程的技术问题;加大示范项目的建设力度, 最终实现由示范项目向规模化产业集群的转变;建 立上下游全产业链体系,形成相应的全流程技术和 经济评价指标,并加大CCUS基础设施建设力度,如 管网设施等。最后,加强国际交流合作,以此扩大 范围解决可能存在的区域源汇不匹配问题,同时学 习国外先进的技术经验并不断自主创新。

参考文献

- [1] 潘佳佳,李廉水.中国工业二氧化碳排放的影响因素分析[J]
 环境科学与技术,2011,34(4):86-92.
 PAN Jiajia, LI Lianshui. Analysis of factors affecting industrial carbon dioxide emission in China[J]. Environmental Science &
- FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M W, et al.Global carbon budget 2020 [J]. Earth System Science Data, 2020, 12 (4);3 269-3 340.

Technology, 2011, 34(4):86-92.

[3] WILBERFORCE T, OLABI A G, SAYED E T, et al. Progress in

carbon capture technologies[J].Science of the Total Environment, 2021,761:143203.

- [4] IEA.Global energy review 2020[R].Paris: IEA, 2020.
- [5] 蔡博峰,李琦,张贤,等.中国二氧化碳捕集与利用封存 (CCUS)年度报告(2021)——中国CCUS路径研究[R].生态环 境部环境规划院,2021:8.
 CAI Bofeng, LI Qi, ZHANG Xian, et al. China's 2021 annual report of Carbon Dioxide Capture and Utilization Storage(CCUS)-CCUS pathway study in China[R]. Chinese Academy of Environmental Planning, 2021:8.
- [6] 郝艳军,杨顶辉.二氧化碳地质封存问题和地震监测研究进展
 [J].地球物理学进展,2012,27(6):2369-2383.
 HAO Yanjun, YANG Dinghui. Research progress of carbon dioxide capture and geological sequestration problem and seismic monitoring research [J]. Progress in Geophysics, 2012, 27(6): 2369-2383.
- [7] 王高峰,秦积舜,孙伟善.碳捕集、利用与封存案例分析及产业 发展建议[M].北京:化学工业出版社,2020:16-18.
 WANG Gaofeng,QIN Jishun,SUN Weishan.CCUS cases analysis and industrial development suggestions[M].Beijing:Chemical Industry Press,2020:16-18.
- [8] DAVISON J. Performance and costs of power plants with capture and storage of CO₂[J].Energy, 2007, 32(7):1163-1176.
- [9] LEUNG D Y C, CARAMANNA G, MAROTO-VALER M M. An overview of current status of carbon dioxide capture and storage technologies [J]. Renewable and Sustainable Energy Reviews, 2014, 39(4):426-443.
- [10] BAE J S, SU S. Macadamia nut shell-derived carbon composites for post combustion CO₂ capture [J]. International Journal of Greenhouse Gas Control, 2013, 19: 174–182.
- [11] FREDRIKSEN S B, JENS K J. Oxidative degradation of aqueous amine solutions of MEA, AMP, MDEA, Pz: A review [J]. Energy Procedia, 2013, 37:1 770-1 777.
- $\cite{12}\$
- [13] XIANG Y, LONG Z W, LI C, et al. Neutralization and adsorption effects of various alkanolamines on the corrosion behavior of N80 steel in supercritical CO₂ with impurities [J]. Corrosion, 2019, 75 (8):999-1 011.
- [14] 江文敏.化学吸收法捕集二氧化碳工艺的模拟及实验研究
 [D].杭州:浙江大学,2015:26-28.
 JIANG Wenmin. Simulation and experimental research of CO₂ chemical absorption system [D]. Hangzhou: Zhejiang University, 2015:26-28.
- [15] 杨珍珍.功能化离子液体在二氧化碳捕集、活化及化学转化中的应用[D].天津:南开大学,2013:8. YANG Zhenzhen. Carbon dioxide capture with activation and chemical transformation by task-specific ionic liquids[D].Tianjin:Nankai University,2013:8.
- [16] 张卫风,周武,王秋华.相变吸收捕集烟气中CO₂技术的发展现 状[J].化工进展,2021,41(4):2090-2101.

ZHANG Weifeng, ZHOU Wu, WANG Qiuhua. Recent developments of phase-change absorption technology for $\rm CO_2$ capture from flue gas [J]. Chemical Industry and Engineering Progress, 2021,41(4):2090–2101.

