Fluid flow pattern in fractures supported by proppant pillars
Author:
Affiliation:

Clc Number:

TE357.1

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Proppant slurry and the clean fluid are alternately pumped through pulses during channel fracturing to form a discontinuous placement of non-uniform support structures in the artificial fractures,and high-speed channels of fluid flowing could be formed in the fractures. However,the understanding of the deformation law of the proppant pillar under the formation closure pressure is unclear,resulting in an indefinite understanding of the variation rule of the fracture width,and therefore it is difficult to accurately calculate the flow conductivity of the fracture with proppant. According to the results of large-scale visualized plate proppant migration and placement experiment,placement pattern and size of the proppant pillar were analyzed,and the proppant pillars were divided into three types. The compression deformation process of the proppant pillars was simulated,and the thickness variation law and Young’s modulus of the proppant pillars under different closure pressure were obtained. The proppant pillar was dispersed into particles with actual mass and volume by the smoothed-particle hydrodynamics(SPH). The formations are dispersed by finite element method,and their contact with the proppant pillar was calculated based on the coupling contact algorithm. Based on the size of proppant pillar extracted by plate experiment,three types of formation fracture-proppant pillar contact models were proposed. Deformed state,normal stress and height of the proppant pillar under different formation closure pressure and Young’s modulus were obtained to study the deformation law of proppant pillar. Finally,the fracture-proppant pillar flow model was proposed to study the pressure and velocity field under different construction parameters by CFD.

    Reference
    Related
    Cited by
Get Citation

LU Cong, LU Yunxiao, LI Zhili, CHEN Tao, GUO Jianchun, JIANG Baoyun. Fluid flow pattern in fractures supported by proppant pillars[J]. Petroleum Geology and Recovery Efficiency,2019,26(4):111~118

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: September 24,2019
  • Published: