引用格式:陈元千.气井拟压力弹性一相法的推导、简化及应用[J].油气地质与采收率,2024,31(6):89-95. CHEN Yuanqian.Derivation, simplification and application of the pseudo-pressure elastic one-phase method for gas wells[J].Petroleum Geology and Recovery Efficiency,2024,31(6):89-95.

气井拟压力弹性一相法的推导、简化及应用

陈元千

(中国石油勘探开发研究院,北京100083)

摘要:对于一口处在封闭边界之内的新气井,以某稳定产量开井生产,进行了压降曲线测试。从理论上讲,又可将压降曲线按 其压力动态划分为非稳态阶段、过渡阶段(又称为非稳态阶段的后期)和拟稳态阶段。所谓非稳态阶段,是指气井压降漏斗的 外缘半径,尚未达到边界之前的范围。而所谓过渡阶段,是指由非稳态阶段过渡到拟稳态阶段的范围。对于拟稳态阶段,我国 称为弹性二相法,可用于确定气井控制的原始地质储量。该法被连续四次列于国家油气的行业标准。对于非稳态阶段,本文 基于达西定律的平面径向流微分式,利用AI-Hussainy提出的拟压力函数,经推导得到了拟压力的弹性一相法。利用该法可以 评价气藏的有效渗透率和井的总表皮系数。同时,利用Wattenbarger对拟压力函数性质的研究结果,通过简化得到了由压力 一次方和压力平方表示的弹性一相法。通过实例应用结果表示,三种方法评价的结果是一致的。 关键词:气井;弹性一相法;拟压力;压力一次方;压力平方;有效渗透率;总表皮系数 又章编号:1009-9603(2024)06-0089-07 DOI:10.13673/j.pgre.202410007 文献标识码:A

Derivation, simplification and application of the pseudo-pressure elastic one-phase method for gas wells

CHEN Yuanqian

(Research Institute of Petroleum Exploration & Development, PetroChina, Beijing City, 100083, China)

Abstract: For the new gas well with a closed boundary, the pressure drawdown curve testing was carried out after it operated at a stable production rate. Theoretically, the pressure drawdown curve can be divided into an unsteady state stage, a transit state stage (also called the late unsteady state stage), and a pseudo-steady state stage according to its pressure dynamics. The unsteady state stage refers to the outer edge radius of the pressure drawdown distribution of the gas well not reaching the boundary. The transit state stage refers to the range from the unsteady state stage to the pseudo-steady state stage. At this stage, the elastic two-phase method used in China can be employed to determine the initial gas in place controlled by a gas well. This method has been listed four times in the national oil and gas industry standard. For the unsteady state stage, according to the differential formula of the plane radial flow based on Darcy's law, this paper derived the elastic one-phase method of pseudo-pressure by using the pseudo-pressure function proposed by Al-Hussainy. This method could be used to evaluate the effective permeability of gas reservoirs and the total skin factor of wells. In addition, the elastic one-phase method expressed by the one power of pressure and pressure that was squared was obtained by simplifying the research results of Wattenbanger on the properties of the pseudo-pressure function. The practical application showed that the evaluation results with the three methods were consistent.

Key words: gas well; elastic one-phase method; pseudo-pressure; one power of pressure; pressure squared; effective permeability; total skin factor

收稿日期:2024-10-10。

作者简介:陈元千(1933—),男,河南兰考人,教授级高级工程师,1952年考入清华大学石油工程系,1956年毕业于北京石油学院钻采系,长期 从事油气藏工程、油气田开发和油气储量评价工作。E-mail:1470706289@qq.com。

)

对于定容封闭性气藏,当一口新井,已完成钻 井、固井、射孔、压裂和试气,以及关井取得原始地 层压力之后,若以某稳定产量开井生产进行压降曲 线测试,从理论上讲,按压降曲线的压力动态,可划 分为非稳态阶段、过渡阶段和拟稳态阶段。对于拟 稳态阶段,我国业内称之为弹性二相法。该法于 1991年由陈元千印完成了理论上的推导,并有效地 应用于评价气井控制的原始地质储量。该法已连 续四次被列入国家油气行业标准^[2-5]。当气井的产 量不能保持稳产而发生递减时,可用文献[6-7]报道 的定产量和变产量拟压力、压力一次方和压力平方 的弹性二相法求解。本文基于达西定律平面径向 流微分式,利用AI-Hussainy^[8]提出的拟压力函数, 经推导得到了拟压力表示的弹性一相法。同时,引 用Wattenbarger^[9]对AI-Hussainy 拟压力函数研究的 结论,分别得到了由压力一次方和压力平方表示的 弹性一相法。