- [17] SANCHEZ-FERNANDEZ E, HEFFERNAN K, VAN DER HAM L, et al.Analysis of process configurations for CO₂ capture by precipitating amino acid solvents[J].Industrial & Engineering Chemistry Research, 2014, 53(6):2 348–2 361.
- [18] WAHBY A, SILVESTRE-ALBERO J, SEPULVEDA-ESCRIBA-NO A, et al.CO₂ adsorption on carbon molecular sieves [J].Microporous and Mesoporous Materials, 2012, 164:280–287.
- [19] WIHEEB A D, HELWANI Z, KIM J, et al.Pressure swing adsorption technologies for carbon dioxide capture[J].Separation & Purification Reviews, 2016, 45(2):108–121.
- [20] KHALILPOUR R, MUMFORD K, ZHAI H B, et al. Membranebased carbon capture from flue gas: a review [J]. Journal of Cleaner Production, 2015, 103:286–300.
- [21] 晏水平,方梦祥,张卫风,等.基于膜吸收技术的烟气CO₂分离 工艺设计与经济性分析[J].动力工程,2007,27(3):415-421. YAN Shuiping, FANG Mengxiang, ZHANG Weifeng, et al. Engineering design and economic analysis of CO₂ sequestration from flue gas by using membrane absorption techniques[J].Journal of Chinese Society of Power Engineering,2007,27(3):415-421.
- [22] DAVIDSON O, METZ B.Special report on carbon dioxide capture and storage[J].International Panel on Climate Change, Geneva, Switzerland, 2005, 7(13):1-100.
- [23] DAI Z D, NOBLE R D, GIN D L, et al. Combination of ionic liquids with membrane technology: A new approach for CO₂ separation[J].Journal of Membrane Science, 2016, 497:1–20.
- [24] GIN D L, NOBLE R D.Designing the next generation of chemical separation membranes[J].Science, 2011, 332(6030):674-676.
- [25] 陈新明,史绍平,闫妹,等.燃烧前CO₂捕集技术在IGCC发电中的应用[J].化工学报,2014,65(8):3 193-3 201.
 CHEN Xinming, SHI Shaoping, YAN Shu, et al. Application of CO₂ capture technology before burning in IGCC power generation system[J].CIESC Journal,2014,65(8):3 193-3 201.
- [26] BURT S S, BAXTER A, BENCE C, et al. Cryogenic CO₂ capture for improved efficiency at reduced cost [C]. Salt Lake City: Proceedings of the AICHE, 2010.
- [27] WANG X L, CHEN G J, YANG L Y, et al.Study on the recovery of hydrogen from refinery(hydrogen+methane)gas mixtures using hydrate technology[J].Science in China Series B: Chemistry, 2008, 51(2):171-178.
- [28] FAN S, WANG Y, LANG X.CO₂ capture in form of clathrate hydrate-problem and practice [C]. Edinburgh: Proceedings of the 7th International Conference on Gas Hydrate, 2011.
- [29] BABU P, KUMAR R, LINGA P.Progress on the hydrate based gas separation (HBGS) process for carbon dioxide capture [C]. San Francisco: Proceedings of the AICHE Annual Meeting, 2013.
- [30] SUN D, ENGLEZOS P.Storage of CO₂ in a partially water saturated porous medium at gas hydrate formation conditions[J].International Journal of Greenhouse Gas Control,2014,25:1–8.
- $\left[\,31\,\right]\,$ NAZIR S M, CLOETE J H, CLOETE S, et al. Efficient hydrogen

production with CO₂ capture using gas switching reforming[J].Energy, 2019, 185: 372–385.

[32] 柳康,许世森,李广宇,等.基于整体煤气化联合循环的燃烧前 CO₂捕集工艺及系统分析[J].化工进展,2018,37(12):4897-4907.

LIU Kang, XU Shisen, LI Guangyu, et al. Technological process and system analysis of pre-combustion CO_2 capture based on IGCC[J]. Chemical Industry and Engineering Progress, 2018, 37 (12):4 897–4 907.