1 气井拟压力弹性一相法的推导

Al-Hussainy^[24]对于真实气体通过孔隙介质流动的研究,首次定义并提出的拟压力函数关系式为:

$$\psi(p) = 2 \int_{P_{\circ}}^{P} \frac{P}{r} = \frac{P}{u_g Z} dP \qquad (1)$$

气井测试的压降曲线,可划分为非稳态阶段、 过渡阶段和拟稳态阶段。在我国将拟稳态阶段又称为弹性二相阶段。在非稳态阶段压降漏斗外缘 半径,尚未达到边界之前称为弹性一相阶段。该阶段可用于确定气藏的有效渗透率和气井的总表皮 系数。

由(1)式求导得:

$$\mathrm{d}\psi(p) = \frac{2P}{\mu_g Z} \mathrm{d}P \tag{2}$$

达西定律的平面径向流微分式为:

$$q_g = \frac{2\pi r h k dP}{\mu_g B_g dr} \tag{3}$$

气体的体积系数为:

$$B_g = \frac{P_{sc}ZT}{PT_{sc}} \tag{4}$$

将(4)式代入(3)式得:

$$q_g = \frac{2\pi r h k T_{sc} P dP}{P_{sc} T \mu_g Z dr}$$
(5)

对(5)式分离变量为:

$$q_{g}\frac{\mathrm{d}r}{r} = \frac{2\pi khT_{sc}P\mathrm{d}P}{P_{sc}T\mu_{g}Z} \tag{6}$$

$$q_{g}\frac{\mathrm{d}r}{r} = \frac{\pi k h T_{sc}}{P_{sc}T} \mathrm{d}\psi\left(p\right) \tag{7}$$

对(7)式代入上下限积分:

$$q_{g} \int_{r_{w}}^{r_{i}} \frac{dr}{r} = \frac{\pi k h T_{sc}}{P_{sc} T} \int_{\psi(p_{w})}^{\psi(p_{i})} d\psi(p)$$
(8)

由(8)式积分,并考虑非完善井的总表皮系数 ($S_t=S_1+S_2+S_3+S_4$)得,弹性一相法的关系式为:

$$\psi(p_i) - \psi(p_{wf}) = \frac{q_s P_{sc} T}{\pi k h T_{sc}} \left(\ln \frac{r_i}{r_w} + S_t \right)$$
(9)

在气井以稳定产量生产的非稳定阶段(即弹性 一相阶段),不同时间的探测半径(Radius of Investigation),或称为压降漏斗的外缘半径(见图1)随时 间的变化的关系为^[5,10]:

$$r_i = 2\sqrt{\frac{kt}{\phi\mu_{gi}C_{ii}}} \tag{10}$$

将(10)式代入(9)式得,气井拟压力弹性二相 法的压降方程为:

$$\Delta\psi(p) = \frac{q_g P_{sc}T}{2\pi k h T_{sc}} \left(\ln \frac{4kt}{\phi \mu_{gl} C_{ll} r_w^2} + 2S_t \right) \quad (11)$$

式中:

$$\Delta \psi(p) = \psi(p_i) - \psi(p_{wf})$$
(12)

应当指出,上述的推导及(11)式中的各参数, 均为SI基础单位,变换为SI矿场实用单位(见符号 注释)的具体方法为:

$$\Delta \psi(p) \left(\frac{10^{12}}{10^{-3}}\right) = \frac{q_g \left(\frac{10^4}{86400}\right) P_{sc}(10^{12}) T}{2\pi k (10^{-15}) h T_{sc}}$$
(13)
$$\left[2.303 \log \frac{4k (10^{-15}) \times t (3600)}{\phi \mu_{gl}(10^{-3}) C_{ll}(10^{-6}) r_w^2} + 2S_t \right]$$

由(13)式化简整理得,气井拟压力的弹性一相 法的压降方程为:

$$\Delta \psi \left(p \right) = \frac{4.24 \times 10^4 q_g P_{sc} T}{kh T_{sc}}$$

$$\left(\log \frac{kt}{\phi \mu_{gl} C_{ll} r_w^2} - 1.827 + 0.868 S_l \right)$$

$$(14)$$

将(14)式简写为:
$$\Delta \psi(p) = A_p + m_p \log t$$
(15)

式中:

式中:

$$m_{p} = \frac{4.24 \times 10^{4} q_{g} P_{sc} T}{kh T_{sc}}$$
(16)

$$A_{p} = m_{p} \left(\log \frac{k}{\phi \mu_{gl} C_{il} r_{w}^{2}} - 1.827 + 0.868 S_{t} \right)$$
(17)

由(15)式看出, $\Delta \psi(p)$ 与log t呈半对数直线关系。当利用实际数据,由(15)式进行线性回归,求 得直线的截距 A_p 和斜率 m_p 值后,再由(16)式和(17) 式改写的下式,分别确定气藏的有效渗透率和气井 的总表皮系数:

$$k = \frac{4.24 \times 10^4 q_g P_{sc} T}{m_p h T_{sc}}$$
(18)

$$S_{t} = 1.512 \left(\frac{A_{p}}{m_{p}} - \log \frac{k}{\phi \mu_{gl} C_{tl} r_{w}^{2}} + 1.827 \right) \quad (19)$$

2 气井拟压力弹性一相法的简化

根据 Wattenbarger^[9]对 Al-Hussainy^[8]提出的压力函数的研究表明,当 P>3000 psia(20.683 MPa)时, $\mu_g Z = P \ge 1$ 直线关系,直线的斜率 $\mu_g Z/P$ 为常数,因此可取 $P/\mu_g Z = P_i/\mu_{gi} Z_i$ 。此时,由(1)式可得:

$$\Delta \psi(p) = \frac{2P_i}{\mu_{gi}Z} \int_{P_{wf}}^{P_i} dP = \frac{2P_i(P_i - P_{wf})}{\mu_{gi}Z_i} = \frac{2P_i\Delta P}{\mu_{gi}Z_i}(20)$$

将(20)式代入(14)式得,由压力一次方表示的 弹性一相法压降方程为:

$$\Delta P = \frac{2.12 \times 10^4 q_g \mu_{gi} B_{gi}}{kh}$$

$$\left(\log \frac{kt}{\phi \mu_{gi} C_{ii} r_w^2} - 1.827 + 0.868 S_t \right)$$
(21)

$$B_{gi} = \frac{P_{sc}Z_iT}{P_iT_{sc}}$$
(22)

再将(21)式简写为:

$$\Delta P = A_1 + m_1 \log t \tag{23}$$

式中:

$$\Delta P = P_i - P_{wf} \tag{24}$$

$$m_1 = \frac{2.12 \times 10^4 q_g \mu_{gi} B_{gi}}{kh}$$
(25)

$$A_{1} = m_{1} \left(\log \frac{k}{\phi \mu_{gi} C_{ii} r_{w}^{2}} - 1.827 + 0.868S_{i} \right)$$
(26)

由(23)式看出, $\Delta P 与 \log t$ 呈半对数直线关系。 当利用实际数据,由(23)式进行线性回归,求得 A_1 和 m_1 的数值后,再由下式分别确定 $k \pi S_i$ 的数值:

$$k = \frac{2.12 \times 10^4 q_g \mu_{gi} B_{gi}}{m_1 h}$$
(27)

$$S_{i} = 1.152 \left(\frac{A_{1}}{m_{1}} - \log \frac{k}{\phi \mu_{gi} C_{ii} r_{w}^{2}} + 1.827 \right) \quad (28)$$

同时,根据 Wattenbarger 的研究表明,当 $P < 2000 \text{ psia}(13.789 \text{ MPa})时, \mu_g Z 随 P 几乎接近于常数,因此,可写为<math>\mu_g Z = \mu_{gi} Z_i$ 的结果。此时,由(1)式可得:

$$\Delta \psi(p) = \frac{2}{\mu_{gi}Z_i} \int_{P_{uj}}^{P_i} P dP = \frac{P_i^2 - P_{uj}^2}{\mu_{gi}Z_i} = \frac{\Delta P^2}{\mu_{gi}Z_i} (29)$$