- [33] BUHRE B J P, ELLIOTT L K, SHENG C D, et al.Oxy-fuel combustion technology for coal-fired power generation [J].Progress in Energy and Combustion Science, 2005, 31(4):283-307.
- [34] ABRAHAM B M, ASBURY J G, LYNCH E P, et al.Coal-oxygen process provides CO₂ for enhanced recovery [J].Oil & Gas Journal, 1982, 80(11):173-184.
- [35] 王俊,李延兵,廖海燕,等.浅谈国外煤粉富氧燃烧技术发展
 [J].华北电力技术,2014,8(2):56-61.
 WANG Jun, LI Yanbing, LIAO Haiyan, et al. Brief discussion on technical development of pulverized coal oxyfuel combustion abroad[J].North China Electric Power,2014,8(2):56-61.
- [36] 孔红兵,柳朝晖,陈胜,等.600 MW 富氧燃烧系统过程建模及 优化[J].中国电机工程学报,2012,32(2):53-60.
 KONG Hongbing,LIU Zhaohui,CHEN Sheng, et al.Process simulation and optimization of a 600 MW O₂/CO₂ power plant[J].Proceedings of the CSEE,2012,32(2):53-60.
- [37] ADANEZ J, ABAD A, GARCIA-LABIANO F, et al. Progress in chemical-looping combustion and reforming technologies [J]. Progress in Energy and Combustion Science, 2012, 38(2):215– 282.
- [38] LI F X, LUO S W, SUN Z C, et al. Role of metal oxide support in redox reactions of iron oxide for chemical looping applications: experiments and density functional theory calculations [J]. Energy & Environmental Science, 2011, 4(9): 3 661–3 667.
- [39] 王金星,孙宇航.化学链燃烧技术的研究进展综述[J].华北电力大学学报:自然科学版,2019,46(5):101-110.
 WANG Jinxing, SUN Yuhang. Review of chemical-looping combustion technology research [J]. Journal of North China Electric Power University: Natural Science Edition, 2019, 46(5):101-110.
- [40] RUBEL A, LIU K L, NEATHERY J, et al. Oxygen carriers for chemical looping combustion of solid fuels[J].Fuel, 2009, 88(5): 876-884.
- [41] XIAO R, SONG Q L.Characterization and kinetics of reduction of CaSO₄ with carbon monoxide for chemical-looping combustion [J].Combustion and Flame, 2011, 158(12):2 524-2 539.
- [42] LEION H, LYNGFELT A, JOHANSSON M, et al. The use of ilmenite as an oxygen carrier in chemical-looping combustion [J]. Chemical Engineering Research and Design, 2008, 86(9):1017– 1026.
- [43] 郭磊,赵海波,马琎晨,等.批量制备Fe₂O₃/Al₂O₃氧载体及褐煤 化学链燃烧实验研究[J].中国电机工程学报,2013,33(17): 57-63.

GUO Lei, ZHAO Haibo, MA Jinchen, et al. Batch preparation of

 Fe_2O_3/Al_2O_3 oxygen carriers for chemical looping combustion of lignite[J].Proceedings of the CSEE, 2013, 33(17): 57–63.