将(29)式代入(14)式得,由压力平方表示的弹性一相法压降方程为:

$$\Delta P^{2} = \frac{4.24 \times 10^{4} q_{g} \mu_{gi} Z_{i} P_{sc} T}{kh T_{sc}}$$

$$\left(\log \frac{kt}{\phi \mu_{gi} C_{ii} r_{w}^{2}} - 1.827 + 0.868 S_{i} \right)$$
(30)

将(30)式简化为:

$$\Delta P^2 = A_2 + m_2 \log t \tag{31}$$

式中:

$$\Delta P^2 = P_i^2 - P_{wf}^2 \tag{32}$$

式中:

$$m_2 = \frac{4.24 \times 10^4 q_g \mu_{gi} Z_i P_{sc} T}{kh T_{sc}}$$
(33)

$$A_{2} = m_{2} \left(\log \frac{k}{\phi \mu_{gi} C_{ii} r_{w}^{2}} - 1.827 + 0.868 S_{i} \right)$$
(34)

由(32)式看出, ΔP^2 与logt呈半对数直线关系, 当利用实际数据,由(31)式进行线性回归,求得 A_2 和 m_2 的数值后,再由下式分别确定k和 S_i 的数值:

$$k = \frac{4.24 \times 10^4 q_g \mu_{gi} Z_i P_{sc} T}{m_2 h T_{sc}}$$
(35)

•91•

$$S_{t} = 1.512 \left(\frac{A_{2}}{m_{2}} - \log \frac{k}{\phi \mu_{gl} C_{ll} r_{w}^{2}} + 1.827 \right) \quad (36)$$

3 气井弹性一相法的应用

中国苏里格气田的苏5井,钻遇二叠系石盒子 组低渗致密砂岩气藏。在钻井、固井和射孔完井, 并经人工水力压裂试气后,关井测试的原始地层压 力 *P*=29.06 MPa,原始地层压力的拟压力ψ(*p*_i)= 48893.39 MPa²/mPa·s。地层及流体物性参数为: ϕ = 0.097 frac; S_{gi} =0.654 frac; h=16.8 m; r_w =0.1 m; C_{ti}^* = 0.0344 MPa⁻¹; C_{ti} =0.0225 MPa⁻¹; γ_g =0.66 dim; μ_{gi} = 0.0224 mPa·s; B_{gi} =0.00423 dim; Z_i =0.962; T=378 K; T_{sc} =293 K; T_{pc} =208.82 K; T_{pr} =1.81 dim; P_{sc} =0.101 MPa; P_{pc} =4.61 MPa。不同压力下的气体偏差系数 (Z)和气体黏度(μ_g)的数值,在压力点之间利用梯形 面积近似法,由(1)式进行数值积分,求得不同压力 下的拟压力 $\psi(p)$ 数值列于表1,并绘于图1。

表 1 苏 5 井拟压力的数值积分计算表 Table 1 Numerical integral calculation of pseudo-pressure of Well Su 5

			8	1	1	-	
Р	μ	Ζ	$\frac{2P}{\mu Z}$	$\left(\frac{2P}{\mu Z}\right)_a$	ΔP	$\Delta P \left(\frac{2P}{\mu Z}\right)_a$	$\psi(p)$
2	0.0140	0.9808	291.3073	145.6537	2	291.3073	291.3073
4	0.0143	0.9623	580.2347	435.4147	2	870.8294	1161.4241
6	0.0147	0.9445	863.7764	722.0056	2	1444.0111	2605.4352
8	0.0152	0.9282	1136.2711	1000.0237	2	2000.0475	4605.4826
10	0.0157	0.9140	1392.7751	1264.5231	2	2529.0462	7134.5288
12	0.0163	0.9025	1628.7767	1510.7759	2	3021.5518	10156.0806
14	0.0170	0.8941	1840.7087	1734.7427	2	3469.4854	13625.5660
16	0.0178	0.8890	2026.3480	1933.5284	2	3867.0567	17492.6227
18	0.0186	0.8873	2184.9863	2105.6671	2	4211.3342	21703.9570
20	0.0194	0.8891	2317.3502	2251.1682	2	4502.3365	26206.2934
22	0.0203	0.8941	2425.3190	2371.3346	2	4742.6692	30948.9627
24	0.0212	0.9022	2511.5351	2468.4270	2	4936.8541	35885.8167
26	0.0221	0.9132	2579.0080	2545.2716	2	5090.5431	40976.3599
28	0.0230	0.9266	2630.7814	2604.8947	2	5209.7894	46186.1493
30	0.0238	0.9423	2669.6985	2650.2400	2	5300.4799	51486.6292