- $\label{eq:shear_state} \begin{array}{l} \mbox{[44] SHEN L H, WU J H, GAO Z P, et al. Characterization of chemical looping combustion of coal in a 1 kW_{th} reactor with a nickel-based oxygen carrier [J]. Combustion and Flame, 2010, 157(5): 934-942. \end{array}$
- [45] 郝建刚,吴家桦,王雷,等.基于Fe基载氧体的生物质化学链燃 烧试验研究[J].锅炉技术,2010,41(2):65-70.
 HAO Jiangang, WU Jiahua, WANG Lei, et al. Experiments on chemical looping combustion of biomass with a Fe₂O₃ based oxygen carrier[J].Boiler Technology,2010,41(2):65-70.
- [46] BISCHI A, LANGØRGENØ, MORIN J X, et al. Hydrodynamic viability of chemical looping processes by means of cold flow model investigation[J]. Applied Energy, 2012, 97:201–216.
- [47] 徐婷,杨震,周体尧,等.中美二氧化碳捕集和驱油发展状况分析[J].国际石油经济,2016,24(4):12-16,28.
 XU Ting, YANG Zhen, ZHOU Tiyao, et al. Carbon capture and storage (CCS) and CO₂ flooding technology development in the United States and China [J].International Petroleum Economics, 2016,24(4):12-16,28.
- [48] 林海周,杨晖,罗海中,等.烟气二氧化碳捕集胺类吸收剂研究进展[J].南方能源建设,2019,6(1):16-21.
 LIN Haizhou, YANG Hui, LUO Haizhong, et al. Research progress on amine absorbent for CO₂ capture from flue gas[J].Southern Energy Construction,2019,6(1):16-21.
- [49] 刘洋.燃煤电厂碳捕获与封存技术现状及其应用前景展望[J]. 能源环境保护,2017,31(3):1-5.
 LIU Yang.Current status of carbon capture and storage technology in coal-fired power plants and its application prospects [J].Energy Environmental Protection,2017,31(3):1-5.
- [50] ZHAO Y J, DUAN Y Y, LIU Q, et al.Life cycle energy-economyenvironmental evaluation of coal-based CLC power plant vs. IGCC, USC and oxy-combustion power plants with/without CO₂ capture [J]. Journal of Environmental Chemical Engineering, 2021,9(5):106121.
- [51] HOFFMANN S, BARTLETT M, FINKENRATH M, et al. Performance and cost analysis of advanced gas turbine cycles with precombustion CO₂ capture [J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(2):61-67.
- [52] 陆诗建.碳捕集、利用与封存技术[M].北京:中国石化出版社,
 2020:13-16.
 LU Shijian.Carbon capture, utilization and storage [M].Beijing:

Chemical Industry Press, 2020:13–16.

- [53] 骆仲泱,方梦祥,李明远.二氧化碳捕集封存和利用技术[M]. 北京:石油工业出版社,2012:28.
 LUO Zhongyang, FANG Mengxiang, LI Mingyuan. Carbon capture, utilization and storage [M]. Beijing: Petroleum Industry Press,2012:28.
- [54] 蔡博峰,李琦,林千果,等.中国二氧化碳捕集、利用与封存 (CCUS)报告(2019)[R].生态环境部环境规划院气候变化与 环境政策研究中心,2020:18.

CAI Bofeng, LI Qi, LIN Qianguo, et al. China's 2019 annual report of Carbon Dioxide Capture and Utilization Storage (CCUS) [R].Research Center of Climate Change and Environmental Policy, Chinese Academy of Environmental Planning, 2020; 18.

- [55] BENSON S M, ORR F M.Carbon dioxide capture and storage[J]. MRS Bulletin, 2008, 33(4): 303–305.
- [56] WHITE C M, SMITH D H, JONES K L, et al.Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery-a review[J].Energy & Fuels, 2005, 19(3):659-724.
- [57] HOWARD Herzog K S, PRADEEP Dadhich, JAMES Dooley, et al. IPCC special report on carbon dioxide capture and storage [R]. IPCC, 2005:340–362.
- [58] GHG I.CO₂ pipeline infrastructure: An analysis of global challenges and opportunities [J]. Final Report for International Energy Agency Greenhouse Gas Programme, 2010, 16(5):59–74.
- [59] 亓冠玲.齐鲁二化厂至正理庄油田高89地区CO₂输送管道及 液化分离工程方案研究[D].青岛:中国石油大学(华东), 2014:36.

QI Guanling.Research on CO₂ pipeline and liquid separation project of Qilu Petrochemical to Zhenglizhuang oilfield[D].Qingdao: China University of Petroleum(East China),2014;36.

- [60] 中国首个百万吨级碳捕集利用与封存项目启动[J].中国氯碱, 2021,(7):28.
 China's first million-ton carbon capture, utilization and storage project launched[J].China Chlor-Alkali,2021,(7):28.
- [61] 蒋秀,屈定荣,刘小辉.超临界CO2管道输送与安全[J].油气储运,2013,32(8):809-813.
 JIANG Xiu, QU Dingrong, LIU Xiaohui. Supercritical CO2 pipe-

line transportation and safety[J].Oil & Gas Storage and Transportation, 2013, 32(8):809-813.

- [62] 颜开,向勇,陈晓玲.CO₂海洋封存系统管道腐蚀特性研究进展
 [J].腐蚀科学与防护技术,2019,31(6):672-680.
 YAN Kai, XIANG Yong, CHEN Xiaoling. Investigation on corrosion characteristics of pipeline in CO₂ ocean storage system [J].
 Corrosion Science and Protection Technology, 2019,31(6):672-680.
- [63] SEEVAM P N, RACE J M, DOWNIE M J, et al. Transporting the next generation of CO₂ for carbon, capture and storage: the impact of impurities on supercritical CO₂ pipelines[C].Calgary:Proceedings of the International Pipeline Conference, 2008.
- [64] SVANDAL A, KUZNETSOVA T, KVAMME B. Thermodynamic properties and phase transitions in the H₂O/CO₂/CH₄ system[J]. Fluid Phase Equilibria, 2006, 246(1/2):177-184.
- [65] MAHGEREFTEH H, ATTI O.Modeling low-temperature-induced failure of pressurized pipelines [J]. AIChE Journal, 2006, 52(3): 1 248-1 256.
- [66] HUH C, CHO M I, HONG S, et al. Effect of impurities on depressurization of CO₂ pipeline transport [J]. Energy Procedia, 2014, 63:2 583-2 588.
- [67] CHO M I, HUH C, KANG S G, et al. Evaluation of the two phase pressure drop during the CO₂-N₂ mixture pipeline transport [J]. Energy Procedia, 2014, 63:2710-2714.
- [68] XIANG Y, XU M H, CHOI Y S.State-of-the-art overview of pipeline steel corrosion in impure dense CO₂ for CCS transportation: mechanisms and models [J]. Corrosion Engineering, Science and

Technology, 2017, 52(7): 485–509.

- [69] COLLIER J, PAPAVINASAM S, LI J, et al.Effect of impurities on the corrosion performance of steels in supercritical carbon dioxide: optimization of experimental procedure [C].Orlando: Proceedings of the CORROSION, 2013.
- $\label{eq:guodel} \begin{array}{l} \mbox{[70]} & \mbox{GUO S Q, XU L N, ZHANG L, et al. Corrosion of alloy steels containing 2% chromium in CO_2 environments [J]. Corrosion Science, 2012, 63 ; 246-258. \end{array}$
- [71] CHOI Y S, NESIC S, YOUNG D.Effect of impurities on the corrosion behavior of CO₂ transmission pipeline steel in supercritical CO₂-water environments [J]. Environmental Science & Technology, 2010, 44(23):9 233-9 238.
- [72] SIM S, BIRBILIS N, COLE I S, et al. Internal corrosion of CO₂ pipelines for carbon capture and storage[C].Orlando: Proceedings of the CORROSION, 2013.
- [73] AYELLO F, EVANS K J, SRIDHAR N, et al.Effect of liquid impurities on corrosion of carbon steel in supercritical CO₂[C]. Calgary: Proceedings of the International Pipeline Conference, 2010.
- [74] HUA Y, BARKER R, NEVILLE A. Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO₂[J].International Journal of Greenhouse Gas Control, 2014, 31:48–60.
- [75] RUHL A S, KRANZMANN A. Corrosion in supercritical CO₂ by diffusion of flue gas acids and water[J]. The Journal of Supercritical Fluids, 2012, 68:81–86.
- [76] ZHENG Y G, BROWN B, NEŠIĆS. Electrochemical study and modeling of H₂S corrosion of mild steel [J]. Corrosion, 2014, 70 (4):351-365.
- [77] KERMANI M B, MORSHED A. Carbon dioxide corrosion in oil and gas production-A compendium [J]. Corrosion, 2003, 59(8): 659-683.
- [78] LI K Y, ZENG Y M, LUO J L.Influence of H₂S on the general corrosion and sulfide stress cracking of pipelines steels for supercritical CO₂ transportation[J].Corrosion Science, 2021, 190:109639.
- [79] HUA Y, BARKER R, NEVILLE A.The effect of O₂ content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO₂ environments [J]. Applied Surface Science, 2015, 356: 499–511.
- [80] ZENG Y M, PANG X, SHI C, et al. Influence of impurities on corrosion performance of pipeline steels in supercritical carbon dioxide[C]. Dalas: Proceedings of the CORROSION, 2015.
- [81] LI C, XIANG Y, LI W G. Initial corrosion mechanism for API5L X80 steel in CO₂/SO₂-saturated aqueous solution within a CCUS system: Inhibition effect of SO₂ impurity[J].Electrochimica Acta, 2019, 321:134663.
- [82] ONYEBUCHI V E, KOLIOS A, HANAK D P, et al. A systematic review of key challenges of CO₂ transport via pipelines[J].Renewable and Sustainable Energy Reviews, 2018, 81:2 563–2 583.
- [83] HUA Y, BARKER R, NEVILLE A.The influence of SO₂ on the tolerable water content to avoid pipeline corrosion during the transportation of supercritical CO₂[J]. International Journal of Greenhouse Gas Control, 2015, 37:412–423.
- $[\,84\,]\,$ DUGSTAD A, HALSEID M, MORLAND B.Effect of SO_2 and NO_2