注: $(2P/\mu Z)_a = \left[(2P/\mu Z)_i + (2P/\mu Z)_{i+1} \right] \div 2$

由图2看出,当*P*>18 MPa之后,ψ(*p*)与*P*之间 是呈直线上升关系。经线性回归求得,该直线的斜 率为2531.5,截距为-24672,可由下式表示:

 $\psi(p) = 2531.5P - 24672$ (37) 应当指出,利用(37)式可以计算不同压力下的 拟压力 $\psi(p)$ 数值。

苏5井于2001年3月30日开始进行修正等时 试井,接着以稳定产量 q_g =10×10⁴m³/d连续进行了 30天的井底压降曲线测试。测试的数据以及利用 (37)式和(12)式计算的 $\psi(p)$ 和Δ $\psi(p)$ 数据列 于表2。

第31卷 第6期

表 2 苏 5 井测试和计算的数据表 Table 2 Tested and calculated data in Well Su 5							
t (h)	P _{wf} (MPa)	ΔP (MPa)	(MPa^2)	$\frac{\Delta P^2}{(\mathrm{MPa}^2)}$	$\psi(p_{_{Wf}})$ (MPa ² /mPa•s)	$\Delta \psi(p)$ (MPa ² /mPa•s)	
1.08	26.722	2.338	714.0653	130.4183	42974.743	5918.6470	
2.664	26.007	3.053	676.3640	168.1196	41164.7205	7728.6695	
3.336	25.913	3.147	671.4836	173.0000	40926.7595	7966.6305	
4.392	25.819	3.241	666.6208	177.8628	40688.7985	8204.5915	
5.472	25.703	3.357	660.6442	183.8394	40395.1445	8498.2455	
6.792	25.602	3.458	655.4624	189.0212	40139.463	8753.9270	
8.280	25.561	3.499	653.3647	191.1189	40035.6715	8857.7185	
9.480	25.495	3.565	649.9950	194.4886	39868.5925	9024.7975	
12.120	25.373	3.687	643.7891	200.6945	39559.7495	9333.6405	
15.336	25.335	3.725	641.8622	202.6214	39463.5525	9429.8375	
19.992	25.233	3.827	636.7043	207.7793	39205.3395	9688.0505	
26.400	25.148	3.912	632.4219	212.0617	38990.1620	9903.2280	
36.528	24.977	4.083	623.8505	220.6331	38557.2755	10336.1145	
43.200	24.913	4.147	620.6576	223.8260	38395.2595	10498.1305	
54.672	24.705	4.355	610.3370	234.1466	37868.7075	11024.6825	
69.336	24.511	4.549	600.7891	243.6945	37377.5965	11515.7935	
93.984	24.187	4.873	585.0110	259.4726	36557.3905	12335.9995	
125.496	23.816	5.244	567.2019	277.2817	35618.2040	13275.1860	
162.960	23.452	5.608	549.9963	294.4873	34696.7380	14196.6520	
200.280	23.166	5.894	536.6636	307.8200	33972.7290	14920.6610	
260.952	22.538	6.522	507.9614	336.5222	32382.9470	16510.4430	
335.952	21.921	7.139	480.5302	363.9534	30821.0115	18072.3785	
398.952	21.481	7.579	461.4334	383.0502	29707.1515	19186.2385	
463.296	21.013	8.047	441.5462	402.9374	28522.4095	20370.9805	
531.960	20.528	8.532	421.3988	423.0848	27294.632	21598.7580	
589.632	20.093	8.967	403.7286	440.7550	26193.4295	22699.9605	
676.944	19.504	9.556	380.4060	464.0776	24702.3760	24191.0140	
720.888	19.212	9.848	369.1009	475.3827	23963.1780	24930.2120	

4 气井弹性一相法的应用

将表2内的 $\Delta \psi(p)$ 与t的相应数据和 ΔP 与t的 相应数据,以及 ΔP^2 与t的相应数据,分别按照(15) 式、(23)式和(31)式,绘于图3、图4和图5上。由三 张图上直线段的线性回归,分别求得三种压力方式 的直线的截距A、斜率m和相关系数 R^2 的数值列 于表3。