on corrosion and solid formation in dense phase CO₂ pipelines[J]. Energy Procedia, 2013, 37:2 877–2 887.

- [85] SIM S, BOCHER F, COLE I S, et al.Investigating the effect of water content in supercritical CO₂ as relevant to the corrosion of carbon capture and storage pipelines [J]. Corrosion, 2014, 70 (2) : 185–195.
- [86] XIANG Y, WANG Z, YANG X X, et al. The upper limit of moisture content for supercritical CO₂ pipeline transport[J]. The Journal of Supercritical Fluids, 2012, 67: 14–21.
- [87] SUN J B, SUN C, ZHANG G A, et al.Effect of O₂ and H₂S impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO₂ system[J].Corrosion Science, 2016, 107:31-40.
- [88] WEI L, PANG X L, GAO K W.Effect of small amount of H₂S on the corrosion behavior of carbon steel in the dynamic supercritical CO₂ environments[J].Corrosion Science, 2016, 103:132–144.
- [89] LI C, XIANG Y, SONG C C, et al.Assessing the corrosion product scale formation characteristics of X80 steel in supercritical CO₂-H₂O binary systems with flue gas and NaCl impurities relevant to CCUS technology [J]. The Journal of Supercritical Fluids, 2019, 146:107-119.
- [90] OOSTERKAMP A, RAMSEN J.State-of-the-Art overview of CO₂ pipeline transport with relevance to offshore pipelines [R]. Norway: Research Council of Norway, Gassco and Shell Technology Norway, 2008.
- [91] MOHITPOUR M, SEEVAM P, BOTROS K K, et al. Pipeline transportation of carbon dioxide containing impurities [M]. New York: ASME Press, 2012.
- [92] CARTER L D.Capture and storage of CO₂ with other air pollutants[M].London: IEA Clean Coal Centre, 2010:63.
- [93] LIN T, LI Y X, ZHANG D T, et al. The evolution and size distribution of solid CO₂ Particles in Supercritical CO₂ Releases [J]. Industrial & Engineering Chemistry Research, 2018, 57 (22): 7 655– 7 663.
- [94] VITALI M, ZULIANI C, CORVARO F, et al.Risks and safety of CO₂ transport via pipeline: A review of risk analysis and modeling approaches for accidental releases[J].Energies, 2021, 14(15): 1– 17.
- [95] ELSHAHOMI A, LU C, MICHAL G, et al. Decompression wave speed in CO₂ mixtures: CFD modelling with the GERG-2008 equation of state[J]. Applied Energy, 2015, 140:20-32.
- [96] MAHGEREFTEH H, ZHANG P, BROWN S. Modelling brittle fracture propagation in gas and dense-phase CO₂ transportation pipelines [J]. International Journal of Greenhouse Gas Control, 2016,46:39-47.
- [97] WITLOX H W M, HARPER M, OKE A. Modelling of discharge and atmospheric dispersion for carbon dioxide releases [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 795– 802.
- [98] 刘锋.超临界压力 CO₂管道泄漏特征与扩散规律研究[D].北 京:清华大学,2016:36-39.

LIU Feng. Study on the leakage and diffusion behavior of supercritical pressure CO₂ from pipelines [D]. Beijing: Tsinghua University, 2016: 36–39. 2018:17-20.

- [99] 任科.超临界二氧化碳管道断裂理论和控制方法研究[D].西安:西安石油大学,2018:17-20.
 REN Ke.Study on theory and control method of supercritical carbon dioxide pipe fracture [D].Xi'an:Xi'an Shiyou University,
- [100] GAURINA-MEÐIMUREC N, NOVAK-MAVAR K, MAJIĆM. Carbon capture and storage(CCS): Technology, projects and monitoring review [J]. Rudarsko-Geolosko-Naftni Zbornik, 2018, 33 (2):1-15.
- [101] MAVAR K N, GAURINA-MEÐIMUREC N, HRNČEVIĆL.Significance of enhanced oil recovery in carbon dioxide emission reduction[J].Sustainability, 2021, 13(4):1800.
- [102] 袁士义, 王强, 李军诗, 等. 注气提高采收率技术进展及前景展 望[J]. 石油学报, 2020, 41(12): 1623-1632.

YUAN Shiyi, WANG Qiang, LI Junshi, et al. Technology progress and prospects of enhanced oil recovery by gas injection [J]. Acta Petrolei Sinica, 2020, 41(12):1623-1632.

- [103] 胡永乐,郝明强,陈国利.注二氧化碳提高石油采收率技术
 [M].北京:石油工业出版社,2018:165-166.
 HU Yongle, HAO Mingqiang, CHEN Guoli, et al.Carbon dioxide injection for enhanced oil recovery technology[M].Beijing:Petroleum Industry Press,2018:165-166.
- [104] HOLT T, JENSEN J I, LINDEBERG E. Underground storage of CO₂ in aquifers and oil reservoirs[J].Energy Conversion and Management, 1995, 36(6/9):535-538.
- [105] WANG Z, XU L J. Development status and prospects of CCS-EOR technology in China [J]. China Oil & Gas, 2018, 25(2):24-29.
- [106] 张冰,梁凯强,王维波,等.鄂尔多斯盆地深部咸水层CO₂有效地质封存潜力评价[J].非常规油气,2019,6(3):15-20.
 ZHANG Bing, LIANG Kaiqiang, WANG Weibo, et al. Evaluation of effective CO₂ geological sequestration potential of deep saline aquifer in Ordos Basin [J]. Unconventional Oil & Gas, 2019, 6 (3):15-20.
- [107] 王晓桥, 马登龙, 夏锋社, 等. 封储二氧化碳泄漏监测技术的研 究进展[J]. 安全与环境工程, 2020, 27(2): 23-34.

WANG Xiaoqiao, MA Denglong, XIA Fengshe, et al. Research progress on leakage monitoring technology for CO₂ storage [J]. Safety and Environmental Engineering, 2020, 27(2):23-34.

- [108] KLING G W, CLARK M A, WAGNER G N, et al. The 1986 Lake Nyos gas disaster in Cameroon, West Africa [J]. Science, 1987, 236(4798):169-175.
- [109] KOORNNEEF J, SPRUIJT M, MOLAG M, et al.Quantitative risk assessment of CO₂ transport by pipelines-a review of uncertainties and their impacts [J].Journal of Hazardous Materials, 2010, 177:12-27.
- [110] EVANS W C, KLING G W, TUTTLE M L, et al. Gas buildup in Lake Nyos, Cameroon: the recharge process and its consequences [J].Applied Geochemistry, 1993,8(3):207-221.
- [111]郭晓璐,喻健良,闫兴清,等.超临界 CO₂管道泄漏特性研究进展[J].化工学报,2020,71(12):5430-5442.
 GUO Xiaolu, YU Jianliang, YAN Xingqing, et al. Research progress on leakage characteristics of supercritical CO₂ pipeline[J].
 CIESC Journal,2020,71(12):5430-5442.
- [112] TYNE R L, BARRY P H, LAWSON M, et al. Rapid microbial methanogenesis during CO₂ storage in hydrocarbon reservoirs [J]. Nature, 2021, 600:670–674.
- [113] ZHANG T, ZHANG W C, YANG R Z, et al.CO₂ capture and storage monitoring based on remote sensing techniques; A review [J]. Journal of Cleaner Production, 2021, 281; 124409.
- [114]梁艾琳.星载遥感二氧化碳的验证、反演及应用[D].武汉:武 汉大学,2018:26.

LIANG Ailin.Research of space-borne remote sensing for carbon dioxide on validation, inversion and application[D].Wuhan:Wuhan University, 2018:26.

 [115] ZHANG L, REN B, HUANG H D, et al.CO₂ EOR and storage in Jilin oilfield China: Monitoring program and preliminary results
 [J].Journal of Petroleum Science and Engineering, 2015, 125: 1– 12.

编辑林璐