将已知的有关参数数值分别代入(18)式和 (19)式,求得拟压力法的有效渗透率和总表皮系 数为:

$$k = \frac{4.24 \times 10^4 \times 10 \times 0.101 \times 378}{2241 \times 16.8 \times 293} = 1.467 \text{ mD}$$

Fig.5 Semi-logarithmic plot of ΔP^2 and t in Well Su 5

表3 图3至图5的线性回归结果

Table3	Linear regression results in Figs.3-5				
方法	A	т	R^2		
拟压力	6810	2241	0.9964		
压力一次方	2.699	0.8734	0.9938		
压力平方	150.16	44.666	0.9932		

将已知的有关参数的数值分别代入(27)式和 (28)式得,求得压力一次方法的有效渗透率和总表 皮系数为:

$$k = \frac{2.12 \times 10^4 \times 10 \times 0.0224 \times 0.00423}{0.8734 \times 16.8} = 1.369 \text{ mD}$$

$$S_t = 1.152 \left(\frac{2.699}{0.8734} - \log \frac{1.369}{0.097 \times 0.0224 \times 0.0225 \times 0.1^2} + 1.827\right) = -1.762 \text{ dim}$$

将已知的有关参数数值分别代入(35)式和 (36)式,求得压力平方法的有效渗透率和总表皮系 数为:

 $k = \frac{4.24 \times 10^4 \times 10 \times 0.0224 \times 0.962 \times 0.101 \times 378}{44.666 \times 16.8 \times 293}$ = 1.587 mD $S_t = 1.512 \left(\frac{150.16}{44.666} - \log \frac{1.587}{0.097 \times 0.0224 \times 0.0225 \times 0.1^2} + 1.827\right) = -1.685 \text{ dim}$

4 结论

本文基于达西定律平面径向流的微分式,利用 AI-Hussainy^[6]提出的拟压力函数,经推导得到了气 井拟压力非稳态阶段的弹性一相法。同时,根据 Wattenbarger^[9]对AI-Hussainy^[8]拟压力随压力变化 特征的研究结论,对非稳态阶段弹性一相法进行了 简化,分别得到了由压力一次方和压力平方表示的 弹性一相法。本文提供的弹性一相法,可有效地用 于评价气藏的有效渗透率和气井的总表皮系数。 通过实测的应用表明,弹性一相法是实用有效的。 由拟压力法、压力一次方法和压力平方法评价的结 果基本相同。

符号说明

(圆括弧内为SI基础单位)

 q_g —— 气井的稳定产量, 10⁴m³/d, (m³/s);

- P----压力, MPa, (Pa);
- P_e 驱动半径 r_e 处的压力, MPa, (Pa);
- *P_i*——原始地层压力, MPa, (Pa);
- *P_{wf}*——井底流压, MPa, (Pa);
- *P_{wfo}* —— 关井时的井底流压, MPa, (Pa);
- *P_b* —— 气井拟压力的基准压力(可取为*P_{sc}*或0), MPa, (Pa);
- *P_{sc}* —— 地面标准压力, MPa, (Pa);
- *P_{pc}* —— 拟临界压力, MPa, (Pa);
- *P_{pr}* —— 拟对比压力, dim, (dim);
- $\psi(p)$ —— P 压力下的拟压力, MPa²/mPa·s, (Pa²/Pa·s);
- $\psi(p_i)$ P_i 压力下的拟压力, MPa²/mPa·s, (Pa²/Pa·s);
- ψ(p_{wf}) P_{wf} 压力下的拟压力, MPa²/mPa·s, (Pa²/ Pa·s);
- ψ(p_{wfo}) P_{wfo} 压力下的拟压力, MPa²/mPa·s, (Pa²/ Pa·s);
- $\Delta \psi(p)$ —— 拟压力差, MPa²/mPa·s, (Pa²/Pa·s);
- Δ*P*—— 压差, MPa, (Pa);
- ΔP² 压力平方差, MPa², (Pa²);
- t----稳定产量的生产时间,h,(s);
- C_{ti} —— 气藏的总压缩系数($C_{ti}=S_{gi}C_{ti}^*$), MPa⁻¹, (Pa⁻¹);
- *C*^{*}_{*ii*} —— 气藏的总压缩系数, MPa⁻¹, (Pa⁻¹);
- Cg —— 气体的压缩系数, MPa⁻¹, (Pa⁻¹);
- *C_w* 束缚水的压缩系数, MPa, (Pa⁻¹);
- C_f ——岩石孔隙的有效压缩系数, MPa⁻¹, (Pa⁻¹);
- Swi —— 原始含水饱和度, frac, (frac);
- Sgi —— 原始含气饱和度, frac, (frac);
- *S_t* —— 总表皮系数,dim,(dim);
- S₁ —— 打开程度不完善引起的表皮系数,dim,(dim);

- S2----射孔密度不完善引起的表皮系数,dim,(dim);
- *S*₃ —— 钻井和完井泥浆侵入引起的表皮系数, dim, (dim);
- S_4 ——高速湍流影响引起的表皮系数,dim,(dim);
- r----径向半径,m,(m);
- *r_w* —— 井底半径, m, (m);
- *r_{we}* —— 井底有效半径, m, (m);
- *r_e*—— 驱动半径,m,(m);
- *r_i*—— 探测半径, m, (m);
- *h* 有效厚度, m, (m);
- *k*——有效渗透率,mD,(m²);
- $\mu_g \longrightarrow P$ 压力下的地层气体黏度, MPa·s, (Pa·s);
- μ_{gi} —— P_i 压力下的地层气体黏度, MPa·s, (Pa·s);
- A_p和m_p —— 拟压力半对数直线的截距和斜率;
- A1和B1 —— 压力一次方半对数直线的截距和斜率;
- A2和B2—— 压力平方半对数直线的截距和斜率;
- ln —— 以e为底的自然对数(Natural logarithem);
- log —— 以10为底的常用对数(Common logarithem)。

参考文献

[1] 陈元千:油气藏工程计算方法(续篇),石油工业出版社,北京, 1991,37-47。

CHEN Yuanqian: Calculation method of oil-gas reservoir engineering (continuation), Petroleum Industry Press, Beijing, 1991, 37-47.

[2] 国家石油与化学工业局发布:中华人民共和国石油与天然气 行业标准,SY/T 6098-1994。

State Administration of Petroleum and Chemical Industry: Industrial standard of the petroleum and natural gas of the People' s Republic of China, SY/T 6098-1994.

- [3] 国家石油与化学工业局发布:中华人民共和国石油与天然气行业标准,SY/T 6098-2000。
 State Administration of Petroleum and Chemical Industry: Industrial standard of the petroleum and natural gas of the People's Republic of China, SY/T 6098-2000.
- [4] 国家石油与化学工业局发布:中华人民共和国石油与天然气 行业标准,SY/T 6098-2010。
 State Administration of Petroleum and Chemical Industry: Industrial standard of the petroleum and natural gas of the People' s Republic of China, SY/T 6098-2010.
- [5] 国家石油与化学工业局发布:中华人民共和国石油与天然气 行业标准,SY/T 6098-2022。
 State Administration of Petroleum and Chemical Industry: Industrial standard of the petroleum and natural gas of the People' s Republic of China, SY/T 6098-2022.
- [6] 陈元千,王鑫:气井变产量弹性二相法的应用,油气地质与采 收率,2023,30(5)63-66。
 CHEN Yuanqian, WANG Xin. Application of elastic two phase method with variable production in gas wells [J]. Petroleum Geology and Recovery Efficiency, 2023, 30(5): 63-66.
- [7] 陈元千,刘洋:气井定产量和变产量弹性二相法的通式及应用,石油地质与采收率,2024,31(1)72-77。
 CHEN Yuanqian, LIU Yang, WANG Xin: The general formula and application for the elastic two-phase method with stable and variable rate of gas wells [J]. Petroleum Geology and Recovery Efficiency, 2024, 31(1): 72-77.
- [8] Al-Hussainy R., Ramey, H. J. Crawford Jr, . The flow of real gases through porous media [J]. Journal of Petroleum Technology, 1966, 18(5): 624-636.
- [9] Wattenbarger R. A., Ramey H. J. Jr. Gas well testing with turbulence, damage and wellbore storage [J]. Journal of Petroleum Technology, 1968, 20(8): 877-887.

编辑 何青芳